66. A Remark on an Integral Equation.

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, M.I.A., June 12, 1935.)
Mr. Nagumo has proposed the problem to solve the integral equation

$$
\begin{equation*}
f(x)=\frac{1}{2} \int_{x-1}^{x+1} f(t) d t . \tag{1}
\end{equation*}
$$

In this paper two types of solutions are found. The first is of exponential type and the second is that belonging to L^{2}-class.

Theorem 1. If $f(x)$ is a solution of (1) such that

$$
f(x)=O\left(e^{A|x|}\right)
$$

A being a positive number, $f(x)$ is of the form

$$
A^{\prime} x+B+\sum a e^{-u * x}
$$

where u^{*} is the non-zero root of the equation

$$
\begin{equation*}
1=\frac{e^{u}-e^{-u}}{2 u} \tag{2}
\end{equation*}
$$

such that $\left|R\left(u^{*}\right)\right|<A$ and A^{\prime}, B, a are arbitrary constants.
Proof. If we put

$$
K(x)=\frac{1}{2}, \quad|x| \leqq 1 ; \quad K(x)=0, \quad|x|>1
$$

then (1) becomes

$$
f(x)=\int_{-\infty}^{\infty} K(x-t) f(t) d t
$$

Therefore we can apply the theory of Hopf and Wiener. ${ }^{1)}$ As easily be seen, (2) has the origin as only one double zero. Thus we get the theorem.

Theorem 2.) If $f(x)$ is a solution of (1) belonging to L^{2}-class in $(-\infty, \infty)$, then $f(x)$ is identically zero.

Proof. We have

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-A}^{A} f(x) e^{-u x i} d x=\frac{1}{2 \sqrt{2 \pi}} \int_{-A}^{A} e^{-u x i} d x \int_{x-1}^{x+1} f(t) d t \\
& \quad=\frac{1}{2 \sqrt{2 \pi}}\left[\int_{-(A-1)}^{A-1} f(t) d t \int_{t-1}^{t+1} e^{-u x i} d x\right. \\
& \left.\quad+\int_{-A-1}^{-A+1} f(t) d t \int_{-A}^{t-1} e^{-u x i} d x+\int_{A-1}^{A+1} f(t) d t \int_{t-1}^{A} e^{-u x i} d x\right]
\end{aligned}
$$

[^0]2) Cf. Hardy-Titchmarsh: Proc. London Math. Soc., (2) 23 (1924) and 30 (1930).
\[

$$
\begin{aligned}
& =\frac{-1}{2 \sqrt{2 \pi} u i}\left[\int_{-(A-1)}^{A-1} f(t) e^{-u t i}\left(e^{-u i}-e^{u i}\right) d t\right. \\
& \\
& \left.\quad \quad+\int_{-A-1}^{-A+1} f(t)\left\{e^{-u(t-1) i}-e^{u A i}\right\} d t-\int_{A-1}^{A+1} f(t)\left\{e^{-A u i}-e^{-u(t-1) i}\right\} d t\right] . \\
& \int_{-\infty}^{\infty}\left|\frac{1}{u} \int_{-A-1}^{-A+1} f(t)\left\{e^{-u(t-1) i}-e^{u A i}\right\} d t\right|^{2} d u \\
& \leqq \\
& \leqq \\
& \int_{-\infty}^{\infty} \frac{d u}{1+u^{2}}\left[\int_{-A-1}^{-A+1}|f(t)| d t\right]^{2} \leqq 2 K \int_{-A-1}^{-A+1}|f(t)|^{2} d t \int_{-\infty}^{\infty} \frac{d u}{1+u^{2}},
\end{aligned}
$$
\]

K being an absolute constant. Therefore we have

$$
\text { l.i.m. } \frac{1}{u \rightarrow \infty} \int_{-A-1}^{-A+1} f(t)\left\{e^{-u(t-1) i}-e^{u A i}\right\} d t=0
$$

Similarly

$$
\operatorname{li.i.m.~}_{A \rightarrow \infty} \frac{1}{u} \int_{A-1}^{A+1} f(t)\left\{e^{-A u i}-e^{-u(t-1) i}\right\} d t=0
$$

If $F(u)$ is the Fourier transform of $f(x)$, then we have

$$
F(u)=\frac{e^{-u i}-e^{u i}}{-2 u i} F(u)
$$

for almost all u. Hence $F(x)$, and then $f(x)$, is equivalent to zero. The solution of (1) is continuous, therefore $f(x)$ is identically equal to zero. Thus the theorem is proved.

In Theorem 2, we can replace L^{2}-class by L^{p}-class ($1<p \leqq 2$). In this case it is sufficient to use the Titchmarsh's theorem instead of the Plancherel's theorem.

[^0]: 1) E. Hopf and N. Wiener: Sitzungsberichte der Preussischen Akademie, 1931. Cf. E. Hopf : ibid., 1928, and Paley-Wiener: Fourier transforms in the complex domain, 1934, Chapter IV.
