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The theory of almost periodic functions (a. p.f.) in a group, due
originally to J. yon Neumann,D has been simplified by W. Maak.2 The
last author starts from a modified definition of a. p. f., and obtains a
shorter proof of the existence of the mean value. His proof necessitates,
however, a certain combinatorial lemma, which is indeed very interest-
ing in itself, but somewhat alien to the theory of a. p.f. We propose
here another way of founding this theory, which seems to us also
simple and natural.

1. We begin with some general remarks on metric spaces. An
abstract space 9 with "points" z, y, z, is called a metric space, if
there is defined a "metric," i.e. a real-valued function p(x, y) for x,
y eg satisfying the following conditions: 1) (z, y)=> 0, (z, z)=0, 2)
p(x, y)--p(y, ), 3) p(z, y)+p(y, z) (z, z). The separation axiom:
"p(z, y)= 0 implies x=y" will not be postulated here.3 Such spaces are
topological spaces, i. e, they satisfy the first three Hausdorff axioms; it
is therefore clear what are to be understood under the terms such as"
open or closed sets in 9, the continuity of a mapping of 9 in another
such space 9t’ etc. One can, moreover, speak of the equi-continuity of
a family of mappings and also the uniform continuity of a mapping.4)

Theorems such as the following are evidently true thereby: If f maps
9 continuously in 9t’, and f maps 9’ in 9" in the same way, then
fl=flf maps 9 also continuously in ". If, moreover, f and f are
uniformly continuous, so is also f". (Transitivity of continuity and
uniform continuity.)

We can speak also of the diameter of a set 92 in 9, c-covering,
e-net, the boundedness and the totally-boundedness of I. If we have
to do with several metrics of a fixed space 9, we will say also that a
metric is bounded or totally bounded (. b.), when the entire space 9
has this property with respect to p. For two metrics p, p of 9 we
will write p, if p(z, y) (z, y) for all z, y e 9. The following
lemmas are all fairly obvious"

1) $. von Neumann" Almost periodic functions in a group I. Trans. Am. math.
Soc. Vol. 36 (1934).

2) W. Maak- Eine neue Definition der fast periodischen Funktionen. Abh. math.
Sem. d. Hans. Universit. 11. Bd. (1936).

3) Such p(x, y) is often called "quasi-metric" in opposition to the usual "metric"
tisfying the separation axiom. We prefer to call p a "metric" in the general case,
and "separated metric" when it satisfies the separation axiom.

4) In this sense 9 is a "uniform space "" cf. Andr Weil; Espaces structure
uniforme. Act. sc. et ind. 551 (1937). A. Weil postulates, however, the separation
axiom.
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Lemma 1. Totally bounded me,tics are bounded. If p p, and
Pl is t.b., then is also t.b. Let 9’ be another space and ’, metrics
of ’. Suppose pl, fl’ fl’. Iff is a uniformly continuous mapping
of . in ’, when these spaces are metrized with p, ’ rasp. then f is
also uniformly continuous, when they are metrized with p,

Lemma . If fl, ..., fl are t. b. metrics of , so is also p+...
There exist namely finite e-coverings of corresponding to

i=l, ...,r. The superposed covering of these coverings constitutes
clearly an re-covering of for the metric p/ .--/

Lemma 3. The uniform limit of t. b. metrics is also a t. b. metric;
i.e. if t. b. metrics p(x, y) tend to p(x, y) uniformly in x, y, then is
also a t. b. metric.

We will add here further the following remark: Let be a set
of elements a, b, Suppose there exist a mapping f of in a space

with a metric ft. Then a(a, b)=p(f(a), f(b)) is clearly a metric for
: the "transferred metric from into by means of f." If p is
hereby t.b., so is also a (as a metric of ).

