98. Connections in the Manifold Admitting Generalized Transformations.

By Tōyomon Hosokawa.
Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. Fujiwara, m.I.A., Oct. 12, 1932.)

In the present paper a general manifold is defined in which to every point of a manifold X_{n} is associated a system of the quantities, $\stackrel{(1)}{P_{a}^{v}}, \stackrel{\left(\stackrel{(2)}{P}_{p}^{v}\right.}{a}, \ldots . . \stackrel{(1)}{P}_{P_{a}^{v}}$. We shall develop the notions of the point transformation for this general manifold, and then by an analogous method as in a previous paper ${ }^{1}$ the connections will be established in it.

1. The local geometry. Consider an n dimensional space X_{n} of coordinates $x^{\nu}\left(\nu=a_{1}, \ldots \ldots a_{n}\right)$, and to each point in X_{n} corresponds a system of h mutual independent quantities $\stackrel{(1)}{P_{a}^{v}}, \ldots . . \stackrel{(1)}{P}_{a}^{\nu}$, whose directions are indeterminate, and $a=1,2, \ldots \ldots . K$. We consider $\stackrel{(1)}{P}_{a}^{\nu}$ as the elements of K-spread, ${ }^{2)}$ depending analytically on a system of parameters ($u^{a} ; a=1,2, \ldots \ldots K$). This new manifold is called the general manifold.

We shall now assume for the quantities $\stackrel{(1)}{P}_{a}^{v}, \ldots . . . \stackrel{(h)}{P}_{a}^{\nu}$:

$$
\begin{equation*}
d \stackrel{(i)}{P_{a}^{\nu}}=\stackrel{(i)}{\Psi}_{a / \lambda}^{\nu} d x^{\lambda} \quad\binom{i=1,2, \ldots \ldots h}{a=1,2, \ldots \ldots K} \tag{1.1}
\end{equation*}
$$

where $\stackrel{(i)}{\Psi}_{a / \lambda}^{v}$ are arbitrary functions.
Let us consider the transformations

$$
\begin{equation*}
' x^{\nu}=x^{\nu} x^{\nu}\left(x^{\nu}, \stackrel{(1)}{P_{a}^{\nu}}, \ldots \ldots \stackrel{(n)}{P}_{a}^{\nu}\right), \quad \nu=a_{1}, \ldots \ldots a_{n}, \tag{1.2}
\end{equation*}
$$

in the general manifold. By differentiation of (1.2), we get

$$
\begin{equation*}
d^{\prime} x^{\nu}=\left(\frac{\partial^{\prime} x^{\nu}}{\partial x^{\lambda}}+\frac{\partial^{\prime} x^{\nu}}{\partial \stackrel{i}{P}_{a}^{(i)}} \Psi_{a / \lambda}^{\mu}\right) d x^{\lambda} \tag{1.3}
\end{equation*}
$$

We make use the usual convention for indices about every one of the letters λ, i and a.

Any set of n quantities $V^{\nu}\left(x^{\nu}, \stackrel{(1)}{P}_{a}^{\nu}, \ldots \ldots . \stackrel{(1)}{P}_{a}^{v}\right), \quad\left(\nu=a_{1}, \ldots \ldots a_{n}\right)$, transformed by the transformations (1.2) into new n quantities ${ }^{\prime} V^{v}\left(x^{\prime} x^{\nu}, \stackrel{(1)}{P}_{a}^{v}, \ldots \ldots{ }^{\prime(h)} P_{a}^{v}\right)$ in such a way that

1) T. Hosokawa: Science Reports, Tohoku Imp. University, 19 (1930), p. 37-51.
2) J. Douglas: Math. Annalen, 105 (1931), p. 707.
will be called a contravariant vector, where ${\stackrel{(i)}{P}{ }_{a}^{v}}^{\prime}$ are the quantities at the point ' x '. A covariant vector is a set of n quantities W_{λ} which are transformed by (1.2) into

$$
\begin{equation*}
' W_{\mu}=\left(\frac{\partial x^{\lambda}}{\partial^{\prime} x^{\mu}}+\frac{\partial x^{\lambda}}{\partial^{\prime} P_{a}^{(i)}}{\stackrel{(i)}{P_{a / \mu}^{\omega}}}_{(\omega)} \text {. } W_{\lambda}\right. \tag{1.5}
\end{equation*}
$$

