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(Rec. May 31, 1927. Comm. by M. FUJIWARA, M.LA., June 12, 1927.)

1. As I have already reported in another place, it seems to be very
natural, to consider hypersurfaces of the second order as space-elements,
when we intend to establish the projective differential geometry in the
n-dimensional space.” Therefore the first problem to deal with is the
projective theory of m-parametric families of hypersurfaces of the
second order. In this paper I shall determine the fundamental forms
in the projective differential geometry of m-parametric families of
hypersurfaces of the second order and then add their geometrical
meanings.

2. Notations. In homogeneous point-coordinates z, (=0, 1, 2, ...
..., 1) an m-parametric family of hypersurfaces of the second order is
represented by the equation

2 O 4300, =0,
A

where Ay = (U, U,y .eneney U,

Then let us take

A= {(’n'*'l) 4} " g

as its normalized coordinates, where we represent the determinant
ay. | by 4. Now we denote briefly a system of numbers a,, by a, fol-

1) See my previous papers: On the projective differential geometry of plane
curves and one-parameter families of conics, these Proceedings, 2. 307-309, 1926 ;
and Projective differential geometrical properties of the one-parameter families of
point-pairs in the one-dimensional space, these Proceedings, 3, 6-8, 1927. See also
my papers: Uber die projektive Differentialgeometrie I, II, III, Tohoku Math.
Journal, 28, 1927.
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lowing the vector-notation, and a system of numbers % ! A,, by %, where
A, is the algebraic complement of a,, in the determinant | a,,]. Put

@ @) G,
aoo“) [ o
G @) @,)
am") an' ......... (1 P
@5 05 s Qg peniey 05) = 20 | e |
G G G,
am)") anll ......... am:'
where > is extended over all permutations of (%, 4i,... ... , ). Moreover,

we define the scalar product of two vectors a and B as follows :
a%=2'n ! a}p. BM‘- ’
A

then we have

3. Fundamental forms. Let us consider
G2 = gadu'du* =n(a,, i, a......, a)du‘du® ,
As=Agdvdiddu* =(n—1)(a,, o5, G, q,......, @) du’ du’ du*.”

These differential forms are evidently invariant under the group of
unimodular projective transformations and under the change of para-
meters. Let us consider such vectors £., X°*, that

EOQI= gﬂ[i =qXP= ak%” =0,
EGXF =8¢B)2)

1,2, ey OEDOAD ),

and further consider g« as the fundamental tensor and introduce the
covariant differentiation. Then the covariant derivatives of a; and Az
can be represented as follows :

1) Here a; =—£T and the repeated indices %, j, k,...... , one upper and another

lower, are summed over1,2,...,manda, 8, 7,... overl, 2, ..., ('n+12n+2) —m—1.

2) 83 =1 for a=8 and 3¢p =0 for «+B.
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) 0y= —gva——;—Amd”aﬁBa“sa,
mﬁ= _gk:fQI + 1 A{jlc gﬂ 211 +§ag5 %8,

2
Moreover we get

2) La, = —Eaa gl kalc+ pi&TgT ’
¥t=—Bud" U —pi;"%",
where a;_,-?i“ =Baj5 , %gg¢=§fd¢ ,

L X o= =L, X =008 .

pis* can be determined by the quantities gu, A, Bi®, Bes.
From (1) new differential forms

Bf=Bdu'du’ ,
Ez;x =§up dutdu’
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appear, besides G: and As. These forms are apparently invariant
under the group of unimodular projective transformations and under
the change of parameters, which we adopt also as the fundamental

forms.

4. Gauss-Codazzi relalions (conditions of integrability).
and (2) we can easily derive the following relations :

+ (Ba;“,;.+B;;’paa“——-; A;;;*B;,,;.“) ke

From (1)

1 Aipm O — gy + (——1 At A — 1 A’ »— BBl )a,

Wijm = ; A A—gy W, + (ji—Agi'“A/;,;f + —;—A;v{ n—Bije B )52[,
+(Bos.m—Bup pii®+ —;-Aa"l_?m )ES
where Aq b= g”‘ Agir B.k= g" "B , ete.

