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1. As I have already reported in another place, it seems to be very
natural, to consider hypersurfaces of the second order as space-elements,
when we intend to establish the projective differential geometry in the
n-dimensional space.) Therefore the first problem to deal with is the
projective theory of m-parametric families of hypersurfaces of the
second order. In this paper I shall determine the fundamental forms
in the projective differential geometry of m-parametric families of
hypersurfaces of the second order and then add their geometrical
meanings.

2. Notations. In homogeneous point-coordinates , (=0, 1, 2,...
n) an m-parametric family of hypersurfaces of the second order is

represented by the equation

where a,t, = a,,(u, u,
Then let us take

a,= (n+l)t ’+ a

as its normalized coordinates, where we represent the determinant
a,! by z/. Now we denote briefly a system of numbers a, by a, fol-

1) See my previous papers- On the projective differential geometry of plane
curves and one-parameter families of conics, these Proceedings, 2, 307-309, 1926;
and Projective differential geometrical properties of the one-parameter families of
point-pairs in the one-dimensional space, these Proceedings, :9, 6-8, 1927. See also
my papers- Jber die projektive Differentialgeometrie I, II, III, T0hoku Math.
Journal, 2t, 1927.
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lowing the vector-notation, and a system of numbers n A, by , where
A, is the algebraic complement of a, in the determinant a, !. Put

where is extended over all permutations of (/o, i, L). Moreover,
we define the scalar product of two vectors and as follows-

then we have

oi=(a, o, o)=1.

3. Fundamentalforms. Let us consider

G2 gdudu =n(o, a, a o)dudu

A3 A,du du du =(n-1)(o,, , , o, o) du’ du du.’’
These differential forms are evidently invariant under the group of
unimodular projective transformations and under the change of para-
meters. Let us consider such vectors ,, , that

(n+l)(n+2) -m-l)2

and further consider g as the fundamental tensor and introduce the
covariant differentiation. Then the covariant derivatives of m and
can be represented as follows-

1) Here a and the repeated indices i, j, k, one upper and another

(n/ln/2)lower, are summed over 1, 2 mand,, over 1, 2 2 -m-l.

2) % =1 for = and =0 for ,.
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(1) %= ga 1 Ag,,a+B ,2

Moreover we get

(2) -,,. "

where a

p can be detemined by the quantities g, Ao, Bf, B.
From (1) new differentia] forms

B =B} du du

B Bdudu

appear, besides G and A. These fo are apparently invaHant
under the group of unimodular projective transformations and under
the change of parameters, whh we adopt also as the fundamental
forms.

4. Gauss-Codazzi relalions (conditions ofintegrability).
and (2) we can easily derive the following relations"

From (1)

(3)

where A’=gAo, B,;,=gB., etc.

From (3) we get by simple calculation

(4)
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1 -A< B,)],2

But by the theorem of Ricci we know that the following relations hold
good

(5)

where Kj;, denotes Riemann’s curvature-tensor.
have

Therefore we must

(6) 1 . . 1-A< A.o
4 2

(8)

From (6) and (7), which are essentially identical with each other,

(9) 1 A" "A" s 1 (B(,-]+B.,-),,)=Kj{4 C :--"
2

These relations (8) and (9) are the equations, which correspond to the
so-called Gauss-Codazzi equations, i.e. the conditions of integrability in
our case.

5. Thefundamental theorem. We can now prove the fundamental
theorem"

Thefamily of hypersurfaces of the second order is uniquely deter-
mined, except for the projective transformations, by theforms G.., A,,B,
B. and p, among which the relations (8) and (9) hold.

1) We introduce the following notation after Schouten" 9c3=-, for ex.

cm)=’;).I.,-,,o, Acj A,;o,; AiA,;j,t- A,,," " Aji, - , ,, ,,o=-0,--,,,,,. etc.
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6. Other relations. From (2) we have

(10)

and also from (1)

(11) o’lo,-B Bo,=p

7. Geometrical meaning of thefundamental forms. Now we con-
sider the geometrical meaning of the fundamental forms. First the- directions defined by G=O are such that the hypersurfaces of the
second order , which belong to the sheaf detemined by and the
consecutive hypersurfaces of the second order +d in that directions
and which have apolarity of the first ordern to , have also apolarity
of the second order to . The - directions defined by A=0 are
such that the hypersurfaces d, above mentioned, have apolarity of the
third order to . B=0 defines the - directions such that the
hypersurfaces d have apolarity of the first order to d, and similarly
for B=O.

In the special case n=2, G=0 defines the directions in which a is
apolar to the conics da, and A=0 the directions in which every da
reduces to two straight lines.

8. Projective pripal hypersurfes of the second order. At
every a of the family we consider the hypersurfaces of the second
order defined by

(12) p gao=_ma_ 1 .,A.., ...+g B ,2

2

which are invariant under the group of unimodular projective trans-
formations as well as under the change of the parameters. So we call
them the principal direct and. correlative hypersurfaces of the second
order at of the family.

1) Alcolarity of the p-th order to a means that (b, , a a)=O, in which
the number of the ’s is p. Especially apolarity of the first order is the apolarity, in
the usual sense, that is, the circumscribing of a self-polar (n+ 1)-polytope of a.


