163. A New Concept of Integrals.

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Dec. 12, 1933.)
The object of this paper is to define the integral, which is more general than the Ridder's integral, and then than those of Danjoy and Burkill.

1. Let $f(x)$ be defined in an interval (a, b). If we can find a set E, such that
$1^{\circ} . x$ is the point of exterior density of E,
2. $\lim _{\xi(\varepsilon E) \rightarrow x} \frac{f(\xi)-f(x)}{\xi-x}$
exists and is finite, where the limit is taken such that ξ tends to x, lying in E, then $f(x)$ is called to be approximately differentiable at x, and the value (1) is called the approximate derivative at x and is denoted by $A D f(x)$.

Theorem 1. If $f(x)$ is measurable and is approximately differentiable at x, then there is a measurable set E, such that
$1^{\circ} . x$ is the point of density of E,
2°. $\lim _{\xi(\varepsilon E) \rightarrow x} \frac{f(\xi)-f(x)}{\xi-x}$ exists and is equal to $A D f(x)$.
2. If we can find a set E, such that
1°. the inferior interior density of E at x is $\geqq \tau(>0)$,
2°. $\lim _{\xi(\in E) \rightarrow x} \frac{f(\xi)-f(x)}{\xi-x}$
exists and is finite, then $f(x)$ is called to be (τ)-approximately differentiable at x. The value (2) is called the (τ)-approximate derivative of $f(x)$ at x, and is denoted by $\underset{\tau}{A D} D f(x)$. And put $\underset{1}{A D f}(x)=A^{*} D f(x)$.

Next, let E be a set such that the inferior interior density on the right hand of E at x is $\geq \tau(>0)$.

Put $\quad a_{E}=\varlimsup_{\xi((\varepsilon) \rightarrow x} \frac{f(\xi)-f(x)}{\xi-x}$.
The lower bound of a_{E} is defined to be the upper (τ)-approximate derivative on the right hand of $f(x)$ at x, and denoted by $\underset{\tau}{A D^{+} f(x) \text {. When }}$
we do not concern with the value of τ, we denote it by $A D^{+} f(x)$. When $\tau=1$, we denote it by $A^{*} D^{+} f(x)$.

Similarly, $\underset{\tau}{A D_{+} f(x), ~} \underset{\tau}{A D^{-} f(x)}$ and $\underset{\tau}{A D_{-} f(x)}$ are defined.
Theorem 2. If $\tau>0$, then $\underset{\tau}{A} \bar{D} f(x) \geqq \underset{\tau}{ } D f(x)$.
Theorem 3. If $\tau>0$, then ${\underset{\tau}{D}}^{D} f(x)=-\underset{\tau}{A D}\{-f(x)\}$.
Theorem 4. If $\tau>\frac{1}{2}$, then $\underset{2 \tau-1}{A} \bar{D}\{f(x)+g(x)\} \leqq{ }_{\tau} \bar{D} f(x)+{ }_{\tau}^{A} \bar{D} g(x)$.

Theorem 6. The necessary and sufficient condition that $f(x)$ is (τ)-approximately differentiable, is that ${\underset{\tau}{\tau}}^{\bar{D}} f(x)={ }_{\tau} \underset{\sim}{D} f(x)$.
3. Suppose that $f(x)$ is defined in (a, b). If, for any $s(>0)$ and any $x(a<x<b)$, there is a set E, such that
$1^{\circ} . x$ is the point of exterior density of E,
$2^{\circ} .|f(\xi)-f(x)|<\varepsilon$ for all ξ in E,
then we say that $f(x)$ is approximately continuous at x.
If $x=a$ or $x=b$, then $f(x)$ is said to be approximately continuous, when x is the point of exterior density on the right (or left) hand of E and 2° is satisfied.

Theorem 7. If a measurable function $f(x)$ is approximately continuous at x, then there is a measurable set E, such that
$1^{\circ} . x$ is the point of density of E,
2°. $\lim _{((E E) \rightarrow x} f(\xi)=f(x)$.
If, for any $\xi(>0)$ and any $x(a<x<b)$, we can find a set E, such that
1°. the inferior interior density of E at x is $\geqq \tau(>0)$.
2. $|f(\xi)-f(x)|<\varepsilon$ for all ξ in E,
then we say that $f(x)$ is (τ)-approximately continuous ${ }^{1}$) at x.
Theorem 8. If $f(x)$ is defined and is finite almost everywhere in (a, b), then $f(x)$ is almost everywhere approximately differentiable in the set $E\left({ }_{\tau} D^{+} f(x)<+\infty\right)$.
4. Theorem 9. Suppose that $\tau>\frac{1}{2}$ and $f(x)$ is defined and is everywhere (τ)-approximately continuous in the closed interval $[a, b]$. If $\underset{\tau}{ } D_{+} f(x) \geqq 0$, with the possible exception of enumerable set in (a, b), then $f(x)$ is non-decreasing in (a, b). Specially, $f(b) \geq f(a)$.

