
No. 6.] 165

PAPERS COMMUNICATED
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1. Statement of the theorem. Let S be a space in which a mea-
sure of Lebesgue type is defined, and let T be a one-to-one measure-
preserving transformation of S into itself. We do not assume that the
total measure rues (S) is finite. For any real valued function f(x) de-
fined on S, we define the functions f(x), f(x), f*(x) and f.(x) as follows"

1 - 1 -If(x) =lim .f(Tx}, f(x) =lim
n--> T i=0

tf*() 1. u. b. f(T%), f, (x) g. 1. b. f(Tx).
0<_n<oo i-0 0<_n<oo T

If f(x) is measurable and absolutely integrable on S, then we can
prove the following two theorems"

Theorem 1. For any pair of real numbers a and , we have

[a mes (E(a, fl)) "Z If(x)dx mes (E(a, fi))
(1)

where

Conquently, implies rues (E(, ))=0, and sinee this is te or
any pair o real numbers and with , we have f()=f() almost
everywhere; that is,

lim .f(Tx)=(x)
exis almost everywhere.
Tem . For any real numr a we have

(2) {a rues (E*(a)) E*(,)If(x)dx’ ames (E.(a)) E.(,)If(x)dx,
where E*(a) E [f* (x) :> a] and E.(a) E [f.(x) <: a].

Theorem 1 is the Ergodic Theorem of Birkhoff in its form given
by A. Kolmogoroff.D Theorem 2 is new. We shall call Theorem 2

1) A. Kolmogoroff" Ein vereinfachter Beweis des Birkhoff-Khintchinchen Ergoden-
satzes, Recueil Math., 44 (1937), 366-368. See also E. Hopf" Ergodentheorie, Ergebnisse
der Math., Heft 5 (1937).
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the Maximal Ergodic
analogous result-

Recently N. Wiener2) obtained the

(2’)
if mes (S)=finite, and if f(x) 0 throughout on S,

then a mes (E*(a)) If(x)dx.
This result is clearly weaker than (2). Wiener’s proof of (2’) is based
on the so-called Maximal Theorem of Hardy and LittlewoodS; and
using (2’) he deduced from the Mean Ergodic Theorem of v. Neumann
a new proof of the Ergodic Theorem of Birkhoff. Wiener has also
obtained from (2’) the so-called Dominated Ergodic Theorem. It is
to be noted that the latter is also possible even if we have no as-
sumption that mes (S)=finite, while the former is not always possible
without this assumption.

In the present note, we shall give a direct proof of Theorem 2.
Our method of proof is a modification of that of Khintchine-Kolmogo-
roff) which was Used to prove Theorem 1; and it is to be noted that
we can prove Theorem 1 (Birkhoff’s Ergodic Theorem) and Theorem 2
(Maximal Ergodic Theorem} simultaneously by the same principle with-
out appealing to Maximal Theorem nor to the Mean Ergodic Theorem.

2. Proof of Theorem . We define

(3) f(z) 1 b-1,f(Tx), a <: b.
b-a =,

For any fixed x e S, consider the pair of integers a and b such that
fb(X) a while fab’(Z) a for any b’ with a <: b’ <= b. Such an interval
(a, b) is called a maximal interval (corresponding to a and ), and
b-a is called the ngth of this maximal interval. Of two maximal
intervals {a, b)and (a, b’) (both corresponding to a and ), the one
may contain the other; but these cannot overlap each other. For, if
a <:: a <: b <: b’, we have

fab() (a’--a) f,(x)+ (b-a’)

and, since f,(x) a and fa’b() l by assumption, we have fab() ,
contrary to the assumption that (a, b) is maximal. A maximalinterval
(a, b) (corresponding to a and ) of length b-a s is called s-maximal
if it is contained in no other maximal interval (corresponding to a and
to x) of length s. Thus all s-maxinal intervals (corresponding to a
and to x) lie outside each other.

