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Operator-theoretical Treatment
of the Markoff’s Process.

By KSsaku YOSIDA.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A, Dec. 12, 1938.)

1. Introduction. Let P(,E) denote the transition probability
that the point of the interval (0,1) is transferred, by a simple Markofffs
process, into the Borel set E on the interval (0, 1) after the elapse of
a unit time. We assume that P(,E) is completely additive for Borel
sets E if is fixed and that P(, E) is Borel measurable in if E is
fixed. Then the transition probability after the elapse of n units of time

Under certain general condition given below, W. Doeblin in-
vestigated the asymptotic behaviour of P(,E) for large n. His
method of proof is based upon set-theoretical considerationa It may
be termed as a direct method. In the present note I intend to give an
operator-theoretical treatment of the problem, by virtue of the results
of the preceding notes.- Our method of proof will make clear the
spectral properties of the Markoff’s process in question, and the results
obtained is somewhat more precise than that of Doeblin. The author
is indebted to S. Kakutani in the proof of the lemma 1 and 5 below.
I want to express my hearty thanks to him.

2. Prdiminary lemmas. By definition we have
(1) P((, E) 0 and P(, 9}----1, where /2=the interval (0,1).

We make on P(x, E) the following assumptions due to Doeblin:

exist an integer s and positive b, y (<: 1) such that,
(2)

[if rues (E) <:: , P((, E) <: 1-b uniformly in .
Then it is easy to see that

(2)’ if mes (E) <:: , Pa)(x, E) <21-b uniformly in x and t

_
s.

We may decompose P(’)(x, E) as followsa):

[P(’)(x, E)= Iq(x, y)dy/R(x, E)

.0 q(x, y) 1 0 < R(x, E) < 1-b

1) W. Doeblin: Sur les proprits asymptotiques de mouvements rgis par certains
types de cbines simples, Bull. math. de la Soc. Roumaine des Sciences, 39 (1937), (2),
3-61.

2) K. Yosida Abstract integral equations and the homogeneous stochastic process,
Proc. 14 (1938), 286. K. Yosida and S. Kakutani Application of mean ergodic theorem
to the problem of Markoff’s process, ibid. 333. K. Yosida, Y. Mimura and S. Kaku-
tani: Integral operator with bounded kernels, ibid. 359. These notes will respectively
be referred to as [I], [II] and [III].

3) [II], the proof of Theorem 7t.
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Consider the integral operator P which transforms the Banach space
(IR) in ()D.

P.f () , N)f(d)

By (1) and (3) we have

IIPll=I, IIQIi=<I, IIRli<=l-b, where

|Q-f= (x, y)f(dx) R.f (z, E)f(dx).

Lemma 1. There exist an integer n and a completely continuous
operator V such that P- VII <: 1.

Proof. We have P* Q+Q-XR+Q-2RQ+... +RQR-2+QR-+R. The term which contains Q at least two times as factor is com-
pletely continuous. Consider, for example, RQRQ-3. QR and Q-3 are
both integral operators with bounded kernels. Hencez QRQ- is com-
pletely continuous in (), and thus RQRQ-3 is also completely con-
tinuous in (). The number of terms that contains Q at most once
as factor is k+ 1, each of norm (l---b)-. As lim (k+ 1) (1-b)-=0

k->oo

we have the lemma.
Lemma $. Let llP-Vll<=l as in lemma 1. Then, if kn,

the proper value a with modulus 1 of P satisfies 2m_ 1, where the
integer m is bounded uniformly for k.

Proof. We have P-P-V P- P V P V <: 1.
P-V is completely continuous with V. Let 2([ [=1) be a proper
value of P. Then) there exists a projection operator P.a(z, E) which
maps () on the proper space belonging to the proper value /t of P"

1fP a(z, E)=lim -:- ] P)(x, E) (uniform limit),

Hence, for any g(y) of the Banach space (), the element in h()=

:Pk.a(X, dy)g(y)of ()satisfies h()=a_t-:PC)(x, dz)h(dz). Therefore, by

(1)’, we obtain the lemma by applying M. Frchet’s argumenta
Lemma 3. Let IIP-VIl<l as in lemma 1. Then, for any

k n, the multiplicity of the proper value 1 of P is <= 1.

Proof. Let f(E)=:l’(z,E)f(dx). We have, by (1), g(E)=
J0

1) () is the Banach space of all the totally additive set functions defined for all
the Borel sets of .=(0,1). For any f(E)e (), we define its norm by IlflI=total
variation of f on (0,1).

2) [III], Theorem 2.
3) [I], Theorem. Cf. also Theorem 4 in S. Kakutani: Iteration of linear opera-

tions in complex Banach spaces, Proc. 14 (1938), 295.
4) [II], Theorem 5.
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_IIP)(x, E)g(d), where g(E)=the total variation of f on E. Hence, by

(1)’, we obtain the lemma by applying Kryloff-Bogoliouboff’s arguments.)

Kryloff-Bogoliouboff’s arguments for the proof of the above lemma
also proves the following lemma simultaneously.

Lemma . Let P-VII<:I as in lemma 1. Then, for any

k n, them exists f(E), f(E), ...,](E) l<- with the properties-

P.f=, (E) = 0, ](/2)= 1, f(E)f.(E)=--O for i :4= 3",

such that any f(E) satisfying P.f=f, f(E) = 0, f(/2)= 1 is uniquely
lk

expressed as a linear combination f(E} , cfi(E}, c > 0, ,c= 1.
k-I ik-1

Lemma 5. Let square matrix C=I!c (i,= 1, 2,..., l) satisfy

the conditions" c O, . c=1 (i= 1, 2, ..., l}, C=unit matrix for

a certain m. Then C represents a permutation of l indices 1, 2, ..., l.
Proof. The matrix C- also satisfies the same condition as C.

