13. On Siegel's Modular Function of the Higher Stufe.

By Masao Sugawara.
(Comm. by T. Takagi, m.i.a., Feb. 12, 1938.)

In this note we are concerned with modular functions of the degree n, of the dimension $-2 r$ and of the stufe m, which is an extension of Eisenstein's series of the stufe m, due to Mr . Hecke, ${ }^{1)}$ to the case of the degree n, and deduce some of the corresponding properties.

We call Siegel's modular function of the degree n, of the dimension $-2 r$, and of the stufe m the following function,

$$
f_{r}\left(X ; P_{1}, Q_{1} ; m\right)=\sum_{\substack{P=D_{1} \\\left(P, Q_{1}, \bmod m\right.}} \frac{1}{|P X+Q|^{2 r}}{ }^{2)}
$$

where X is a symmetric matrix with a positive "imaginary part" and P_{1}, Q_{1} form a given symmetrical pair of matrices with rational integral components and have no left common divisor, while \sum sums over mod m non-associated symmetrical pair of matrices P and Q which are congruent to P_{1} and Q_{1} respectively and have no left common divisor.

Here we call two symmetrical pairs of matrices, P, Q and P_{0}, Q_{0} "associated mod m " when there exists an unimodular matrix U, congruent to $\pm E \bmod m$, such that the relations $P_{0}=U P, Q_{0}=U Q$ hold.

As in the case of Siegel's modular function of the 1st. stufe, it is absolutely and uniformly convergent when the integer $r>\frac{n(n+1)}{2}$ and represents an analytic function of X in the domain H in which X has a positive imaginary part.

The behavior under a modular substitution $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is as follows. Let us complete P, Q to a modular substitution $\left(\begin{array}{ll}P & Q \\ U & V\end{array}\right)$, then

$$
\left(\begin{array}{ll}
P & Q \\
U & V
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
P A+Q C & P B+Q D \\
U A+V C & U B+V D
\end{array}\right)
$$

is also a modular substitution, so that $K=P A+Q C$ and $L=P B+Q D$ form a symmetrical pair of matrices without a left common divisor, and

$$
\begin{aligned}
& K \equiv K_{1}=P_{1} A+Q_{1} C, \\
& L \equiv L_{1}=P_{1} B+Q_{1} D \quad \bmod m .
\end{aligned}
$$

[^0]Hence from

$$
\begin{aligned}
& f_{r}\left((A X+B)(C X+D)^{-1} ; P_{1}, Q_{1} ; m\right) \\
& \quad=|C X+D|^{2 r} \sum_{\substack{P=P_{1} \\
\left(P=Q_{1} \bmod m\right.}} \frac{1}{|(P A+Q C) X+P B+Q D|^{2 r}} \\
& \quad=|C X+D|_{\substack{2 r}}^{\substack{\sum_{m}=K_{1} \\
(K, L)_{m} \bmod m}} \mid \\
& |K X+L|^{2 r}
\end{aligned} \frac{1}{|C X+D|^{2 r} f_{r}\left(X ; K_{1}, L_{1} ; m\right)} .
$$

we get
(1)

$$
\begin{aligned}
& |C X+D|^{2 r} f_{r}\left(X ; K_{1}, L_{1} ; m\right) \\
& \quad=f_{r}\left((A X+B)(C X+D)^{-1} ; K_{1} D^{\prime}-L_{1} C^{\prime},-K_{1} B^{\prime}+L_{1} A^{\prime} ; m\right)
\end{aligned}
$$

Let M be a substitution of the principal congruence group $\bmod m$ $\Gamma(m)$, then (1) becomes

$$
\begin{equation*}
f_{r}\left((A X+B)(C X+D)^{-1} ; P_{1}, Q_{1} ; m\right)=|C X+D|^{2 r} f_{r}\left(X ; P_{1}, Q_{1} ; m\right) \tag{2}
\end{equation*}
$$

Especially it is an absolute invariant by the modular substitution $\left(\begin{array}{cc}E & m S \\ 0 & E\end{array}\right)$, where S is a symmetric matrix with rational integral components, so that it can be expanded into Fourier series

$$
\begin{equation*}
\left.\sum_{I} a(I) e^{\frac{2 \pi i}{m} \sigma(I X)}, 1\right) \tag{3}
\end{equation*}
$$

where \sum sums over all integral form $x^{\prime} I x$ (x is a n-dimensional vector), but by the same reason as in the case of the 1st stufe $a(I)=0$ for all I for which $x^{\prime} I x$ can take also negative values in real x. Thus \sum may sum only over non-negative forms $x^{\prime} I x$

$$
\sum_{I \geq 0} a(I) e^{\frac{2 \pi i}{m} \sigma(I X)}
$$

It follows from here that the function $f_{r}\left(X ; P_{1}, Q_{1} ; m\right)$ is a modular form of the degree n, of the dimension $-2 r$, and of the stufe m.

