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1. Let a. (1)

be the given series. We put

where 8-- ao+a+ + a.
S) (2)If the limit of

exists and =s, then (1)is said to be (C, r)-summable to sum s, and

we write a,=s (C, r). If (2) is bounded, then (1) is said to be
n--0

(C, r)-bounded, and we write a. o(1) (C, r).
0

The object of this paper is to prove the following theorems.
Theorem 1. Let a> :> 1. If

a,= 0 (1)(5,
,0

Theorem f2. Let >p :>" 1. If
s) <A)

then S()I <:(2 / r(r-p+l)r(a-r+l)
P(a-p+ 1)

for any r p.
These threms are due to Andern.)

+ o(1))A (3)

The constant in (3) seems
to be new.

1) Andersen" Studier over Cesro Summabilitetsmetode, 1921. Cf. Zygmund,
Math. Zeits., 25 (1926).
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In the following, we will prove Theorem 2. Simply modifying
the proof, we get the proof of Theorem 1.

2. In order to prove Theorem 2, we transform it in a convenable
form.

We put

J’v ----J;+’v for any real r and s.Then ,, , .
If we put a r , a- r

and S:)=v.,
then

Therefore, Theorem 2 becomes
Theorem 3. Let a:> 0 and ::> O.

J.v. <2A (4)
and d;v. <::A(,) (5)

then iv.i <:(2 + F(a+I)F(+I) + o(1))AF(a++l)
3. We will now prove Theorem 3.
We have

A(-X)(v,- v,,_) +
-1 O

n-1= (A)

-0 =0
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By (4),

A(P)IA()A() A(+)

By (5),
Thus the theorem is proved.
4. We can prove the following theorem.
Theorem ,. Let, a>. p> 1. If

F(-p/l)
for any


