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1. In my previous paper” I have proved the following theorem :
THEOREM A. Let {a,} be a set of points such that

ﬁ\an|=L<oo

Then any function $(z), regular and analytic for |z|<<r, can be
expanded in one and only one way inlo the sertes of the form

1. 1) ¢(z)=—-S:}) e
which converges absolutely and uniformly for |z|<r,<<min (r, _elf)
Let us define a sequence {p.(2)} of polynomials by

L2 n@=1, ne-| J ...... [ atdturats, =1
a a 3 1

1 n—
which satisfy the equalities :
(L 3) sy =0 for »m,
1 for v=m,
and put

n k(‘n)
paR)=21"-2", (1=0,1,2 ......),
v=o !
and define a sequence {7,(z)} of polynomials by
ﬂn(2)=ﬁok‘:"z”, ”=0,1,2, ...... ).
Then it can easily be shown that
=i. 5E
Pd) =5 J _ m@et|a],

3I=1

1. 4

(%)= 21 j ()T |dC|,  (n,v=0,1, ......),

T J jgj=1

1) S. Takenaka: On the distribution of zero points of the derivatives of an
integral transcendental function of order p <1, Proc. 7 (1931), 134.
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so that, from the equalities (1. 8),
o) owedlal=f) o T
from which we see that the sequence of polynomials
m.(2) , (n=0,1,2, ...... )
and the sequence of functions
e,  (m=0,1,2,......)
are each other biorthogonal on |z|=1.
Now, in Theorem A, let us put r=1+4¢ (¢ being an arbitrary
small positive constant) and L <<e™. Then the series of the right
hand side of (1.1) converges absolutely and uniformly for |z|<1.

Therefore multiplying the both sides by 21” 7.2) and integrating
term by term, we get
o= sEm@ldkl, ®=012, ...)
27 J -1

from which we can state the theorem :
THEOREM 1. Let {a,} be a set of points such that

fim|a,|=L<1
e

n=00

Then any function ¢(2), regular and analytic for |z|<<r, (r>1)

can be expanded in one and only one way into the series of the form
L5 go=Scze, co=1( sEm@del,
n=0 27 ) ey

which converges absolutely and uniformly for |z|<r,<<min (r, i) ,
where {p.(2)} and {7.(2)} are defined by (1.2) and (1.4) respectively.

2. In (1.5), if we put

#()=e*, (x being any complex number),

we have (from (1. 4))
Lj @\ de|=p@), (0=0,1,2, .....).
27 ) e
Whence we get

=S e,

Ch=

or == p.(x)2"e’ ,

N=00
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which converges absolutely and uniformly for lzl_g_r.,<-élf.

For the convenience sake let us write {o,} in the place of {«.}
under the condition that
T | 0, =1 < % )
Then we have
@. 1) ez?:g Do o(@) -2, Do, o(x)=r r’ ...... it bty

%’ 9y v Op_1
which converges absolutely and uniformly for lzl_ﬁ_ro<%.
Again let us put
E:% and o,=0a,, (6>0, n=0,1,2, ...... )

OG”

Then (2. 1) becomes as follows :

12 & 1 =
@. 2 fet —gp,..o(x) o ®

which converges absolutely and uniformly for |{|=7">el (when [=0,
7’ can take any finite value).

If f(2) be an integral transcendental function of type ¢ and of the
first order, the function defined by

ro=s(2)

is an integral transcendental function of type 1 and of the first order.
Therefore if we put
fH @)= %z,

n=0 'n'

and @)= a.z", f*(z)=%j s letas, @<).
n=0 211 J pgjer ¢

we can easily show that ¢(z) is regular and analytic for |z|<<1.
Since el <1, we can take "=1-8<el (5§ being a positive con-
stant <1).

Now, multiplying the both sides of (2.2) by #(c) and
integrating term by term, we get

1]

@ 3) [@=2pnd@) | 9O LT U= S m)p,. ()

27:,,1 gjm1-5 Cn-t—l

which converges absolutely for any finite value of |z|.
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On the other hand we have, putting x=o0z,

@ 0 fR)=f@), Per)=Lf @), ®=0,1,2,....).
a
and moreover we can easily show that
@.5)  paolaz)= J : J Lo J " Aty dty=0"p(2)
oay’ 60y L
r=0,1,2, ...... ).

From (2. 8), (2. 4) and (2. 5) we can conclude that
THEOREM II. Let {a,} be a set of points such that

m|e|=L<-L, (6>0)
n=00 eo

Then any integral tramscendental function of type o and of the
Jirst order can be uniquely expanded into the series of the form :

FR=3f @) 7o)

which converges absolutely and uniformly for any finite domain of 2.°
From this theorem, it follows that
THEOREM III. Let f(2) be an integral transcendental function of
type o and of the first order, and let @, be a zero of f™(z).
Then if
ml”n—z0|=L<_1‘:
n=% eo

f(2) should vanish identically, where z, is a fixed point.

1) The generalization of this theorem for a regular function in |z2|<<R and for an
integral transcendental function of any type and of any order will be given in my
paper which will appear in another place.



