0. On the Distribution of Zero Points of the Derivatives of an Integral Transcendental Function of Order $\rho \leq 1$.

By Satoru TAKENAKA.

Shiomi Institute, Osaka.

(Comm. by M. FUJIWARA, M.I.A., April 13, 1931.)

1. Recently ^I have proved the following theorem which is a modified form of a theorem enunciated by Mr. Takahashi :¹⁾

THEOREM I.²⁾ Let $\{g_n(z)\}\$ be a sequence of functions satisfying the following conditions:

(i) $g_n(z)$ is regular and analytic for $|z| \leq R$;

(ii) $g_n(z) = z^n \{1 + h_n(z)\}\$, where $h_n(z)$ is regular and analytic for $|z|\leq R$ and vanishes at the origin ;

(iii) there exists a finite constant λ for which

$$
\overline{\lim}_{n\to\infty}|h_n(z)|\leq \lambda \quad for \quad |z|\leq R.
$$

Then any function $f(z)$ regular and analytic for $|z|\leq r$ can be expanded in one and only one way into the series of the form

$$
f(z) = \sum_{n=0}^{\infty} c_n g_n(z) ,
$$

which converges absolutely and uniformly for

$$
|z|\leq r_0\!<\!\min\Big(r,\,\frac{R}{1+\lambda}\Big).
$$

2. Let us consider a set $\{a_n\}$ of points such that

$$
\varlimsup_{n\to\infty} |a_n|=L
$$

and put

$$
g_n(z) = z^n e^{a_n z} = z^n \{1 + h_n(z)\}, \quad (|z| \leq R, \quad n = 0, 1, 2, \ldots).
$$

Since $g_n(z)$ is regular and analytic for any finite value of R, and moreover

reover\n
$$
|h_n(z)| \leq e^{\lfloor \alpha_n \rfloor R} - 1 \quad \text{for} \quad |z| \leq R,
$$
\n
$$
\overline{\lim}_{n \to \infty} |h_n(z)| = e^{LR} - 1 (= \lambda \text{ say}) \quad \text{for} \quad |z| \leq R,
$$
\n1) S. Takahashi: A remark on Mr. Widder's theorem, Toboku Math. Journal,

³³ (1930), 48.

²⁾ The proof of this theorem will be given in my paper "On the expansion of analytic functions in a series of analytic functions and its applications etc." which will appear in Proc. Phys.-Math. Soc. of Japan.

the function $h_n(z)$ satisfies the conditions in Theorem I. On the other hand, we can easily show that the maximum of Re^{-LR} takes the value
 $\frac{1}{1}$ given by $R = \frac{1}{1}$ so that we can state the following $\frac{1}{Le}$ given by $R = \frac{1}{L}$, so that we can state the following THEOREM II. Let $\{a_n\}$ be a set of points such that $\overline{\lim}_{n\to\infty} |a_n|=L<\infty.$

 $\lim_{n \to \infty} |a_n| = L < \infty$.
Then any function $\phi(z)$ regular and analytic for $|z| \leq r$ can be expanded in one and only one way into the series of the form

$$
\phi(z) = \sum_{n=0}^{\infty} c_n z^n e^{\overline{a}_{n}z},
$$

which converges absolutely and uniformly for $|z| \leq r_0 < \min(r, \frac{1}{L\rho})$.

3. Now let $f(z)$ be an integral transcendental function of type σ (<1), and of the first order, and write

$$
f(z)=\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n.
$$

Then by the use of Stirling's formula, we can easily show that the function $\phi(z)$ defined by

$$
\phi(z) = \sum_{n=0}^{\infty} a_n z^n
$$

is regular and analytic for $|z| < \frac{1}{a}$, so that it can be expanded uniquely into the series of the form

(A)
$$
\phi(z) = \sum_{n=0}^{\infty} c_n z^n e^{\overline{a}_n z}, \qquad (\lim_{n=\infty} |a_n| = L)
$$

 $\boldsymbol{\sigma}$

If we assume that $L < \frac{1}{e}$, it is obvious that $1 \le \min\left(\frac{1}{\sigma}, \frac{1}{L e}\right)$, whence, in this case, the series (A) converges absolutely and uniformly for $|z|\leq 1$.

Taking the conjugate values of both sides of (A), multiplying by $\phi(z)$ and integrating term by term, we obtain

$$
\frac{1}{2\pi}\int_{|z|=1}|\phi(z)|^2|dz|=\sum_{n=0}^{\infty}\overline{c}_n\frac{1}{2\pi}\int_{|z|=1}\phi(z)\overline{z}^ne^{\sigma_n\overline{z}}|dz|.
$$

On the other hand we have

No. 4.] On the Distribution of Zero Points of the Derivatives.

$$
f(x) = \frac{1}{2\pi i} \int_{|z|=1} \phi(z) \frac{e^{\frac{x}{z}}}{z} dz = \frac{1}{2\pi} \int_{|z|=1} \phi(z) e^{i\overline{z}} |dz|,
$$

so that

$$
f^{(n)}(a_n) = \frac{1}{2\pi} \int_{|z|=1} \phi(z) \overline{z}^n e^{\alpha_n \overline{z}} |dz|, \qquad (n = 0, 1, 2, \ldots).
$$

from which it follows that

$$
\frac{1}{2\pi}\int_{|z|=1}|\,\phi(z)\,|^2\,|\,dz\,|=\sum_{n=0}^\infty\overline{c}_n f^{(n)}(a_n)\,.
$$

From this equality we obtain the

THEOREM III. Let $f(z)$ be an integral transcendental function of type $\sigma(<1)$, order 1, and let a_n be a zero of $f^{(n)}(z)$. If

$$
\varlimsup_{n\mathbb{R}\infty}|\,a_n\,| \!=\! L\!<\!\!\frac{1}{e}\,,
$$

 $f(z)$ should vanish identically.

4. We are now in a position to prove the following

THEOREM IV. Let $f(z)$ be an integral transcendental function of type σ , order 1, and let a_n be a zero of $f^{(n)}(z)$.

If

$$
\varlimsup_{n=\infty} |a_n \!-\! z_0|\!=\!L \!<\!\!\frac{1}{\sigma e}\,,
$$

$$
f(z)
$$
 should vanish identically, where z_0 is a fixed point.¹ **PROOF.** Without any loss of generality we can put $z_0 = 0$.

Let δ be an arbitrary positive constant and put

$$
f^*(z) = f\left(\frac{z}{\sigma + \delta}\right)
$$

and

$$
x_n = (\sigma + \delta)a_n, \qquad (n = 0, 1, 2, \ldots).
$$

Then $f^*(z)$ is an integral transcendental function of type $\sigma' = \frac{\sigma}{\sigma + \delta}$ (<1), and of the first order; moreover x_n is a zero of $f^{*(n)}(z)$ with the condition

$$
\overline{\lim}_{n=\infty}|x_n|=(\sigma+\delta)L.
$$

135

¹⁾ In my paper loc. cit., ^I have generalized this theorem for the case where the order ρ is any finite positive constant.

$$
(\sigma + \delta)L < \frac{1}{e}
$$
 or $L < \frac{1}{e(\sigma + \delta)}$.

Since δ is arbitrary, our theorem has been completely established. Particularly if we put $\sigma=0$, we get

THEOREM V. Let $f(z)$ be an integral transcendental function of order $\rho(\leq 1)$ or of minimal type, and of the first order, and let a_n be a zero of $f^{(n)}(z)$.

Then it must be

$$
\overline{\lim}_{n\to\infty} |a_n| = \infty,
$$

and if this is not the case, $f(z)$ should vanish identically.