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31. On the Theory of Almost Periodic
Functions in a Group.

By Shokichi IYANAGA and Kunihiko KODAIRA.
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. TAKAGI, M.IA., April 12, 1940.)

The theory of almost periodic functions (a.p.f.) in a group, due
originally to J. von Neumann,” has been simplified by W. Maak.? The
last author starts from a modified definition of a.p.f., and obtains a
shorter proof of the existence of the mean value. His proof necessitates,
however, a certain combinatorial lemma, which is indeed very interest-
ing in itself, but somewhat alien to the theory of a.p.f. We propose
here another way of founding this theory, which seems to us also
simple and natural.

1. We begin with some general remarks on metric spaces. An
abstract space R with “points” x,9,2, ... is called a metric space, if
there is defined a “metric,” i e. a real-valued function p(z, y) for =,
yeR satisfying the following conditions: 1) p(x, ¥) =0, plx, 2)=0, 2)
plx, y)=p(y, 2), 3) plx, y)+p(y, 2) =p(x,2). The separation axiom:
“ p(e, y)=0 implies =y ” will not be postulated here.® Such spaces are
topological spaces, i.e, they satisfy the first three Hausdorff axioms; it
is therefore clear what are to be understood under the terms such as:
open or closed sets in R, the continuity of a mapping of R in another
such space R” etc. One can, moreover, speak of the equi-continuity of
a family of mappings and also the uniform continuity of a mapping.?
Theorems such as the following are evidently true thereby: If f maps
R continuously in R’, and f maps R’ in R” in the same way, then
f’=ff maps R also continuously in R”. If, moreover, f and f are
uniformly continuous, so is also f’. (Transitivity of continuity and
uniform continuity.)

We can speak also of the diameter of a set A in R, e-covering,
e-net, the boundedness and the totally-boundedness of . If we have
to do with several metrics of a fixed space R, we will say also that a
metric p 18 bounded or totally bounded (t.b.), when the entire space R
has this property with respect to p. For two metrics p, o, of R we
will write p<p, if plx, y) < pilx, y) for all 2, yeR. The following
lemmas are all fairly obvious:

1) J. von Neumann: Almost periodic functions in a group I. Trans. Am. math.
Soc. Vol. 36 (1934).

2) W. Maak: Eine neue Definition der fast periodischen Funktionen. Abh. math.
Sem. d. Hans. Universitit. 11. Bd. (1936).

8) Such o(z, y) is often called “ quasi-metric” in opposition to the usual “ metric ”
satisfying the separation axiom. We prefer to call p a “metric” in the general case,
and “separated metric” when it satisfies the separation axiom.

4) In this sense R is a “uniform space”; cf. André Weil; Espaces a structure
uniforme. Act. sc. et ind. 551 (1937). A. Weil postulates, however, the separation
axiom.
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Lemma 1. Totally bounded metrics are bounded. If p< p, and
py 18 L. b., then p 8 also t.b. Let R’ be another space and ¢, py metrics
of K. Suppose p < py, ;1 Z 0. If f i a uniformly continuous mapping
of R in R’, when these spaces are metrized with p, p' resp. then f is
also uniformly continuous, when they are metrized with p,, pi.

Lemma 2. If py, ..., p, are t.b. metrics of R, so is also py+---+p,

There exist namely finite e-coverings of R corresponding to g,
=1, ...,7. The superposed covering of these coverings -constitutes
clearly an re-covering of R for the metric o+ ---+p,.

Lemma 8. The uniform limit of t. b. metrics is also a t. b. metric;
. e. if t.b. metrics p,(x, y) tend to p(x, y) uniformly in x, y, then p is
also a t.b. metric.

We will add here further the following remark: Let & be a set
of elements a, b, .... Suppose there exist a mapping f of & in a space

R with a metric p. Then o(a, b)=p(f(a), f(b)) is clearly a metric for

S: the “transferred metric from R into & by means of . If p is
hereby t.b., so is also ¢ (as a metric of &).

2. Now let @ be a group, and p a metric of &. p is called left-
invariant (I-inw.) if plax, ay)=p(x, y) for all ae® ; right-invariant (r-
inv.) if p(xb, yb)=p(x, y) for all be® ; invariant (inv.) if it is both -
inv. and l-inv. From any metric p we can form a l-inv. metric ¢, a
r-inv. " and an inv. p*=p"=p"" in putting:

P, y)=L u. b. plax, ay), p'(x, y)=1u.b. p(xd, yb),
Pz, y)=1. u. b. plaxb, ayb)

where a, b run over the elements in ®. This process to obtain g, p",
p* from p will be called I, -, and i-operation resp.

Lemma 4. If one of the metrics p', p” and p* s t. b., so are also
the others.

Proof. As p'<p' and p"< g @), p" are t.b. in the same time
with p* according to the lemma 1. Now let p” be t.b. and a, ---, @»
an e-net for p”. Put p"(aw, ay)=pi(x, y). p5, i=1,...,m are t.b. by
the last remark in §1. Let U be the superposed covering of e-cover-
ings for pf, 1=1,...,n. We will see that Il is a 3c-covering for p'=p"
and recognize thus p* as t.b. Indeed, let ¢ be any element of & and
%, ¥y two points belonging to an element of 1I. Then we have for a
certain a; p"(ax, ay) < p"(ax, axw)+p (awx, ay)+r(ay, ay)=20"(a, a;)+
o5z, y) < 8e, therefore p™(x, y) < 3e. The resting part is to show in
the same way.

