15. On the Convergence Factor of the Fourier-Denjoy Series.

By Fu Traing WANG.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by Fujiwara, m.i.a., Feb. 12, 1934.)

Hardy has shown that $(\log n)^{-1}$ is a convergence factor of the Fourier-Lebesgue series. The object of this paper is to show that n^{-1} is a convergence factor of the Fourier-Denjoy series, and to construct an example such that $n^{-\delta}$ $(0 < \delta < 1)$ is not the convergence factor of the Fourier-Denjoy series.

1. Let f(x) be a function, integrable in Denjoy-Perron's sense and periodic, with period 2π . And let

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
. (1 · 1)

Then we have

Theorem. n^{-1} is a convergence factor of the Fourier-Denjoy series $(1 \cdot 1)$. In fact,

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{n} \tag{1.2}$$

converges almost everywhere.

In order to prove the theorem, we require the following Lemma.¹⁾ The Fourier-Denjoy series (1.1) is summable $(C, 1+\delta)$ ($\delta > 0$) almost everywhere.

Put
$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx),$$
$$\phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \},$$
$$\phi_1(t) = \int_0^t \phi(u) du.$$

and Then

$$\phi_1(t) = o(t)^{2)}$$

for almost all values of x in $(-\pi, \pi)$, and then

Priwalof: Rend. di Palermo, 41 (1916).
 c.f. Bosanquet, Proc. London math. soc. 31.

²⁾ Hobson: Theory of function, vol. I (1921), p. 642.

$$\begin{split} s_n(x) &= f(x) + \frac{1}{\pi} \int_0^{\pi} \phi(t) - \frac{\sin(2n+1)\frac{t}{2}}{\sin\frac{t}{2}} - dt \\ &= f(x) + \frac{1}{\pi} \phi_1(\pi) - \frac{\sin(2n+1)\frac{\pi}{2}}{\sin\frac{\pi}{2}} - \frac{1}{\pi} \int_0^{\pi} \phi_1(t) \frac{d}{dt} \left(\frac{\sin(2n+1)\frac{t}{2}}{\sin\frac{t}{2}} \right) dt \\ &= o(n) + \int_0^{\pi} o(t) O\left(\frac{n}{t}\right) dt = o(n) , \end{split}$$

almost everywhere in $(-\pi, \pi)$.

Therefore

$$\sum_{k=1}^{n} \frac{a_k \cos kx + b_k \sin kx}{k} k = s_n(x) - \frac{a_0}{2} = o(n)$$
 (1 · 3)

almost everywhere in $(-\pi, \pi)$.

Now, by Hardy and Littlewood's theorem,¹⁾ the series $(1 \cdot 2)$ is summable (C, δ) $(\delta > 0)$ almost everywhere. On the other hand, if $(1 \cdot 2)$ is summable (C, δ) , then it is convergent, provided that $(1 \cdot 3)$ is satisfied. Hence the theorem is proved.

2. We will construct an example such that $(1 \cdot 1)$ is the Fourier-Denjoy series and

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{n^{\delta}}$$

diverges almost everywhere for $0 \le \delta \le 1$.

Let r be a positive integer such that $r > (1-\delta)^{-1}$, and let

$$r\delta . (2·1)$$

We put

$$a_k = \frac{\pi}{(k!)^{r-r\delta}}, \quad (k=1, 2, \ldots),$$

and take c_k such that

$$0 \leq c_k \leq (k!)^r k^{p-r}$$
, $(k=1, 2,)$.

Now, we define $\phi(t)$ by

$$\phi(t) = c_k \cos \{(k!)^r t\}$$
, for t in $(a_k a_{k-1})$ $(k=2, 3,)$,

and $\phi(t) = \phi(-t)$. Then $\phi(t)$ is an even function, integrable in Lebesgue's sense in any interval, excluding the origin.

¹⁾ Hardy and Littlewood: Math. Zeits., 19 (1924).

²⁾ Knopp: Rend. di Palermo, 25 (1907).

$$\begin{split} I_k &= \int_{a_k}^{a_{k-1}} \phi(t) dt = c_k \int_{a_k}^{a_{k-1}} \cos \{(k!)^r t\} dt \\ &= \frac{c_k}{(k!)^r} \left[\sin \{(k!)^r t\} \right]_{a_k}^{a_{k-1}} = O(k^{p-r}) \; . \end{split}$$

If x' lies in $(a_i a_{i-1})$ and x'' in $(a_j a_{j-1})$, and x'' > x' > 0 then

By $(2\cdot 1)$, $\sum_{j}^{i} k^{p-r} = o(1)$, for $i, j \to \infty$, hence $\phi(t)$ is integrable in Denjoy-Perron's sense, and the point t=0 is the only point of non-summability.

Let
$$\phi(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt, \qquad (2 \cdot 2)$$

where

$$a_n = \frac{2}{\pi} \int_0^{\pi} \phi(t) \cos nt dt . \qquad (2 \cdot 3)$$

First, we take c_2 arbitrarily, then we can find a positive integer $k_1(>2)$ such that $\left|\int_{a_0}^{\pi} \phi(t) \cos\{(k_1!)^r t\} dt\right| < 1$;

then put $c_k=0$ for $2 \le k \le k_1$ and $c_{k_1}=(k_1!)^r k_1^{p-r}$.