[^0]5. Let $f(x)$ be almost everywhere finite in $(a, b) . \quad M(x)$ is called a major function of $f(x)$ in (a, b), if it satisfies the following conditions:
$1^{\circ} . M(x)$ is (τ-approximately continuous in the closed interval $[a, b],\left(\tau>\frac{1}{2}\right)$,
2°. $M(a)=0$,
3. $A \underset{\tau}{A} M(x)>-\infty$ with the exception of enumerable set in (a, b),
$4^{\circ} . \underset{\tau}{A} \underline{D} M(x) \geq f(x)$ for all x in (a, b).
Similarly, a minor function $m(x)$ is defined. $M(x)$ and $m(x)$ are called associated functions of $f(x)$ in (a, b).

Theorem 10. If $f(x)$ is defined in (a, b), and $M(x)$ and $m(x)$ are the associated functions of $f(x)$, then $M(x)-m(x)$ is a positive nondecreasing function. In particular, $M(b) \geqq m(b)$.

Suppose that $f(x)$ is defined and is almost everywhere finite in (a, b), and the associated functions $M(x)$ and $m(x)$ of $f(x)$ exist.

If we put $\quad I_{1}(b)=$ lower bound of all $M(b)$ and $I_{2}(b)=$ upper bound of all $m(b)$, then they are finite and $I_{1}(b) \geqq I_{2}(b)$.

If $I_{1}(b)=I_{2}(b)$, then $f(x)$ is said to be (τ)-integrable in (a, b), and the value $I_{1}(b)$ is called the (τ)-integral, and is denoted by

$$
(\tau) \int_{a}^{b} f(x) d x
$$

6. Theorem 11. If $f(x)$ is (τ-integrable in (a, b), then $f(x)$ is also (τ)-integrable in any subinterval of (a, b).

Theorem 12. If $a<b<c$ and $f(x)$ is (τ)-integrable in (a, b) and (b, c), then $f(x)$ is (τ)-integrable in (a, c) and

$$
(\tau) \int_{a}^{c} f(x) d x=(\tau) \int_{a}^{b} f(x) d x+(\tau) \int_{b}^{c} f(x) d x
$$

Theorem 13. If $f(x)$ is (τ)-integrable in (a, b) and c is a constant, then $(\tau) \int_{a}^{b}\{c \cdot f(x)\} d x=c \cdot(\tau) \int_{a}^{b} f(x) d x$.
Theorem 14. If $f_{1}(x)$ and $f_{2}(x)$ are ($\left.\tau\right)$-integrable, then $f_{1}(x)+f_{2}(x)$ is (σ) integrable, and

$$
(\tau) \int_{a}^{b} f_{1}(x) d x+(\tau) \int_{a}^{b} f_{2}(x) d x=(\sigma) \int_{a}^{b}\left\{f_{1}(x)+f_{2}(x)\right\} d x
$$

where $\sigma=2 \tau-1$.
Theorem 15. If $f_{1}(x)$ and $f_{2}(x)$ are ($\left.\tau\right)$-integrable, and $f_{1}(x) \geqq f_{2}(x)$, then

$$
(\tau) \int_{a}^{b} f_{1}(x) d x \geqq(\tau) \int_{a}^{b} f_{2}(x) d x, \quad \text { where } \tau>\frac{2}{3}
$$

Theorem 16. The indefinite integral $F(x)=(\tau) \int_{a}^{x} f(t) d t \quad(a \leqq x \leqq b)$ is a (τ)-approximately continuous function of x.

Theorem 17. If $F(x)=(\tau) \int_{a}^{x} f(t) d t$, then $\underset{\tau}{A D F}(x)=f(x)$ for almost all x in (a, b).

Theorem 18. If $f(x)$ is non-negative in (a, b), then $f(x)$ is ($\tau)$ integrable and integrable in Lebesgue's sense at the same time, having the same value.

Theorem 19. If $\left\{f_{n}(x)\right\}$ is a sequence of (τ)-integrable functions, such that

1. $\lim _{n-\infty} f_{n}(x)=f(x)$,
2°. there is a (τ)-integrable function $g(x)$, such that

$$
\left|f_{n}(x)\right| \leqq g(x) \quad(n=1,2,3, \ldots \ldots)
$$

then $f(x)$ is (τ)-integrable, and $\lim _{n=\infty}(\tau) \int_{a}^{b} f_{n}(x) d x=(\tau) \int_{a}^{b} f(x) d x$.
Theorem 20. If $f(x)$ is (τ)-integrable, then $f(x)$ is measurable.

[^0]: 1) (τ-approximately continuous function is measurable. I owe this remark to Prof. J. Ridder.
