PAPERS COMMUNICATED

1. An Invariant Property of Siegel's Modular Function.

By Masao Sugawara.
Mathematical Institute, Tokyo Imperial University. (Comm. by T. Takagi, m.i.a., Jan. 12, 1938.)

C. L. Siegel ${ }^{1}$ recently defined the following remarkable function

$$
f_{r}(X)=\sum_{(P, Q)}|P X+Q|^{-2 r},
$$

where X is a quadratic matrix of the dimension n with a positive "imaginary part" and P and Q are matrices of the same dimension having rational integral components, while \sum sums over all non-associated symmetrical pairs of matrices P and Q without a left common divisor.

It is absolutely and uniformly convergent when an integer $r>\frac{n(n+1)}{2}$ and represents a modular function of the n th. degree and of the dimension $-2 r$.

In making use of the system of representatives of the classes of transformations of Siegel's modular group, that I have given in my former paper, ${ }^{3)}$ I will extend in this work a property of Eisentein's series, due to Mr. Hecke, ${ }^{4)}$ to this new function : namely I prove the following

Theorem: Let $T_{i}=\left(\begin{array}{cc}A_{i} & B_{i} \\ 0 & D_{i}\end{array}\right), i=1,2, \ldots \ldots, k$ be the complete system of representatives of the classes of transformations of the degree m, then by the linear operator $\sum_{i=1}^{k} T_{i}\left|D_{i}\right|^{-2 r}$ the function $f_{r}(X)$ is multiplied by a constant factor N;

$$
\sum_{i}\left|D_{i}\right|^{-2 r} f_{r}\left(T_{i}(X)\right)=N f_{r}(X) .
$$

Firstly I prove the
Lemma: The number of the classes of transformations of the degree $m, T=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, in which A and B are two given matrices, depends only on the common divisor G which makes two matrices $G^{-1} A$ and $G^{-1} B$ left-relatively-prime.

Proof: As T is a transformation of the degree m, namely

[^0]\[

T^{\prime} J T=m J, \quad where \quad J=\left($$
\begin{array}{rr}
0 & E \tag{1}\\
-E & 0
\end{array}
$$\right),
\]

we have $T^{-1} J T^{\prime-1}=\frac{1}{m} J$ and thus $T J T^{\prime}=m J$, so that the condition (1) is equivalent to the condition

$$
\begin{equation*}
A D^{\prime}-B C^{\prime}=m E, \quad A B^{\prime}=B A^{\prime}, \quad C D^{\prime}=D C^{\prime} \tag{1'}
\end{equation*}
$$

Because a left common divisor of A and B is a divisor of $m E$, there exists always such a non-singular matrix G with rational integral components as mentioned in the enunciation of the lemma.

Put $A_{1}=G^{-1} A, B_{1}=G^{-1} B$ and $K=G^{-1} m$. Then (1^{\prime}) is again equivalent to

$$
\begin{equation*}
A_{1} D^{\prime}-B_{1} C^{\prime}=K, \quad A_{1} B_{1}^{\prime}=B_{1} A_{1}^{\prime}, \quad C D^{\prime}=D C^{\prime} \tag{2}
\end{equation*}
$$

Let C_{0}, D_{0} be a particular solution of (1^{\prime}) (or (2)), then by Siegel's lemma 42, l.c. the general solution C, D of (1^{\prime}) can be represented in the form

$$
C=C_{0}+S A_{1}, \quad D=D_{0}+S B_{1},
$$

where S is a symmetrical matrix with rational integral components. Thus the general transformation $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ of the degree m having the given matrices A, B in the "first row" is obtained in the form $\left(\begin{array}{cc}E & 0 \\ S G^{-1} & E\end{array}\right)\left(\begin{array}{ll}A & B \\ C_{0} & D_{0}\end{array}\right)$. Two transformations given in this form belong to the same class of transformations if and only if the difference of the corresponding matrices $S_{1} G^{-1}$ and $S_{2} G^{-1}$ is a symmetric matrix with rational integral components. Let us therefore call two matrices $S_{1} G^{-1}$, $S_{2} G^{-1}$, where S_{1} and S_{2} are two symmetric matrices with rational integral components, equivalent when they differ only by a symmetric matrix with rational integral components $S^{(1)}$, namely $S_{2} G^{-1}=S_{1} G^{-1}+S^{(1)}$. Equivalent matrices form a class. Let $n(G)$ be the number of the classes of such matrices, then the required number of the classes of transformations in the lemma is $n(G)$.