2. Now let ( be a group, and p a metric of (. p is called left-
invariant (l-inv.) if p(ax, ay)-p(x, y) for all a e (; right-invariant (r-
inv.) if p(xb, yb)=p(x, y) for all b e(; invariant (inv.) if it is both r-
inv. and /-inv. From any metric p we can form a /-inv. metric p, a
r-inv, f and an inv. =p=f in putting"

p(x, y)=l. u. b. p(ax, ay) p(x, y)-1. u. b. fl(xb, yb)

fl(x, y)= 1. u. b. fl(axb, ayb)

where a, b run over the elements in (. This process to obtain p,
from will be called l-, r-, and i-operation resp.
Lemma $. If one of the metrics , f and is t.b., so are also

the others.
Proof. Asp and fp, p,f are t.b. in the same time

with according to the lemma 1. Now let p be t.b. and a, ..., a
an e-net for f. Put f(ax, ay)=(, y). , i= 1, ..., n are t.b. by
the last remark in 1. Let 1I be the superposed covering of e-cover-
ings for p, i-1, ..., n. We will see that 1I is a 3c-covering for
and recognize thus p as t.b. Indeed, let a be any element of ( and
x, y two points belonging to an element of 1I. Then we have for a
certain a f(ax, ay) f(ax, ax)-f(ax, ay)/ fl(ay, ay) 2f(a, a)
p(x, y) 3e, therefore f(x, y) 3e. The resting part is to show in
the same way.

3. Let f be a complex-valued function of the elements of a group
(. The usual metric a-ill of the field of the complex numbers a,
fl, ..., transferred into by means of f determines a metric f(x)-f(y)l
of (. By 1-, r-, and /-operation applied on this metric, we obtain the
metricsD-

1) It would be more consequent to put pf(x, y)-- lf(x)--f(y) I, and write p for
#] in the text. But as we have to do in the following almost exclusively with this

# we have preferred the simpler notation.
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p(x, y)=l. t b. f(ax)-f(ay) p(, y)=l. t b. f(xb)-f(yb)

pf(x, y)--1, u. b. f(axb)-f(ayb)

a and b running over the elements in (.

Definition I. We call f an almost periodic function (a. p.f.), if
p is t. b.

By the lemma 4, we can say also" if or is . b. We can give
to this definition also the following forms"

Definition I’. f is a.p., if f is uniformly continuous with respect
to an inv. t.b. metric of (.

Definition I". f is a.p., if the family of functions f(axb) (with
a, b as parameters) is uniformly (in
a . b. metric of (.

The equivalence proof of these definitions is almost immediate" f
is namely clearly uniformly continuous with respect to the inv. metric. Thus I- I’. If f is uniformly continuous with respect to an inv.
metric then the family of f(axb) is obviously uniformly equi-continu-
ous with respect to . Thus I’-*I". Finally I"--I, because, if
(z, y) <: () implies If(azy)-f(ayb)l e, a ()-net for p constitutes
an e-net for pf.

From these definitions and the preceding lemmas follow easily the
known theorems"

Theorem L Every a. p.f. is bounded. If f, ...,f are a.p.f., and
(, ..., ) is a complex-valued function of complex variables , ..., ,
which is uniformly continuous for the bounded values of these variables,

f= (f,.. ,f) is also a.p. The uniform limit of a.p.f, is also

We will indicate here only the proof of the second part of the
theorem. Put for simplicity p=pf, i=1, ..., r. p being inv. and t.b.,
p=p/----t-p is also inv. and t.b. On the other hand, f is also uni-
formly continuous with respect to p, as p p, and so f is also unif.
continuous with respect to p (transitivity of unif. continuity.) There-
fore f is a.p. according to the definition I’.

Theorem II. Let x--, D(x)= (D(x)) (i, k 1,..., d) be a bounded

representation of (. The function D(x) is a.p.
Proof. The bounded part of being t.b., the transferred metric

D,(x) D,(y) is t.b., so also the metric ] D,(x) D(y) I= p(x, y).

