111. On Transcendental Numbers.

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imp. University.

(Rec. June 23, 1927. Comm. by M. Fujiwara, m.I.A., July 12, 1927.)
The following theorem was proved by Kempner. ${ }^{1)}$
Let a be an integer greater than $1 ; \alpha_{n}(n=0,1,2, \ldots \ldots)$ any positive or negative integer smaller in absolute value than a fixed arbitrary number M, but only a finite number of the α_{n} equal to 0 , then

$$
f(x)=\sum_{n=0}^{\infty} \frac{\alpha_{n}}{a_{n 2}} x^{n}, \quad a_{n}=a^{2^{2}}
$$

represents a transcendental number for any rational number x.
As Blumberg ${ }^{2)}$ has shown, the condition that only a finite number of coefficients α_{n} shall be zero may be removed, so that

$$
f_{1}\left(\frac{p}{q}\right)=\sum \frac{\alpha_{\sigma_{n}}}{a_{n}^{\prime}}\left(\frac{p}{q}\right)^{n}, \quad a_{n}^{\prime}=a^{\sigma_{n}}
$$

represents a transcendental number, when $\sigma_{1}<\sigma_{2}<\ldots \ldots<\sigma_{n} \rightarrow \infty$.
He proved this theorem by distinguishing between two cases, where
(1) for every n there are two consecutive σ_{n} 's greater than n and differing by more than k,
(2) after a certain point, the difference between two consecutive σ_{n} 's is less than or equal to k.

In the following lines I will give a generalzation of KempnerBlumberg's theorem, which can be proved without distinction of the two cases.

Our theorem runs as follows:
The integral transcendental function

$$
f(x)=\sum_{n=0}^{\infty} \frac{\alpha_{n}}{a^{\sigma_{n}}} x^{n}
$$

1) Trans. American Math. Soc., 17 (1916).
2) Bulletin American Math. Soc., 32 (1926).
where a denotes an integer greater than 1 and α_{n} an integer $<\alpha^{n}$ in absolute value, represents a transcendental number for any rational x, when the following conditions (A) are satisfied for every k :

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\sigma_{n}}{n}=\infty \\
\frac{\sigma_{m_{1}}+\sigma_{m_{2}}+\ldots \ldots+\sigma_{m_{i}}}{\sigma_{n_{1}}+\sigma_{n_{2}}+\ldots \ldots+\sigma_{n_{j}}}>1+\delta_{k}, \quad\left(\delta_{k}>0\right)
\end{gathered}
$$

for $\sigma_{m_{1}}+\sigma_{m_{2}}+$ \qquad $+\sigma_{m_{n}}>\sigma_{n_{1}}+n_{2}+\ldots \ldots+\sigma_{n_{j}}$ where some σ_{m} 's (and also σ_{n} 's) may be equal and $\sigma_{m} \neq \sigma_{n}(i, j \leqq k)$, and there is only one set ($\sigma_{n_{1}}$, $\left.\sigma_{n_{2}}, \ldots \ldots, \sigma_{n_{i}}\right)$ whose sum is largest, but less than σ_{n}.

To prove this we suppose that $f(p / q)$ is not transcendental, then $z=f(p / q)$ satisfies an algebraic equation with integral coefficients of the form

$$
\varphi(z)=\sum_{\mu=0}^{k} A_{\mu} Z_{\mu}=0
$$

We can show that this leads to a contradiction.
The conditions (A) are satisfied for $\sigma_{n}=2^{2}$, so that KempnerBlumberg's theorem follows immediately.

For $\sigma_{n}=\left[r^{2}\right], r>1$, where $[x]$ represents the greatest integer contained in x, the conditions (A) are satisfied for $k=1$. Therefore

$$
f_{2}\left(\frac{p}{q}\right)=\sum \frac{\alpha_{n}}{a^{\left[r^{n}\right]}}\left(\frac{p}{q}\right)^{n}
$$

represents an irrational number.
When $r>\frac{1+\sqrt{5}}{2}$, the conditions (A) are satisfied for $k=2$. Therefore $f_{2}(p / q)$ is neither rational, nor a quadratic irrational.

For $r \geqq 2, f_{2}(p / q)$ represents a transcendental number.