Proof of the theorem: By Siegel's lemma 42, l.c. we can complete P, Q to a modular substitution $M=\left(\begin{array}{ll}P & Q \\ U & V\end{array}\right)$, then $T=M T_{i}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is a transformation of the degree m belonging to the same class as T_{i} and we have $\left|D_{i}\right|\left|P T_{i}(X)+Q\right|=|A X+B|$. Conversely let T be any transformation of the degree m and T_{i} be the representative of the class of T, then $M T_{i}=T$, where $M=\left(\begin{array}{ll}P & Q \\ U & V\end{array}\right)$ is a modular substitution. If A, B and T_{i} or the class of T are given here, P and Q are uniquely determined from this relation, as $P A_{i}=A, P B_{i}+Q D_{i}=B$. By a fixed T_{i} there exists one to one correspondence between non-associated pairs of matrices P, Q and A, B. Therefore we have

$$
\sum_{i=1}^{k}\left|D_{i}\right|^{-2 r} f_{r}\left(T_{i}(X)\right)=\sum^{\prime} \frac{1}{|A X+B|^{2 r}},
$$

where in the sum on the right appear all the non-associated pairs of matrices which make the 1st. rows of the transformations of the degree m and each row A, B as often as there exist transformations of the form $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ belonging to different classes of transformations, i.e. $n(G)$ times, if G is a "greatest common left divisor" of A, B.

Let us first sum up such terms in this series that have A, B with a determinate greatest common left divisor G and then let G run over the " left non-associated divisors" of $m E$. Thus we get

$$
\sum_{i=1}^{k}\left|D_{i}\right|^{-2 r} f_{r}\left(T_{i}(X)\right)=N f_{r}(X)
$$

where $N=\sum_{G \mid m E} \frac{n(G)}{|G|^{2 r}}$, in which G runs over left-non-associated divisor of $m E$.

It is already known by Siegel, l. c., that the constant term of the Fourier expansion of the function $f_{r}(X)$ is not zero; so that the system of all modular forms of the stufe 1 and of the dimension $-2 r$ decomposes into two parts: one part is produced by $f_{r}(X)$ and the other by modular forms whose constant terms of the Fourier expansions are zero and each part is transformed by the linear operator $\sum_{i=1}^{k} T_{i}\left|D_{i}\right|^{-2 r}$ into itself. ${ }^{1)}$ Therefore all the other proper modular forms of the linear operator belong to the second part. Hence we get the following important

Theorem: Siegel's function $f_{r}(X)$ is characterified, except a constant factor, among the modular forms of the degree n, of the stufe 1 and of the dimension $-2 r$, as that proper function of the linear operator $\sum_{i=1}^{k} T_{i}\left|D_{i}\right|^{-2 r}$, whose constant term in the Fourier expansion is not zero.

[^1]
[^0]: 1) C. L. Siegel, Analytische Theorie der quadratischen Formen, 1.
 2) $|P X+Q|$ represents the determinant of the matrix $P X+Q$.
 3) M. Sugawara. On the transformation theory of Siegel's modular group.
 4) E. Hecke. Die Prinzahlen in der Theorie der elliptischen Modulfunktionen.
[^1]: 1) Because $A_{i} X D_{i}^{-1}, i=1,2, \ldots \ldots, k$, arc symmetric matrics and have with X also positive imaginary parts.
