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21. An Abstract Integral, I1.

By Shin-ichi IztrI.
Mathematical Institute, Tohoku Imperial University, Sendal

(Comm. by M. FUIWARA, .I.A., March 12, 1940.)

Introduction. The object of this paper is to define Riemann and
Lebesgue integrals of functions whose values belong to a very general
space. For this purpose, we will define new definitions of Riemann
and Lebesgue integrals of real-valued functions of a real variable.
More generally, the definitions of Riemann-Stieltjes and Lebesgue-Stieltjes
integrals are given in 1 and 2, which are free from the notions of
partition, least upper bound and greatest lower bound. These defini-
tions make us easy to generalize these two integrals into abstract
spaces. This is given in 3 and 4. The properties and applications
of these integrals are left to the next occasion.

1. Let f(z) and z(z) be real-valued functions defined in the inter-
val (a, b)and z(z) be non-negative, montone and z(b)-z(a)=l. The
sequence (z,)(n= 1, 2, 3, ,= 1, 2, ..., n) is said to satisfy the (C, 1)
condition, provided that"

1.1. ax,,,b.
1.2. For any subinterval (a,/) of (a, b) such that z(z) is continuous

at z,=a and

lim (M,/n) z() -z(a)

where M denotes the number of z in (a,/) for fixed n.
If the limit

(1) lim 1,f(z=)
n->oo =1

exists for any (x) satisfying the (C, 1) condition and the limiting value
is independent of the choice of (z), then we denote it by

b

(9)f(x)dz(z)
and we say that f(x) is (9)-integrable.

If f(z)is continuous, then it is easy to verify that f(z) is (9)-
integrable. It is known that, if f(z) is continuous, (1) is equal to the
Riemann-Stieltjes integral (or simply (RS)-integral) of f() by the deter-
minate function z(z).D Further we can prove that (9)-integral is equi-
valent to the (RS)-integral.2)

2. Let f() be a real-valued measurable function in (a, b)and z(e)

1) J. Schoenberg, Math_ Zeit, 28 (1928).
2) Cf. I.J. Ridder, Prace Mat.-Fys., 1936.
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be a real-valued set-function of measurable set e contained in E=(a, b)
such that

2.1. z(e) is non-negative and monotone, that is, 0 z(e) z(e’) if
e__ e.

2.2. z(e) is completely additive, that is, if e=;-]e=, e .ej-O (),

then z(e)=z(e,).
--1

2.3. z(E)= .
The sequence () is said to satisfy the (C, 2) condition provided

2.4
9..5

a,,b.
For any set e=E(af(,}<:), a and being real numbe,

lim

where N denotes the number of . in e, n being fixed.
If the limit

(2) lira l,f(x.)
n-oo T/, =I

exists for any (x.) satisfying the (C, 2)condition and the limiting value
is independent of the choice of (x.), then we say that f(x) is ()-
inteable and (2) is denot by

()f(x)z(dE)
E

We can prove that ()-inal is valent to the se-don

If we reple the condition 2.2 by the following

2.2’. z(e) is finily additive, that is, if e=e. and e.e=0 (ij),

then z(e) z(e,),

then we get another inal which is eqvalent to another se-
Radon instal.)

3. t E d E atract sp such that the Riemann field
is defin in E such zE= 1, ing Jordan mease,) and E is

a liner (or vtorial) space where the notion of limit satisfying ordinary
axioms is define. t f(x) a fcfion who domain is E and range
is conmin in E. The quence (x) is id to tisfy the (C, 1’)
condition prod that:

3.1. xeE(n= 1, 2, 3, 1, 2, ..., n)
3.2. For any t eel,

lim (M/n)=ze

3) Cf. J. Hildebrandt, Trans. Am. Math. Soc., 41 (1937), and Fichtenholz-Kantrovitch,
Studia Math., 6 (1937).

4) Cf. S. Bochner, Annals of Math_, 42 (1939), and S. Izumi, this Proceedings, 1940.
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where M’ denotes the number of x in e, n being fixed.
If the limit

(3) lim

exists for any () satisfying the (C, Y) condition and the limiting
value is independent of the choice of (), then we say that f() is
(9)-integrable and the limiting value is denoted by

(9’)If(x)d/
We can prove that uniformly continuous functions and more gener-

ally the functions uniformly continuous except a /-null set are (9’)-
integrabl

When E is a Banaeh space, we can take the limit in (3) as that
in the norm sense and as that in the weak topology. Thus we get
two kinds of (9’)-integrals, that is, the "strong (’)-integral" and
"weak (!W)-integral ".

4. Let f(x) be a function whose domain is E and whose range
is E. Suppose that the Lebesgue field . is defined in E with mE= 1,
m being Lebesgue measure, and E is a linear mric space.)

Let f(x) be a ()-measurable function, that is, E(f(x)K) for any

sphere K in E. (x.) is said to satisfy the (C, 2’) condition, provided
that"

4.1. xE (n= 1, 2, 3, =1, 2, ..., n),
any set =E(f(x)K), ( being a sphere in Ex,4.2. For

lim N:(

where N denotes the number of x, in e, n being fixed.
If the limit

(4) lim 1__.f(x)
n-oo -1

exists for any (x.) satisfying the (C, 2’) condition and the limiting
value is independent of the choice of (x.), then we say that f(x) is
(’)-integrable and (4) is denoted by

(’)If(x)dm.
We can prove that bounded -measurable functions are ()-integra-

ble and that the (’)-integral is absolutely convergent.
When E is a Banach space, we can define the "strong" and

"weak" integrals as in the preceding section.)

5) In this direction there are papers of G. Birkhoff, Dunford, Pettis, I. Gelfand
and other writers.