As the explicit form of the Fourier expansion of the function is complicated, we get its constant term in the following way.

Let Y and Z be real resp. imaginary part of $X, X=Y+i Z$, and take for Z the positive diagonalform $z E(z \rightarrow \infty)$, then $a(I) e^{\frac{2 \pi i}{m} \alpha(I X)} \rightarrow 0$ for $I \neq 0$ and by suitable choice of $Y|P X+Q|^{-2 r} \rightarrow 0$ for $P \neq 0$.

The 1st part follows at once from the fact that the non-negative form whose diagonal components are all zero is the form 0 .

For the proof of the 2nd part put $|P X+Q|^{-2 r}=\left|P_{0}\right|^{-2 r} \mid R^{\prime} X R+$ $\left.P_{0}^{-1} Q_{0}\right|^{-2 r}$,
where $\quad P=U_{1}\left(\begin{array}{c}P_{0}^{(r)} \\ 0\end{array} 00.1\right) U^{\prime}, \quad Q=U_{1}\left(\begin{array}{ll}Q_{0}^{(r)} & 0 \\ 0 & E^{(n-r)}\end{array}\right) U^{-1}, \quad U=\left(R^{(n, r)} C_{0}\right)$,

[^1]$|U|=\left|U_{1}\right|=1,\left|P_{0}\right|>0$ and P_{0}, Q_{0} form a symmetrical pair of matrices, ${ }^{1)}$ and $R^{\prime} Z R=F^{\prime} F, R^{\prime} Y R+P_{0}^{-1} Q_{0}=F^{\prime} D_{0} F$ with a real matrix $F=F^{(r)}$ and a real diagonal matrix $D_{0}=D_{0}^{(r)}$,
then
$$
\left|R^{\prime} X R+P_{0}^{-1} Q_{0}\right|=\left|R^{\prime} Z R\right|\left|D_{0}+i E\right| .
$$

If we take instead of R its associated matrix, $R^{\prime} Z R$ become another representative of that class. So we can assume that the definite quadratic form $R^{\prime} Z R$ is reduced in the meaning of Hermite. Then it follows from the Hermitian condition of reducibility that the quotient of the product of the diagonal elements of the matrix $R^{\prime} Z R$ and the determinant $\left|R^{\prime} Z R\right|$ is bounded by a constant independent of R. Therefore when $z \rightarrow \infty$, the product of the diagonal elements of $R^{\prime} Z R$, hence also $\left|R^{\prime} Z R\right|$ become infinity. If Y is so chosen that $\left|D_{0}+i E\right| \neq 0$, we have $|P X+Q|^{-2 r} \rightarrow 0$.

Thus the constant term of its Fourier expansion is

$$
\delta\left(P_{1}, Q_{1} ; m\right)=\left\{\begin{array}{l}
1, \text { when } P_{1} \equiv 0, Q_{1} \equiv U \bmod m, \text { where } U \text { is } \tag{4}\\
\text { unimodular. } \\
0, \text { in all other cases. }
\end{array}\right.
$$

In the following investigation it is convenient to use a "homogeneous coordinate" P, Q of X and the words in the homogeneous form. ${ }^{2}$)

We call a class of symmetrical pairs of matrices P, Q without a left common divisor a " rational point," namely two symmetrical pairs of matrices without a left common divisor P, Q and P_{0}, Q_{0} represent the same rational point if and only if $P=U P_{0}, Q=U Q_{0}$, where U represents a unimodular matrix with rational integral components.

Two rational points (P, Q) and $\left(P_{0}, Q_{0}\right)$ are said to be equivalent by the principal congruence group $\bmod m \Gamma(m)$ if and only if there exists a substitution $M^{(m)}$ of the group $\Gamma(m)$ such that the relation

$$
\begin{equation*}
(P, Q) M^{(m)}=\left(U P_{0}, U Q_{0}\right) \tag{5}
\end{equation*}
$$

holds.
This condition is equivalent to

$$
P \equiv U P_{0}, \quad Q \equiv U Q_{0} \quad \bmod m
$$

The condition (5') follows evidently from (5). Assume that (5') holds. Let us complete P, Q and $U P_{0}, U Q_{0}$ to modular substitutions $M=$ $\left(\begin{array}{cc}P & Q \\ V & W\end{array}\right), M_{0}=\left(\begin{array}{cc}U P_{0} & U Q_{0} \\ V_{0}, & W_{0}\end{array}\right)$ resp., then there exists a modular substitution $N=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ such that $N=M_{0} M^{-1}=\left(\begin{array}{cc}U\left(P_{0} W^{\prime}-Q_{0} V^{\prime}\right) & U\left(-P_{0} Q^{\prime}+Q_{0} P^{\prime}\right) \\ V_{0} W^{\prime}-W_{0} V^{\prime} & -V_{0} Q^{\prime}+W_{0} P^{\prime}\end{array}\right)$. From (5'), $P W^{\prime}-Q V^{\prime}=E, P Q^{\prime}=Q P^{\prime}$, we get $A \equiv E, B \equiv 0 \bmod m$, and then from $A^{\prime} D-C^{\prime} B=E, A^{\prime} C=C^{\prime} A$ we get $D \equiv E, C \equiv C_{0} \bmod m$, where C_{0} is a symmetric matrix ; so that $N \equiv\left(\begin{array}{ll}E & 0 \\ C_{0} & E\end{array}\right) \bmod m$. Multi-