Let us now assume that the following relations are satisfied:

A tensor of the higher order is defined by the following:
2. Linear connections. We will define the connections of the contravariant and covariant vectors by the following equations:
and

$$
\begin{equation*}
\nabla_{\mu} W_{\lambda}=\frac{\partial W_{\lambda}}{\partial x^{\mu}}+\frac{\partial W_{\lambda}}{\partial \stackrel{i}{i}_{P_{a / \mu}^{\lambda}}^{(i)}-\Gamma_{\lambda \mu}^{\lambda}} W_{\nu} \tag{2.2}
\end{equation*}
$$

The covariant derivatives $\nabla_{\mu} V^{\nu}$ are the components of a mixed tensor of the second order. Hence from the transformation (1.2), it is evident that if $I_{\omega \mu}^{\nu}$ are functions of x^{ν} as well as $\stackrel{(i)}{P}_{a}^{\nu}$, and ${ }^{\prime} \Gamma_{\mu, \alpha}^{\nu}$ of x^{ν} as well as ${ }^{\prime} \stackrel{(i)}{P}_{a}^{v}$, then they must satisfy the equations

$$
\begin{aligned}
& =\Gamma_{\omega \mu}^{\lambda}\left(\frac{\partial^{\prime} x^{\nu}}{\partial x^{\lambda}}+\frac{\partial^{\prime} x^{\nu} \stackrel{(j)}{\Psi_{a}^{\sigma}}}{\partial{ }_{P}^{(j)}} \underset{a}{a} \quad .\right.
\end{aligned}
$$

In the same manner as that of the general linear displacements, ${ }^{1)}$ we get
where
3. Curvature tensors. From (2.1) and (2.2) we have

$$
\nabla_{[\mu} \nabla_{\nu]} V^{\lambda}=-\frac{1}{2} R_{i \dot{\mu} \dot{\rho}^{\lambda}} V^{\rho}+\frac{1}{2}{ }^{(\lambda)} K_{a / \dot{\nu} \mu}^{\tau} \frac{\partial V^{\lambda}}{\partial P_{a}^{(i)}}+S_{\mu i \nu}^{\prime \prime} \nabla_{\alpha}^{\tau} V^{\lambda},
$$

where
and

Similarly, we obtain
but

We will call $R_{i \mu \dot{p}^{\lambda}}$ and $R_{i \mu \dot{p}^{\lambda}}{ }^{\lambda}$ the curvature tensors.
From the formula: $\nabla_{[\omega} \nabla_{\mu]}(\Psi \Phi)=\Psi \nabla_{[\omega} \nabla_{\mu]} \Phi+\Phi \nabla_{[\omega} \nabla_{\mu]} T$, we have

From (3.1) it follows that

$$
\begin{equation*}
2 \nabla_{\xi} \nabla_{[\omega} \nabla_{\mu]} W_{\lambda}=\nabla_{\xi}\left(-R_{\mu \omega \lambda}^{\prime}{ }^{\alpha} W_{\alpha}+{\stackrel{(i)}{K}{ }_{a / \mu \omega} \dot{\omega}_{\omega}}_{\partial W_{\lambda}}^{\partial P_{a}^{\tau}}+2 S_{\omega \dot{\alpha}}^{\prime}{ }^{\alpha} \nabla_{\alpha} W_{\lambda}\right) \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we have the following identities:

1) T. Hosokawa: loc. cit., p. 40.

No. 8.] Connections in the Manifold Admitting Generalized Transformations. 351
In consequence of these identities we have

(3. 6)
and

The relations (3.5) correspend to the identities of Bianchi.
In the equations (1.1) and (1.2) put respectively
and

$$
\begin{aligned}
& { }^{\prime} x^{\nu}={ }^{\prime} x^{\nu}(x) \quad\left(\nu=a_{1}, \ldots \ldots a_{n}\right),
\end{aligned}
$$

moreover put $K=1$, then we obtain the case, studied by A. Kawaguchi. ${ }^{\text {. }}$

1) A. Kawaguchi: Proc. 7 (1931), 211-214.