2) N. Wiener: The Ergodic Theorem, Duke Math., Journ., 5 (1939), 1-18.
3) G.H. Hardy, J.E. Littlewood and G. Pblya: Inequalities. Cambridge (1935).
4) N. Wiener: The Homogeneous Chaos, Amer. Journ. of Math., 60 (1938), 897-

936. In this paper Zygmund’s class only was considered. The general case Lp (p :> l)
was obtained by N. Wiener and M. Fukamiya independently. N. Wiener: the paper cited
in the footnote (2). M. Fukamiya: On Dominated Ergodic Theorem in Lp (p 1), to
be published in Tbhoku MattL Journ. Fukamiya’s proof also appeals to the Maximal
Theorem of Hardy and Littlewood.



No. 6.] Birkhoff’s Ergodic Theorem and the Maximal Ergodic Theorem. 167

Now let E*,(a) be the set of all the points e S such that there
exists an s-maximal interval (a, b) (corresponding to a and to x) with
a =--<0<b. It is clear, by the argument above, that to any point
x.eE,*(a) there corresponds one and only one s-maximal interval of this
sort. Since fb() :> a and since fb’() --< a for any b’ with a < b’ <:: b,
we must have fob(X,)::> a and consequently E*(a) E*(a) for any s.
Moreover, by the definition of E*(a), we have

(4) lim E2(a)=E*(a).

On the other hand, E*,(a) may be divided into disjoint subsets E(a)"
s q-1

(5) E:() , E()
q-1

where E$q(a), 0 p <2 q s, is the set of all the points e E2(a)
whose corresponding s-maximal interval is (-p, -p/q). From the
identity"

1 -la/q-1, f(Tx) 1--Ef(TT-x)
q ---, q -o

we see that
T-"E$q(a)=E*oq(a)

and, since T is measure-preserving, we have

(6) { mes (E;q(a))=mes (E*oq(a)),

Consequently, we have by (5) and (6)

f(x)dx

=ames(E*(a)).
Hence, by (4), we obtain

If(x)dx ames (E*(a))
E*(a)

Thus the first part of Theorem 2 is proved, and the second part may
be proved analogously. We may also obtain the proof of Theorem 1,
if we start from E(a, ) instead of from E*(a), and if we consider
E,(a, fl) E*, (a) E(a, fl) and Ez,q(a, [J) E,q(a) E(a, ) instead of E* (a)
and E$q(a) respectively, remembering the invariance of E(a,/): E(a, )=
TE(a, ). This is indeed the proof of Theorem 1 due to A. Kolmo-
goroff
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3. Integrability of the functions f(x), f*(x) and f.(x). We can
see easily from Theorem 1 that, if f(x) is absolutely integrable, the
limit function f(x) (=f(x)=f(x) almost everywhere) is also absolutely
integrable. In order to show this, it is sufficient to consider the case
that f(x) 0 throughout on S. Denoting again by E(a, ) the set of all
the points x e S such that a <:f(x)<:: fi, we have for any pair of real
numbers a and /3 with

ames (E(a, )) If(x)dx fl mes (E(a, ))
E(a, )

and, since mes (E(a,/)) <: oo, we have

If(x)dx--If(x)dx
E(a,

Since. and / (0 <.< ) are arbitrary, we have

(8’
E(0, oo)

Thus we have proved that f(z) is absolutely integrable with the addi-
tional inequality (8).

If, moreover, f() belongs to the Lebesgue’s class L (p > 1), then
f*(z) and f.(z) belong also to the same class L; and if f(z) belongs
to the Zygmund’s class:

IIf(x) lo+g If(x)]d=finite,

then f*(x) and f.(x) both belong to the class L. These results
(Dominated Ergodic Theorem) were obtained from (2’) by N. Wiener,
and directly from the Maximal Theorem of Hardy and Littlewood by
M. Fukamiya, in case mes(S)=finite. The same argument as that
used by Wiener will lead us to the same conclusion for the class
L (p :> 1) even in the general case mes (S)= from our (2); for, the
assumption that rues (S)=finite is not needed in this part of the proof
of Wiener’ We therefore omit the proof.