From (3) we get by simple calculation

C)) Qicjmy= (%—A;t;"A,;,);,'— —;—A;d ! io—Bic By :,) a
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R N B Bore o 0 1 A .kB..a D
+{ Bicj% m+ Bici"Dmri — g Aici Bk Lo
1 1 . )
%cjm:(TA%dkArh)%l"‘*‘_z Aici' 2y— B Bpis ) s

+ (E(j a1, m)_E(n 81 Pmyx P+ —;—A;-.:;"E,,),m) x°.
But by the theorem of Ricei we know that the following relations hold
good :
®) Qicimy=Kjni'as , Wicimy=Kimi Wy,

where K;,;' denotes Riemann’s curvature-tensor. Therefore we must
have

(6) i A;g"A,;‘);,’—-—;—A;(;’,”'.;—Ba(g“l?;u’.; =K;.i,
(7) 1 A: FA- P 1 At ._B.mE =K

T iCj m)e 2 iCj , m) (e} Die = Jmi o
® B;-cf.,:.>+Be<3"p,;.na’——; Aici’ Bani® =0,

E(j TIR _E(j 181 »p,;,;;" +—;—A 2(3" By =0.

From (6) and (7), which are essentially identical with each other,
©) —i—Aécs"A.:.ﬁ’ ——; (B&d “Bis's+ B Bina ) =Kj.i

AR - I Y > ) . e P L.
Ai(.f ,m)_ch ¢Bj)ic_ Bi(fa Bm)a.

These relations (8) and (9) are the equations, which correspond to the
so-called Gauss-Codazzi equations, i.e. the conditions of integrability in
our case.

5. The fundamental theorem. We can now prove the fundamental
theorem :

The famliy of hypersurfaces of the second order is uniquely deter-
mined, except for the projective transformations, by the forms Gz, As,B:°,
B, and p;;*, among which the relations (8) and (9) hold.

1) We introduce the following notation after Schouten: 8¢ =8¢ —Rj for ex.
Wicjmy=Wigm—Wimj, Aic’ Amst = Ai"* Ami’' — Ain® Aji', Bicii a1, my=Bijo,m—Bims, 3. ete.
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6. Other relations. From (2) we have

LwX! =B B/ —pii'pi®,

and L Xl + Lo X' =1is®, 0,
i.e.
10) Eu(k%ﬂ =Dk “, m) =E(k| @ nBi)‘p ’

and also from (1)
an 0 pi=Bi™ Bris=1Dci1é\*, m>-

7. Geometrical meaning of the fundamental forms. Now we con-
sider the geometrical meaning of the fundamental forms. First the
™1 directions defined by G.=0 are such that the hypersurfaces of the
second order da, which belong to the sheaf determined by a and the
consecutive hypersurfaces of the second order a-+da in that directions
and which have apolarity of the first order® to a, have also apolarity
of the second order to a. The ™! directions defined by A;=0 are
such that the hypersurfaces da, above mentioned, have apolarity of the
third order to a. B:*=0 defines the ™! directions such that the
hypersurfaces da have apolarity of the first order to dX®, and similarly
for B:=0.

In the special case n=2, G.=0 defines the directions in which a is
apolar to the conics da, and As;=0 the directions in which every da
reduces to two straight lines.

8. Projective principal hypersurfaces of the second order. At
every a of the family we consider the hypersurfaces of the second
order defined by

12) p=g%y= —ma—%g"Ay’aﬁ 9“Bij*ts ,
P=gUy=—mA+— g AU+ 0B ¥,

which are invariant under the group of unimodular projective trans-
formations as well as under the change of the parameters. So we call
them the principal direct and. correlative hypersurfaces of the second
order at a of the family.

1) Arolarity of the p-th order to a means that (5, b,.. ... ,0,0,...... , @)=0, in which
the number of the b’s is p. Especially apolarity of the first order is the apolarity, in
the usual sense, that is, the circumscribing of a self-polar (n-+1)—polytope of a.



