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1. In the present paper, we shall generalize Casimir’s theorem® on
semi-simple continuous groups, which may be stated as follows:

Let X3, X;, ---... , X, generate a semi-simple continuous group and
satisfy the law of compositions such that
[Xi; Xk] = C?an’ (iy k= 1’ 2’ """ ’ ’r) .

If (¢g™) denotes the inverse matrix of the coefficient matriz (C%C§,) of
Cartan’s quadratic form

9, 1)=Cg CL2*I¥,
then the differential operator of the second order
P(X)=¢"*X; X,
is permutable with every element X, that is,
X, P(X)=P(X)X,, (0=12,...... , 7).

By means of this theorem, Profs. B. L. van der Waerden,? H. Casimir
and Richard Brauer® gave the algebraic proof of Weyl’s theorem® that
all reducible representations of semi-simple continuous group are com-
pletely reducible.

2. In general, we assume that an r-parametric continuous group
G of transformation is generated by 7 infinitesimal transformations

X, =@ a2 ey g™ -0 (0=1,2, ceuen, 7),
ox

where £X(xda?...... ,%™ are analytic in a neighborhood of the origin.
Then, we consider the symmetric differential operators of the »-th order,
defined as follows :

P(X)=g, P(X)=¢'X;, Pz(X)=gikXiXk ’
.................................... N Py(X)=gikj"'lXiXkX:i .u...Xl,

ikj...l — pkii...1
gzj =g * ’

1) H. Casimir: Proc. Kon..Acad. Amsterdam, 34 (1931), 844.
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and we form
PX)=> P (X)=>g%* ' XX} ...... X;.

First, we have

Theorem 1. If a symmetric polynomial P(A) be an absolute in-
variant of the contragredient adjoint group H*™ gemerated by r in-
finitesimal transformations

E;=AC% ajl ’ (w=12,...... 1),
k

then the corresponding differential operator P(X) is permutable with
every element X,, that is

X,P(X)=P(X)X,, (0=1,2,......,7).
Proof. By the law of compositions
[Xm’ Xk]=CZ)an=E;Xk9 ((l), k=1, 2, """ ’ /r) ’

we get
_ t 3
eX"’X,c e o =eE"’Xk .
Now, for the sake of simplicity, we consider a particular case where

P(X)=g*X.X;,
then, we have

X

X X -
@ e°X,e @

il X, ~X
=qg'ke mX'ie (]

o P(X)e”

o B E*
= lke "’X,-e ka.

Hence, supposing that a symmetric polynomial P(A) is an absolute
invariant of the contragredient adjoint group H¥*, it follows that

FoP(X)=P(X)e™®, (0=1,2,......,7),
that is
XwP(X)-‘_‘P(X)Xan (w=1’ 2, .enee ’ 7').

Remark. In order that we exclude the condition of symmetry, we
have to consider an invariant bilinear form P(A, A*)=g"%*A;A; instead
of an invariant quadratic form P(A)=g"*A;A,.

Corollary. If a complete system of linear partial differential equa-
tions

E(:F(A)=O’ (w=l’2’ """ ,/r)’
has s independent symmetric solutions Fy(A), FyA), ...... , Fi(A), then
arbitrary function 2(F(X), FyX), ....., F{X)) of Fy(X), F(X), ......,

F(X), is permutable with every element X,
8. Let the parameter group” G, of G be generated by r in-
finitesimal transformations

1) K. Toyoda: Science Reports of the Tohoku Imperial University, 24 (1935), 269.
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A,=a}1 2 ...... ,m%, (@=1,2, ccreee, 7),

where A* denote canonical parameters and a%(0)=6* is Kronecker’s
delta.

Then, we have

Theorem 2. In order that a symmetric differential operator

P(4)= z;) PA)=Sg#* 14,4, ...... A,

s permutable with every element A, it is mecessary that each sym-
metric polynomial P,(A), (»=0,1, ...... , D) 18 an absolute invariant of
the contragredient adjoint group H*.

Proof. If we suppose that

P(A)=g’A;+9"%A;A,=0,
we get

2ag(2) a +g"°a“(/1)a1‘3(7~)

1a¢: A 1kaa
( ) . Totai) = aa zﬂ

=0,

whence we obtain ¢**=0 and consequently ¢*=0.

Also, we have

Theorem 3. Let P(x) be a differential operator permutable with
every element X, and g(X) be an absolute invariant of the group G.
If f(x) be a solution of the differential equation

P(X)f(x)=9g(),

then f(eXox) is also a solution of the same differential equation.

Proof. If f(x) be a solution of the partial differential equation

P(X)f(x)=9(),

then we get
P(X) f(¢"*z) = P(X)e"of (x)=¢"* P(X) f (x)

=" og(x)=g(x) .

4. Finally, we shall give another proof for Casimir’s theorem, which
runs as follows.

Theorem 4. If Xl, D, CRP , X, generate a semi-simple continuous
group and (g%) be the inverse matmx of the coefficient matriz (C%C§,)
of Cartan’s quadratic form

9(4, 2)=C% CE, 272,
then the differential operator of the second order
P(X)=g*X;X,

is permutable with every element X,
Proof. Since Cartan’s quadratic form

¢(4, 2)=C% C§, A"Ak =gy 2'A*
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is an absolute invariant of the adjoint group” H generated by r in-
finitesimal transformations

0= _laCZcm_a__’ =12, ...... ,T),
E T (0=1,2 r)
we have
E 0, )=¢Q, E,)+¢(E,2, 1)
=2¢(, E,2)=0,

whence

9:Co+91C%=0,  (o0,%,k=12,...... , 7).
Therefore, we obtain

9°Ct,+9"Ci,=0, (0,4,k=1,2,......,7),

which shows that the symmetric quadratic form
P(A)=g"*A;Ax

is an absolute invariant of the contragredient adjoint group H*, therefore
by means of Theorem 1 we can prove the following

Corollary. If X3, X, -..... , X, generate a semi-simple continuous
group, then the determinants of all matrices (C%), (w=1,2,...... ,7),
vanish stmultaneously.

Furthemore, we have

Theorem 5.2 In order that a continuous group G contains an
element other than the identical element in the central, it s mecessary
and sufficient that there exists a differential operator P(X) of the first
order which is permutable with every element X,.

Proof. If a differential operator of the first order

P(X)=g+¢'X;
is permutable with every element X, then we have
E3;P(A)=¢'A,C5=0, (0=1,2,...... )7,

which shows that ¢*X; is contained in the central.

Remark. But, if G is a soluble group generated by Xj, X; such that
[X;, Xz]=X;, then G has no differential operator P(X) permutable with
every element X,.

1) K. Toyoda: Science Reports of the Tohoku Imperial University, 25 (1936), 621.
2) This theorem was remarked by Prof. Kosaku Yosida. (2HI# LB B % ES,
123 R]).



