No. 9.]

PAPERS COMMUNICATED

98. An Extension of the Lebesgue Measure.

By Fumitomo MAEDA.

Hiroshima University.

(Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1931.)

The domain of the definition of a completely additive set function $\mu(E)$ must be a closed family (σ -Körper) of sets, which I denote by $\mathfrak{F}(\mu)$. The Lebesgue measure m(E) has for its domain of the definition, $\mathfrak{F}(m)$, the closed family of sets, which are measurable in Lebesgue sense. Now there is a problem : Is there any completely additive set function $\mu(E)$, whose domain of the definition $\mathfrak{F}(\mu)$ contains $\mathfrak{F}(m)$, and the value of $\mu(E)$ at any set belonging to $\mathfrak{F}(m)$, is equal to its Lebesgue measure? In this paper, I will construct such a set function $\mu(E)$.

By the Carathéodory's theory of measure, $\mu \approx (E)$ being a measure function, if a set A satisfies the following relation

$$\mu * (W) = \mu * (AW) + \mu * (W - AW)$$
(1)

for any set W of finite μ *-measure, then A is said to be μ *-measurable, and the aggregate of all such μ *-measurable set being a closed family $\mathfrak{F}(\mu)$, the set function $\mu(E)$ defined in $\mathfrak{F}(\mu)$ such that

$$\mu(A) = \mu \mathscr{K}(A) ,$$

is completely additive in $\mathcal{F}(\mu)$.

Now let $m^{(E)}$ be the exterior Lebesgue measure, and consider the set function

$$\mu \ast (E) = m \ast (E \Omega), \qquad (2)$$

where Ω is the non-measurable set, constructed in the Carathéodory's treatise,²⁾ which has the whole space as its same-measure cover, that is, if M be any m*-measurable set of finite m*-measure, then

$$m(M) = m^{*}(M\Omega) . \tag{3}$$

Then $\mu \ll (E)$ is also a measure function,³⁾ and we have a completely

¹⁾ Carathéodory, Vorlesungen über reelle Functionen, zweite Aufl. (1927), 246.

²⁾ Ibid., 354.

³⁾ Ibid., 240.

additive set function $\mu(E)$ defined in the closed family $\mathfrak{F}(\mu)$ of μ *-measurable sets.

Let M be any set belonging to $\mathfrak{F}(m)$, then M belongs also to $\mathfrak{F}(\mu)$, and

$$\mu(M) = m(M) \,. \tag{4}$$

To prove this, let W be any set of finite μ *-measure, then WQ is of finite m*-measure, therefore, since M is m*-measurable, we have

 $m \ll (W \Omega) = m \ll (W \Omega M) + m \ll (W \Omega - W \Omega M),$

but by (2) this becomes

$$\mu (W) = \mu (WM) + \mu (W - WM),$$

therefore, M is also μ *-measurable.

When m(M) is finite, we have by (2) and (3)

$$\mu(M) = m \otimes (M \Omega) = m(M) .$$

But, when m(M) is infinite, there exists a sequence of m*-measurable sets of finite m*-measure

$$M_1 \subset M_2 \subset \cdots \subset M_i \subset \cdots$$

all of which are contained in M, and

$$\lim_{i\to\infty} m(M_i) = +\infty.$$

Then

$$\mu(M) \ge \mu(M_i) = m(M_i)$$

for any value of i, therefore, we have

 $\mu(M) = +\infty.$

 $\mathfrak{F}(\mu)$ contains sets which do not belong to $\mathfrak{F}(m)$.

For let A be any set which does not belong to $\mathfrak{F}(m)$, and satisfies the relation

then by (2)

$$A \Omega = 0$$
,¹⁾

$$\mu st (A) = 0$$
 ,

therefore, A being μ *-measurable,²⁾ it belongs to $\mathfrak{F}(\mu)$.

Thus, I have the required completely additive set function $\mu(E)$. The set function $\mu^{*}(E)$ has the following property

$$m_{*}(E) \leq \mu *(E) \leq m *(E)$$

for any set E.

- 1) For example, let A be the complementary set of Ω .
- 2) H. Hahn: Theorie der reellen Funktionen, 1 (1921), 429.

332

No. 9.]

For, first we have

 $\mu \otimes (E) = m \otimes (E \mathcal{Q}) \leq m \otimes (E) .$

Next let \underline{E} be the same-measure nucleus of E, that is

$$\underline{E} \subseteq E$$
 and $m(\underline{E}) = m_{\underline{*}}(E)$,

then by (4)

$$m_{\underline{*}}(E) = \mu(\underline{E}) \leq \mu^{\underline{*}}(E)$$
.

.