40. On the Distribution of Zero Points of the Derivatives of an Integral Transcendental Function of Order $\rho \leq 1$.

By Satoru TAKENAKA.

Shiomi Institute, Osaka.

(Comm. by M. FUJIWARA, M.I.A., April 13, 1931.)

1. Recently I have proved the following theorem which is a modified form of a theorem enunciated by Mr. Takahashi:¹⁾

THEOREM I.²⁾ Let $\{g_n(z)\}$ be a sequence of functions satisfying the following conditions:

(i) $g_n(z)$ is regular and analytic for $|z| \leq R$;

(ii) $g_n(z) = z^n \{1 + h_n(z)\}$, where $h_n(z)$ is regular and analytic for $|z| \leq R$ and vanishes at the origin;

(iii) there exists a finite constant λ for which

$$\overline{\lim_{n\to\infty}} |h_n(z)| \leq \lambda \quad for \quad |z| \leq R.$$

Then any function f(z) regular and analytic for $|z| \leq r$ can be expanded in one and only one way into the series of the form

$$f(z) = \sum_{n=0}^{\infty} c_n g_n(z)$$
,

which converges absolutely and uniformly for

$$|z| \leq r_0 \leq \min\left(r, \frac{R}{1+\lambda}\right).$$

2. Let us consider a set $\{a_n\}$ of points such that

$$\overline{\lim_{n\to\infty}} |a_n| = L$$

and put

$$g_n(z) = z^n e^{\overline{a}_n z} = z^n \{1 + h_n(z)\}, \quad (|z| \leq R, n = 0, 1, 2, \dots).$$

Since $g_n(z)$ is regular and analytic for any finite value of R, and moreover

$$\begin{aligned} |h_n(z)| &\leq e^{|\alpha_n|R} - 1 \quad \text{for} \quad |z| \leq R, \\ \overline{\lim_{n \to \infty}} |h_n(z)| &= e^{LR} - 1 (= \lambda \text{ say}) \quad \text{for} \quad |z| \leq R, \end{aligned}$$

¹⁾ S. Takahashi: A remark on Mr. Widder's theorem, Tohoku Math. Journal, 33 (1930), 48.

²⁾ The proof of this theorem will be given in my paper "On the expansion of analytic functions in a series of analytic functions and its applications etc." which will appear in Proc. Phys.-Math. Soc. of Japan.

the function $h_n(z)$ satisfies the conditions in Theorem I. On the other hand, we can easily show that the maximum of Re^{-LR} takes the value $\frac{1}{Le}$ given by $R = \frac{1}{L}$, so that we can state the following THEOREM II. Let $\{a_n\}$ be a set of points such that $\overline{\lim} |a_n| = L < \infty$.

Then any function $\phi(z)$ regular and analytic for $|z| \leq r$ can be expanded in one and only one way into the series of the form

$$\phi(z) = \sum_{n=0}^{\infty} c_n z^n e^{\overline{a}_n z} ,$$

which converges absolutely and uniformly for $|z| \leq r_0 \leq \min\left(r, \frac{1}{Le}\right)$.

3. Now let f(z) be an integral transcendental function of type $\sigma(<1)$, and of the first order, and write

$$f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n.$$

Then by the use of Stirling's formula, we can easily show that the function $\phi(z)$ defined by

$$\phi(z) = \sum_{n=0}^{\infty} a_n z^n$$

is regular and analytic for $|z| < \frac{1}{\sigma}$, so that it can be expanded uniquely into the series of the form

(A)
$$\phi(z) = \sum_{n=0}^{\infty} c_n z^n e^{\overline{a}_n z}$$
, $(\overline{\lim}_{n=\infty} |a_n| = L)$

which converges absolutely and uniformly for $|z| \leq r < \min\left(\frac{1}{\sigma}, \frac{1}{Le}\right)$.

If we assume that $L < \frac{1}{e}$, it is obvious that $1 < \min\left(\frac{1}{\sigma}, \frac{1}{Le}\right)$, whence, in this case, the series (A) converges absolutely and uniformly for $|z| \leq 1$.

Taking the conjugate values of both sides of (A), multiplying by $\phi(z)$ and integrating term by term, we obtain

$$\frac{1}{2\pi} \int_{|z|=1} |\phi(z)|^2 |dz| = \sum_{n=0}^{\infty} \bar{c}_n \frac{1}{2\pi} \int_{|z|=1} \phi(z) \bar{z}^n e^{\sigma_n \bar{z}} |dz|.$$

On the other hand we have

134

No. 4.]

On the Distribution of Zero Points of the Derivatives.

$$f(x) = \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \phi(z) \frac{e^{\frac{z}{z}}}{z} dz = \frac{1}{2\pi} \int_{|z|=1}^{\infty} \phi(z) e^{x\overline{z}} |dz|,$$

so that

$$f^{(n)}(a_n) = \frac{1}{2\pi} \int_{|z|=1} \phi(z) \bar{z}^n e^{\alpha_n \bar{z}} |dz|, \qquad (n=0, 1, 2, \ldots),$$

from which it follows that

$$\frac{1}{2\pi} \int_{|z|=1} |\varphi(z)|^2 |dz| = \sum_{n=0}^{\infty} \bar{c}_n f^{(n)}(a_n) \,.$$

From this equality we obtain the

THEOREM III. Let f(z) be an integral transcendental function of type $\sigma(\leq 1)$, order 1, and let a_n be a zero of $f^{(n)}(z)$. If

$$\overline{\lim_{n\to\infty}} |a_n| = L < \frac{1}{e},$$

f(z) should vanish identically.

4. We are now in a position to prove the following

THEOREM IV. Let f(z) be an integral transcendental function of type σ , order 1, and let a_n be a zero of $f^{(n)}(z)$.

If

$$\overline{\lim_{n\to\infty}} |a_n - z_0| = L < \frac{1}{\sigma e}$$
 ,

$$f(z)$$
 should vanish identically, where z_0 is a fixed point.¹⁾
PROOF. Without any loss of generality we can put $z_0=0$.

Let δ be an arbitrary positive constant and put

$$f^*(z) = f\left(\frac{z}{\sigma+\delta}\right)$$

and

$$x_n = (\sigma + \delta)a_n$$
, $(n = 0, 1, 2,)$

Then $f^*(z)$ is an integral transcendental function of type $\sigma' = \frac{\sigma}{\sigma + \delta}$ (<1), and of the first order; moreover x_n is a zero of $f^{*(n)}(z)$ with the condition

$$\overline{\lim_{n\to\infty}}|x_n|=(\sigma+\delta)L.$$

135

¹⁾ In my paper loc. cit., I have generalized this theorem for the case where the order ρ is any finite positive constant.

Therefore from Theorem III, $f^*(z)$ and accordingly f(z) should vanish identically provided that

$$(\sigma+\delta)L < \frac{1}{e}$$
 or $L < \frac{1}{e(\sigma+\delta)}$.

Since δ is arbitrary, our theorem has been completely established. Particularly if we put $\sigma=0$, we get

THEOREM V. Let f(z) be an integral transcendental function of order $\rho(\leq 1)$ or of minimal type, and of the first order, and let a_n be a zero of $f^{(n)}(z)$.

Then it must be

$$\overline{\lim} |a_n| = \infty,$$

and if this is not the case, f(z) should vanish identically.

136