[^2]plying a substitution $N_{1}=\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)\left(\begin{array}{rr}\boldsymbol{E} & \boldsymbol{0} \\ -\boldsymbol{C}_{0} & \boldsymbol{E}\end{array}\right)$ of the group $\Gamma(m)$ to the modular substitution $\left(\begin{array}{cc}P & Q \\ C_{0} P+V & C_{0} Q+W\end{array}\right)$ we get the substitution $\left(\begin{array}{cc}U P_{0} & U Q_{0} \\ V_{0} & W_{0}\end{array}\right)$. As $\Gamma(m)$ is an invariant subgroup of $\Gamma(1)$, there exists a substitution $M^{(m)}$ of $\Gamma(m)$ such that $\left(\begin{array}{cc}P & Q \\ C_{0} P+V & C_{0} Q+W\end{array}\right) M^{(m)}=$ $\left(\begin{array}{cc}U P_{0} & U Q_{0} \\ V_{0} & W_{0}\end{array}\right)$.

Thus we get $(P, Q) M^{(m)}=\left(U P_{0}, U Q_{0}\right)$, where $M^{(m)}$ is a substitution of $\Gamma(m)$.

Let $\sigma(m)$ be the number of non-equivalent rational points by the group $\Gamma(m)$, that is the number of "rational vertices" of the fundamental domain of the group $\Gamma(m)$ in homogeneous coordinates.

We say that a modular form f is in a rational point (C, D) zero when the constant term in the Fourier expansion of $|C X+D|^{2 r} f$ by the uniformization-variables, namely $\sum_{I} a(I) e^{\frac{2 \pi i}{m} \sigma\left(I(A X+B)(C X+D)^{-1}\right)}$, where $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is a modular substitution, is zero and call a modular form of the stufe m a vertex-form when it becomes zero in all rational vertices of the fundamental domain of the group $\Gamma(m)$.

The constant term of the Fourier expansion of the function

$$
\begin{aligned}
\mid C X & +\left.D\right|^{2 r} f_{r}\left(X ; K_{1}, L_{1} ; m\right) \\
& =f_{r}\left((\mathrm{~A} X+B)(C X+D)^{-1} ; K_{1} D^{\prime}-L_{1} C^{\prime},-K_{1} B^{\prime}+L_{1} A^{\prime} ; m\right)
\end{aligned}
$$

in the rational point (C, D) is not zero if and only if

$$
\begin{equation*}
K_{1} D^{\prime}-L_{1} C^{\prime} \equiv 0, \quad-K_{1} B^{\prime}+L_{1} A^{\prime} \equiv U \quad \bmod m \tag{6}
\end{equation*}
$$

The condition (6^{\prime}) is equivalent to

$$
K_{1} \equiv U C, \quad L_{1} \equiv U D \quad \bmod m
$$

It is independent of the choice of A, B.
There exists a trivial relation $f_{r}\left(X ; U P_{1}, U Q_{1} ; m\right)=f_{r}\left(X ; P_{1}, Q_{1} ; m\right)$, so that the function depends only on the rational point (P_{1}, Q_{1}) and not on the individual symmetrical pair of matrices P_{1}, Q_{1}.

Therefore from (5), (5^{\prime}) and (6^{\prime}) we get the following
Theorem 1: There are exactly $\sigma(m)$ linearly independent Siegel's modular form of the degree n, of the dimension $-2 r$, and of the stufe $m f_{r}\left(X ; P_{i}, Q_{i} ; m\right)$ and a linear combination of $f_{r}\left(X ; P_{i}, Q_{i} ; m\right)$ of the same kind is identically zero if and only if it is a vertex-form.

Theorem 2: Any modular form of the degree n of the dimension $-2 r$, and of the stufe m can be written uniquely as the sum of a linear combination of $f_{r}\left(X ; P_{i}, Q_{i} ; m\right)$ and a vertex-form of the same kind.

[^0]: 1) E. Hecke. Theorie der Eisensteinschen Reihen höherer Stufe and ihre Anwendung auf Funktionentheorie und Arithmetik.
 2) Capital letters represent n-dimensional matrices, while small letters represent integers.
[^1]: 1) $\sigma(A)$ represents the trace of the matrix A.
[^2]: 1) L. Siegel: Analytische Theorie der quadratischen Formen, 1. lemma 42.
 2) For a moment we define only "rational points" in homogeneous form.

 $$
 X=P^{-1} Q, \text { when }|P| \neq 0
 $$

