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Functions in an Abstract Space.
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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, oLA., March 12, 1940.)

1. Introduction and Theorems. Let f(t) be an abstractly-valued
function defined on [0, 1] whose range lies in a Banach space . Under
L()(pI) (L()=L())we understand the class of all functions

measurable in the sense of S. Bochner such that :l[f(t)lIdt <
L() (p 1) is a Banach space with ][fll If(t)l]dt Y as its norm.

The purpose of the present note is to prove the following theorems"
Theorem 1. In an arbitrary space T let $ be a Borel family of

subsets that includes T, and a(E) be a non-negative set function which
is completely additive over . If an abstractly.valued function X(E),
defined from to a Banach space , is weakly absolutely continuous
(i. e., for each in , the numerical function X(E) is completely ad-
ditive and absolutely continuous), then X(E) is even strongly absolutely
continuous (i. e., X(E) is strongly completely additive, and for any

0 there exists a 0 such that X(E)I[ e whenever a(E) ).
Theorem . If is locally weakly compact, and if a sequence

{f(t)} (n=l, 2, ...) of elements of L() is equi-integrable, then {f(t)}
(n=l, 2, ...)contains a subsequence which converges weakly (as a
quence in L()) to an elemen f(0eL().

Theorem 3. If is locally weakly compact,, then L() (p 1) /s
also locally weakly compact.

Theorem . If . is locally weakly compact, then L() is weakly
complete.

Theorem 4 is a generalization of a result of S. Bochner-A. E.
Taylor,D who assumed that is reflexive and that and both satisfy
the condition (D). Theorem 22) is an analogue of H. Lebesgue’s theorem,3)

which is concerned with numerical-valued functions. These two theorems
will be proved by using Theorem 1, and this theorem was announced
without proof by B.J. Pettis4 under the additional assumption that T

is expressible in the form" T=, T with a(T) o, i= 1, 2,

1) S. Bochner-A. E. Taylor: Linear functionals on certain spaces of abstractly-
valued functions, Annals of Math., 39 (1938), 913-944. Theorem 5.2.

2) Theorem 2 may be considered as a precision to Theorem 4.2. (p. 923) in the
paper of S. Bochner-A. E. Taylor cited in (1).

3) H. Lebesgue: Sur les intgrales singulires, Ann. de la Fac. des Sci. de
Toulose, 1 (1909), especially p. 52.

4) B.J. Pettis: Bull. Amer. Math. Soc., (Abstracts), 44-2 (1939), 677.
5) This fact was suggested to me by K. Yosida.
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The proofs of these theorems are much simplified by using the
Vitali-Hahn-Saks’ theorem,e)

Lastly, Theorem 3, which extends the well-known theorem of F.
Riesz concerning the Banach space (L) (p :> 1) of numerical functions,
seems to be new, although in case is separable this theorem follows
directly from a result of S. Bochner-A. E. Taylor.v

2. Proof of Theorem 1.s) Since X(E} is completely additive for
each in -, for any sequence {E} (n=l, 2, ...)of disjoint elements of, , X(E) is unconditionally convergent and ] X(E)=X( En),9’

n-1 n-=l ’-1

i.e., X(E) is strongly completely additive over .
Suppose now that X(E) is not strongly absolutely continuous. Then

for some e0:> 0 there exists a sequence {E} (n= 1, 2, ...) of elements
of $ with lim a(E,)=O such that

() X(E) => 0, n=, 2,

We may assume, without the loss of generality, that the E are dis-

joint and that we have a(, E)=, a(E,) < oo. The least Borel family
n-L n=l

’ which contains all E evidently consists of the sets E of the form"

E= .E, where {n) (i=1, 2, ...) is an arbitrary finite or denumera-

ble infinite subsequence of the sequeuce {n} (n=l, 2, ...). Let } be
the least closed linear manifold which contains all X(E)for Eel’.
Then } is clearly separable. From the above inequality (1), there ex-
ists, for each n, a p in ) such that 1[ 1 and

(2) ,X(E,) o.

Now, since ) is separable, there exists a subsequence (.) (i= 1, 2, ...)
of () (n-1, 2, ...) such that (,X(E)) (i= 1, 2, ...) converges for any
E in . By a theorem of Vitali-Hahn-Saks,) (,X(E)) (i= 1, 2,...)
are equi-absolutely continuous, which is a contradiction to (2). Thus
X(E) must be strongly absolutely continuous.

3. Proof of Theorem 2. Since i is locally weakly compact, i is
also locally weakly compact.) Consequently, by a theorem of B.J.
Petis,m i and both satisfy the condition (D); i. , any function of

6) S. Saks: Addition to the note on some functionals, Trans. Amer. Math. Soc.,
35 (1933), 966-970.

The fact that the theorem of Vitali-Hahn-Saks is powerful in these problems
was suggested by reading the abstract of B. J. Pettis.

7) S. Bochner-A. E. Taylof, loc cit., Theorem 7.1 (p. 939).
8) I owe this proof to S. Kakutani.
9) B.J. Pettis: On integration in vector spaces, Trans. Amer. Math. Soc. 44

(1939), 277-304. Theorem 2.32.
10) V. Gantmakher and V. mulian" Sur les espaces linaires dont la sphere uni-

taire est faiblement compacte, C. R. URSS, 17 (1937), 91-94. Theorem 3.
11) B.J. Pettis: Differentiation in Banach space, Duke Math. Journ., 5 (1939),

254-270. Theorem 3.1.
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bounded variation with values in or has a derivative almost every-
where. Hence in our case, by a theorem of S. Bochner-A. E. Taylor,
any bounded linear functional U(f) defined on L() takes the form-

U(f) o(Of(t)dt
where (t)M()3) and Ull--es max.

