140 [Vol. 10,

39. A New Proof of the Andersen’s Theorem.
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Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.LA., Mar. 12, 1934.)

1. Let >an 1)
be the given series. We put

m+n
A’(nm)=< n ))

n
SP= Eo AT Ds,,
V=
where s,=ao+a;+ - +a..

.. S(r)

If the limit of AZ” )
exists and =s, then (1) is said to be (C, r)-summable to sum s, and
we write gan-—-s (C,r). If (2) is bounded, then (1) is said to be
(C, r)-bounded, and we write gan=o(1) C, 7).

The object of this paper is to prove the following theorems.
Theorem 1. Let a>p>—1. If

Sa.=0 (¢, )

and i}an':s (C; a) ’
then i:]a,,=s (C,7) for any t=p.

Theorem 2. Let c>p>—1. If
|SP|<AP

and S| <AD,

) I'(c—p+1)'(6—7+1) )
then  |s|<(2+ LE=DTETID ol @
Sor any t=>p.

These theorems are due to Andersen.” The constant in (3) seems
to be new.

1) Andersen: Studier over Cesiro Summabilitetsmetode, 1921. Cf. Zygmund,
Math. Zeits., 25 (1926).
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In the following, we will prove Theorem 2. Simply modifying
the proof, we get the proof of Theorem 1.

2. In order to prove Theorem 2, we transform it in a convenable
form.

n
We put szn*—-ﬁf‘)A‘;‘“’vn_y .
V=
Then 4%(div,)=4%**v,, for any real r and s.
If we put a=t—p, B=o—7
and n”:vn ’
then 4v,=SP, 4x*,=8S2.

Therefore, Theorem 2 becomes
Theorem 3. Let a=>0 and $=>0. If

| 430, | <AP 4)
and |45, | <AL, 5)
\ Ia+1)'B+1) ) .
the . <<2+ +o(1) )4
n |V | T(a+pt1) o(1)
3. We will now prove Theorem 3.

We have

n
A;E)vn = vZ()Asﬂ-l)vn

n n
=VEIA(VB—1)(vn_vn_v) +§) Asﬂ—l)/vn—v

v=1

= El + 22 ’ say.
n-1

2h=2 (A - AP)dsvn—y

v=0

n v—1 n
=3 A9 S dyv,y + 3 AT D,
p= v=

n
=3} (AP~ AP (d0,)
n n—-yv
=,§“; (Ag)_ Ags))z‘l;A;a—z)A:v”_v
=é0(A§f)A§,"'1)—A(y““”l))divn_‘, .
Y=
n
2= EA‘V”-DAB‘(A;%,,_”)

n n—v
=SVAP VAT VU =450,
p=0

v=0
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By (4),

[Sh| AP i (APAC-D 4 A@+s-D)
= pa
=A${)(Aﬁ‘)AS:)+A;a+m) .

By (), |l <A,
Thus the theorem is proved.

4. We can prove the following theorem.
Theorem 4. Let e=>p>—1. If

Sf.”) <A$Lp)
and S;f)<A£;°) ,
then S <(2+-LELHDILIID 4 o))ap
I'(e—p+1)

Jor any t>p.
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