Thus we obtain the lemma by performing the multiplication C-.C
the unit matrix.

3. Asymptotic behaviour of the process P. By lemma 1, 2 and
3 we see that there exist an integer n and a completdy continuous
operator V such that i) P- V <: 1, ii) P admits of no proper values
with modulus 1 other than 1. Hence we have-

(4)
’P P+S PP PP" P P PS=SP O

!! S <= a (k= 1, 2, ...) with positive a and k.
(1-1- e)

Here the integral operator P is defined by the kernel

(5) P(x, E)-lim 1 P("(x, E) (uniform limit).
t-}oo t i-1

(6)

Surely we have P(x, E)= 0, PI(X,/2)1 and thus, by lemma 4,

’P(x, E)=i.-1 c,(x)f(E) l <:

Px.f=f, f(E)_>_O, h()=, (E)h(E)O for i,
In

c(x) O, c()1.

We put P-f=g. Then, by P.P=P-P, we have P-g g.
is easy to see that g(E)= O, g(9)= 1. Hence by lemma 4

P.=,c#, c#O, c#=l (i=1,2,...,/.).

It

The matrix C= c# satisfies C" the unit matrix by P"-f=f. Hence,
by lemma 5, the l indices 1, 2, ..., l is divided into p classes
(p 1.), each class being permutated cyclically in itself by C. Let K

1) [IE, Theorem 6.
2) [I], Theorem. Cf. also Theorem 4 in S. Kakutani loc. cit.
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be the class which consists of the indices 1, 2, ..., d" , d=l. As
d-I

C=the identical permutation we see that each d is a divisor of n.
Y(E) is completely additive and non-negative. Hence, by Radon-

Nikodym’s theorem, ](E)=p(z)dx+(E-N) with p() 0 and
mes(N)=0. Let E be the set at each point of which we have
p(x) O. We put E=E+N, G E. By (6) E (i= 1, 2, ..., l)

ieK

are nually disjoin, and hence Ga (a=l, 2, ..., p) are also mutually
disjoint. G (a=l, 2, ...,p)are called the final sets of the Markoff’s
process P.

We now prove the following properties of the final sets.

i). 1.u"b. P(x, Y2-
d-
] G) --< (1 +e’)

(t 1, 2,...) with positive a’,

ii). P(z, G)= 1 for almost all z e G.
iii). There exists E: E with mes (E ) 0 such that, if i e K,

a//1. u.b. P)(x, E)-fXE) I_< (t= , 2, ...),
.cE (1/")

where a" and e" denote positive constants.
iv). Let G’=] E, then G’ G and rues (G- G’) 0. For any

ieKa

E G,, rues (E):> 0 and for any z e G’, there exists a positive integer
m re(z, E) such that P(x, E) :> 0.

v). By a suitable numerotation of the indices 1, 2, ..., d, we have
P(x, E/a) 1 for a/most all x eE (i= 1, 2, ..., d, (d+ 1)- l, a--

l, 2, ...,
vi). By ii) P(z, E) defines a Markoff’s process P in G (a=l, 2,

.., p). Pa admits of no proper values with modulus 1 other than 1, if
and only if d= 1.

Proof of i). By (4) and

/(x, 9-] E) ’(, -] E).
i-I

(6) we have P("(x, 9-G)=
a-1

Hence, by (4)and IIPII=I, we ob-

Proof of ii). By the definition of the class K we have h(E)=

I:P(z, E)h(dx), where h(E)=f(E)+f(E)+.../fd(E). By putting

E=G=]E we obtain 1 (, G)h(dz). We have 1 h(E) O,
iKa

h(G} 1 and 1 P(. G) 0. Hence we must have P(, G)= 1 for
almost all e G.

Proof of iii). We obtain, by (5) and (6), f(E)= (,E)f(dx).

Hence, by (6) j(E)= (x)f(E)f(dx) ifEE. Hence, by putting E=E,

1 (x)(dx), Thus, by 1 c(x) O, 1 :>f(E) 0 and J(E)= 1 we

obtain c(x)=l for almost all x e E. Therefore there exists E’E
with mes (E-E)=0 such that P(x, E)=c(z)f(E)=f(E) for z eE if
E E. Then by (4) we have P("’)(x, E) =J(E)/S(’)(x, E) for x e
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and E E As d is a divisor of n we put n=ds. Then any integer
of the form td can be expressed as td=mn+rd, s r O. Thus
p(tg)= (pg)r(p)m. As pd.f= if i e K,, we obtain iv) by (6) and

Proof of iv). From the above arguments we have P(x, E)=.f(E)
lega

for x e G’, E G. This proves iv) by (6).
Proof of v). By the definition of the class K, we have f(+D(E)=P1

P(x, E)f(dx), by a suitable numerotation of the indices 1, 2, ..., d

((d+l)=l,). I-Ienee we obtain 1= (,N(/,)f,(d). s 1()
=> 0, j(E)=1 and 1 > P(, E(/) >= 0 we must hve ).

Proof of vi). t d= 1. hen, by iii), he
dmi of roNr alues with mul 1 her than 1.

h e.(+,+a%+... +e-z) +,+z.+ +e-)
or any I with Ia=1. s f,,f, ...,fe re linrly indenden

(N. hmidt’s