Let {f(t)} (= 1, 2, ...) be an equi-integrable sequence in L(), and
put F(t)= 0f(s)ds. F(t) (=1, 2, ...) are clearly strongly absolutely

equi-continuous. We shall first prove that we can choose a subsequence
(F=()} (i--1,2, ...)of (F()} (=I, 2, ...)which converges weakly to
an element F(t) e for each t. Let {t) (.= 1, 2, ...) be a denumerable
set which is dense in [0, 1]. Since is locally weakly compact, we
can choose a subsequence {F(t)} (= 1, 2, ...) of {F(t)} (= 1, 2, ...)
such that {F(t#)} (i= 1, 2, ...) converges weakly to an element F(t#)
for =1, 2, Since F(t) (=1, 2, ...) are strongly absolutely equi-
continuous, we see that {F(t.)} (=1,2,...) converges weakly to an
element F(t)e for each t. Hence, by Vitali-Hahn.Saks’ theorem, F(t)
is absolutely continuous for each e . Hence, by a theorem of B.J.
Pettis,) F(t) has a derivative f(t)eL() almost ever_vwhere such that

Thus we have proved that there exists an f(t)e L() such that

lim f()da= ff(s)d
i-oo 0 0

for each and for each . Consequently, by the same argument
as was used by S. Bochner-A. E. Taylor,1) we have

lim (t)f (t)dt= (t)f(t)

for each () M(). Thus the sequence (f()} (i- !, 2, ...) converges
weakly to f(OL() as a sequence in L(), and hereby the f of
Theorem 2 is completed.

4. P’oof of Theorem 3. By the same argument as in the proof
of Theorem 2, in case is locally weakly compact, any bounded linear
functional U(f) defined on L()(p> 1) takes the form

U(f)= (t)f(t)dt

12) S. Bochner-A. E. Taylor, loc. tit., Theorem 3.3. (p. 921).
13) The class of all essentially bounded functions (t)defined on [0, 1] with values

in , I1=ess. max. (t) I1.
0_ t_l

14) S. Bochner-A. E. Taylor, loc. cit., p. 923.
15) S. Bochner-A. E. Taylor, loc. cir., Theorem 3.2. (p. 920).
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where (0 e L(), l___l__l___ 1 and UII- ()Iid$ -.
p q

Let {f(t)} (n=l, 2, ...) be a sequence in L(p :> 1) such that

II/11 lib(t) lld - M (M" constant), n= 1, 2, ...,

and put F(t)= ds. Then we can easily prove that we have

k
(3) 1. u. b. . !1F(t,)-F.(t_,)

where 1. u.b. means the least upper bound for all partitions 0=
t < t, <-.. < t 1 of the interval [0, 1]. Consequently, exactly as in
the proof of Theorem 2, we can choose a subsequence {F,(t)} (i= 1,
2, ...) of {F(t)} (n=1,2, ...) such that lira F,($)=F(t) for each

e and for each t, where F(t) is a function with values in which
clearly belongs to V()’ by (3). Since is locally weakly compact
by assumption, by a theorem of B.J. Pettis,m F(t)has a derivative

almost everywhere such that F(t)=|[f(s)ds for each t.

Moreover, it will be easily seen that we have f(t)e L().
Thus we have proved that there exist a subsequence {f,(t)} (i=

1, 2, ...) of {f(t)} (n=l, 2, ...) and an f(t)eL() such that

lira f, (e)d f()
i->oo

for each e and for each t. Consequently we have.7’

lira (t)f,, (t)dt= (t)f(t)dt

for each f(t)e Lq(,), and hereby the proof of Theorem 3 is completed.. Proof of Theorem 1. In the proof of Theorem 2 we have
observed that, in case is locally weakly compact, any bounded linear
functional U(f) defined on L() takes the form"

U(f) I:(t)f() dt
where (t)e M() and Ull=ess. max.

16) The class of all functions f(t) defined on [0, 1] to a Banach space , such that
the sums

k, llf(t)-f(t-1)II/I :,-t-I -I

are bounded for all partitions 0--t0 tl tk--1. The least upper bound of all
such sums is denoted by V’(f).

17) S. Boehner-A. E. Taylor, foe. eit., Theorem 4.1. (p. 921).
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Let (f(t,)} (n=l, 2, ...) be a weakly convergent sequence in L().
Then

lim U(f) lim (t)f(t) dt

exists for each (t) e M(). As a scial c, lim f(t)dt exists

for each e and for each measurable t E. t usput F,(E)=

f,(t)dt. Then, by complene , exis a limitthe weak of there

funcon F(E) with valu in such that lim F(E)=F(E) for each
e and for each murable t E. By e theorem of Vitali-Hahn-

Saks, the numecal functions F(E), n=l, 2, ..., are then ui-ab-
lutely continuous for h e . Hen F(E) is complexly additive
and absoluly continuo for ch e. nuently, by Threm 1,
F(E) is strongly complexly ditive d strongly absoluly continu-
ous. Since is locally wkly compact by umption, by the theorem
of B.J. Pettis,n F(E) has a devative f(t)eL() almost everywhere

such that F(E)=. f($)dt for each meurable t E.
Thus we have proved that there exis an f(t)eL() such that

lim :f,(t)dt=lim f,(t)dt= f(Odt

for each e and for each msumble t E. Conquently, we have

.lim oe(t)f(t)dt= e(t)At) dt

for each (t)eM(). Thus the quence {f,(t)} (n=l, 2, ...) converg
weakly (as a quence in L()) f(t)e (), was to prove.