Next, we can find $k_2(>k_1)$ such that

$$\left|\int_{a_{k_1}}^{\pi} \phi(t) \cos \{(k_2!)^r t\} dt\right| \leq 1;$$

then put $c_k=0$ for $k_1 \le k \le k_2$ and $c_{k_2}=(k_2!)^r k_2^{p-r}$, and so on.

Proceeding in this way we get a sequence of positive integers

where $c_k = 0$ for $k_{i-1} \le k \le k_i$ and $c_{k_i} = (k_i !)^r k_i^{p-r}$.

Hence $\phi(t)$ is completely determined in $(-\pi, \pi)$.

Now
$$a_{(k_i)r} = \frac{2}{\pi} \int_0^{\pi} \phi(t) \cos \{(k_j !)^r t\} dt$$
$$= \frac{2}{\pi} \int_0^{\alpha_{k_i}} + \frac{2}{\pi} \int_{\alpha_{k_i}}^{\alpha_{k_{i-1}}} + \frac{2}{\pi} \int_{\alpha_{k_{i-1}}}^{\pi}$$
$$= \frac{2}{\pi} J_1 + \frac{2}{\pi} J_2 + \frac{2}{\pi} J_3. \qquad (2 \cdot 4)$$

Then
$$J_3 = O(1)$$
. $(2 \cdot 5)$

$$\phi_1(t) = \int_0^t \phi(u) du = O(1)$$

for $0 \le t \le \pi$, then

$$J_{1} = \left[\phi_{1}(t) \cos \left\{ (k_{i}!)^{r} t \right\} \right]_{0}^{a_{k_{i}}} + (k_{i}!)^{r} \int_{0}^{a_{k_{i}}} \phi_{1}(t) \sin \left\{ (k_{i}!)^{r} t \right\} dt$$

$$= O(1) + O[(k_{i}!)^{r} a_{k_{i}}] = O[(k_{i}!)^{\delta r}]. \qquad (2 \cdot 6)$$

At last, we have

$$\begin{split} J_2 &= \int_{\alpha_{k_i}}^{\alpha_{k_i-1}} \phi(t) \cos \left\{ (k_i !)^r t \right\} dt = \int_{\alpha_{k_i}}^{\alpha_{k_i-1}} \phi(t) \cos \left\{ (k_i !)^r t \right\} dt \\ &= c_{k_i} \int_{\alpha_{k_i}}^{\alpha_{k_i-1}} \cos^2 \left\{ (k_i !)^r t \right\} dt \\ &= \frac{1}{2} c_{k_i} (\alpha_{k_{i-1}} - \alpha_{k_i}) + \frac{1}{2} c_{k_i} \int_{\alpha_{k_i}}^{\alpha_{k_i-1}} \cos \left\{ 2(k_i !)^r t \right\} dt \\ &= \frac{1}{2} (k_i !)^r k_i^{p-r} \frac{\pi(k_i^{r-r\delta} - 1)}{(k_i !)^{r-r\delta}} + \frac{c_{k_i}}{2(k_i !)^r} \left[\sin \left\{ 2(k_i !)^r t \right\} \right]_{\alpha_{k_i}}^{\alpha_{k_i-1}} \\ &= \frac{\pi}{2} (k_i !)^{r\delta} (k_i^{p-r\delta} - k_i^{p-r}) + o(1) \; . \end{split}$$

By (2·4), (2·5), (2·6), (2·7) we have $a_{(k_i!)r} = (k_i!)^{r\delta} k_i^{p-r\delta} + O[(k_i!)^{r\delta}].$

Hence $\overline{\lim_{n\to\infty}} \frac{a_n}{n^{\delta}} = \infty$, when $0 < \delta < 1$. By a theorem due to Steinhaus,¹⁾

$$\overline{\lim_{n\to\infty}} \left| \frac{a_n}{n^{\delta}} \cos nx \right| = \infty ,$$

almost everywhere in $(-\pi, \pi)$. Therefore the series $\sum_{n=1}^{\infty} \frac{a_n}{n^{\delta}} \cos nx$ is divergent almost everywhere.

Lastly, by a Riesz's theorem,²⁾ the Fourier-Denjoy series (2·2) just defined is not summable (C, δ) $(0 \le \delta \le 1)$ almost everywhere, while it is summable (C, 1) almost everywhere.³⁾⁴⁾

¹⁾ Rajchman: Fund. math., 3 (1922), 301.

²⁾ Hardy and Riesz: General theory of Dirichlet's series, p. 33.

³⁾ Hobson: Theory of function, vol. II, p. 573.

⁴⁾ Since I have written this paper, I found that Prof. Titchmarsh (Proc. London Math. Soc., 22 (1924), p. XXV.) constructed an example such that the coefficients of Fourier-Denjoy series of an even function satisfy $a_n \neq o\{n\lambda(n)\}$, where $\lambda(n)$ is any positive sequence, such that $\lambda(n) \to 0$ and $n\lambda(n) \to \infty$. By this example, we can assert that n^{-1} is the "best possible" convergence factor of the Fourier-Denjoy series.