Now we have

Bp(x, y), where B is an upper bound of D(x) I, x e (, i, k 1,..., d.
The family of D(azb) is thus uniformly equi-continuous with respect
to the t.b. metric

4. In this paragraph we will consider in general the complex-
valued function of the elements of ( and the "mean" value" of such
functions. We begin with the

Definition II. A constant M is card an .approximative mean
value (-appr. m.v.) of a function f in if there eTist , ..., e (,
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so that 1 f(ax b) M holds for all a, b e (. If M is an e-
n -1

appr. m. v. for every ( 0), then M is called a mean value (m. v.) of f.D
Lemma 5. Let f, g be two functions in ( and M, M’ be resp. an

-appr. m.v. of f and an e’-appr, m.v. of g. Then there exist certain
z, ..., z so that the inequalities

f(azb) M < ,g(azb) M’ < ’(1) -k-1 --k=X
are satisfied simultaneously for all a, b e (.

Proof (by a well-known reasoning). There exist by hypothesis
x, ..., x, and y, ..., y so that

hold for all a, be (. Put in the first inequalities yb for b and take
the mean; in the second ax for a and take the same. We see thus
z xy, k= 1, ..., mn (N=mn) fullfil (1).

Corollary. If M, M’ are resp. an -appr. m.v. and an e’-appr.
m.v. of f, then holds IM-M’I<= e+e’.

This Corollary affirms the uniqueness of the m. v., if any. Further-
more, the existence proof of the m.v. is reduced to that of the e-appr.
m.v. for every .. The existence of the m.v. of a.p.f. Let us consider a fixed
a. p. f. f in (. We will write p for p and employ the following nota-
tions: We represent by X a set of elements x, ...,x. of (, and

1denote by p(X) the mean" --f(x). The "translated mean"
-1

lf(axb) will be denoted by (aXb) and the "oscillation by transla-
4-1

tion" 1. u. b. I/(aXb)-/(a’Xb’) I, where a, b, a’, b’ run over the ele-
ments in (, by Osc X. Our concern is to show that Osc X can be
made e by taking X appropriately. We will give now a procedure
to diminish this Osc. in changing X into an X’ if necessary, and prove
that our aim is surely attained in repeating this a number of times.

Let u, ...,u be an e-net for . Denote by X’ the set of mn
elements uu (i= 1, ..., n; j, k= 1, ..., m). We will show that

(2) Osc X < 2 + m-10sc X---m- m"
To the purpose, note that 1) z(X’)= 1 J f(uvcua)= 1

(uXu) and that 2) p(a, a’) <2 e, p(b, b’) < e implies 1[4aXb)-

(a’Xb’) <: 2 for any X. Indeed, I(aXb)--i(a’Xb’) ]= 1__,(f(axb)-

=< + )-f(.

If(axb)-f(a’xb) (a, a’), ]f(a’xb)-f(a’xb’) (b, b’).

1) More adequately, it would be called an "invariant mean value."



40 S. IYANAGt and K. KODAIRA. [Vol. 16,

(,kp(auXu,b)-,p(a’uXu,b’)) byNow (aX’b)-(a’X’b’) - .
1), and as u, ..., u is an e-net, them exist cein jo, ko, that
(au, a’u,) e, p(ub, uob’) e. The ght-hand side of the lt equa-

l (p(aUlXu,b)_(a,uoXukob,)) + 1 ). In

evaluating this in king account of 2), we obin (2).
t X) the set obtain from X afar orating times the

process XX’. We have then by (2)

Osc X 2+
m2

Either Osc X is already 2e, or el Osc X comes 3e, say, for
a sufficiently large . In any way, we get O X 3e for a cerin
X; p() is then clly a 3e-appr. m.v. of f. In re of what we
have n in the lt paragraph, we ve ish herewith the

Theorem IIl. Every a.p.f. a uniq . v.
The m.v. of f is deno by Mf. T known prorti of this

functional are to show in the usual way; in particular, the lineity"
M(af+g)=aMf+Mg is an immia conuence of the lemma 5.D

1) See J.v. Neumann, I. c.