3. Let f be a complex-valued function of the elements of a group
®. The usual metric |a—f| of the field & of the complex numbers a,
B, .-+, transferred into & by means of f determines a metric |f(x)—f(¥) |
of @. By l-, r-, and i-operation applied on this metric, we obtain the
metricsV:

1) It would be more consequent to put pr(x, y¥)=|f(®)—f(¥)|, and write pf- for
o7 in the text. But as we have to do in the following almost exclusively with this
oy we have preferred the simpler notation.
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PAx, y)=L wb. |flax)—flay)|, pFFx, y)=Lwb. |flxb)—f(yd)|,
pr(x, y)=1 u. b. | flaxb)—flayd) |,

a and b running over the elements in @.

Definition I. We call f an almost periodic function (a.p.f.), if
Pr %8 t.b.

By the lemma 4, we can say also: if ¢t or p7 is t.b. We can give
to this definition also the following forms:

Definition I'.  f 18 a.p., if f is uniformly continuous with respect
to an inv. t.b. metric of ®.

Definition I'. f s a.p., if the family of functions f(axb) (with
a, b as parameters) is uniformly (in x) equi-continuous with respect to
a t.b. metric of .

The equivalence proof of these definitions is almost immediate: f
is namely clearly uniformly continuous with respect to the inv. metric
pr. Thus I—-T. If fis uniformly continuous with respect to an inv.
metric p then the family of f(axb) is obviously uniformly equi-continu-
ous with respect to p. Thus I'’—>1”. Finally I”—1I, because, if
plz, y) < d(e) implies |f(axy) —f(ayd) | <e, a d(e)-net for p constitutes
an e-net for pr

From these definitions and the preceding lemmas follow easily the
known theorems :

Theorem I. Every a.p.f. is bounded. If fi, ---,fr are a.p.f., a,nd
p(&, oo, &) is a complex-valued function of complex variables &, ...,&,,
which w uniformly continuous for the bounded values of these 'vambles,
then f=9(fy, -- ,f.) s also a.p. The uniform limit of a.p.f. is also
a. p.

We will indicate here only the proof of the second part of the
theorem. Put for simplicity p;=p¢y, ¢=1,...,7. p; being inv. and t. b,,
p=p+---+p, is also inv. and t.b. On the other hand, f; is also uni-
formly continuous with respect to p, as p; < p, and so f is also unif.
continuous with respect to p (transitivity of unif. continuity.) There-
fore f is a. p. according to the definition I

Theorem II. Let o— D(z)=(Dul#)) G,k=1,...,d) be a bounded
representation of ®. The function D;(x) is a. p.

Proof. The bounded part of & being t.b., the transferred metric
| D,x(2) —D,y)| is t.b., so also the metric 35| D,(z) —~ Drl¥) |=plx, y).

Now we have | Dy(axb)—D;layd) |=| ZDw(a) (Do) — D)) D) |

< B?%(x, y), where B is an upper bound of | D) |, x€®, 1, k=1, ...,d.
The family of D;(axb) is thus uniformly equi-continuous with respect
to the t.b. metric p.

4. In this paragraph we will consider in general the complex-
valued function of the elements of & and the “ mean value” of such
functions. We begin with the

Definition II. A constant M 1is called an e-approximative mean
value (e-appr. m.v.) of a function f in ® if there ewist xy, ..., 2, €@,
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80 that ’ 1 zf(ax,,b)—M}Q holds for all a,be®. If M is an e

appr. m.v. for every (= 0), then M 1s called a mean value (m.v.) of f.

Lemma 5. Let f, g be two functions in & and M, M’ be resp. an
e-appr. m.v. of f and an &-appr. m.v. of g. Then there exist certain
21, ---, 2N S0 that the imequalities

1 L S flazib)— M S w
W | -M<e, |5 S| <o

are satisfied simultaneously for all a, be®.
Proof (by a well-known reasoning). There exist by hypothesis
xlr R ] xn and yl’ cty y'm S0 that

1S flazd)— M| <e, liﬁg(ay,b)—M'
n i=1 m i=1

hold for all @, be®. Put in the first inequalities ;b for b and take
the mean ; in the second ax; for a and take the same. We see thus
Z=xy;, k=1, ...,mn (N=mn) fullfil (1).

Corollary. If M, M’ are resp. an e-appr. m.v. and an ¢ -appr.
m. v. of f, then holds | M—M' | <<e+¢.

This Corollary affirms the uniqueness of the m. v., if any. Further-
more, the existence proof of the m.v. is reduced to that of the e-appr.
m. v. for every e.

5. The existence of the m.v. of a.p.f. Let us consider a fixed
a.p.f. fin . We will write p for pr and employ the following nota-
tions: We represent by X a set of elements zy,-...,x, of &, and

denote by #(X) the mean: lif(:zoi). The “translated mean”

<

XZf(ax,b) will be denoted by #(aXb) and the “ oscillation by transla-

tion”: L u b. | #(aXb)—p(a’Xb') |, where a, b, a’, b’ run over the ele-
ments in @, by Ose X. Our concern is to show that Osc X can be
made <e by taking X appropriately. We will give now a procedure
to diminish this Osc. in changing X into an X’ if necessary, and prove
that our aim is surely attained in repeating this a number of times.
Let uy, ---, U, be an e-net for p. Denote by X’ the set of m®n
elements uxu;, (1=1,. ,n'j,k—l .,m). We will show that

@ Ose X' <26 4 M= IOscX
'm m

To the purpose, note that 1°) #(X’)— Z f(u,ac,u,,)—— pY
£w;Xu,) and that 2°) p(a, a’)<<e, p(b, b')<e 1mp11es I#(aXb)—
(@’ Xb')| <2 for any X. Indeed, | #(aXb)—(a/X¥)| =)—:; > (flaxb) -
fla'zd))| < % >3 (Alax:d)—f(a'z:b)) 1 + {%2 (Fla'zb)—f(@/zd)) !
| fax:d) —fl@'z:d) | < pla, @), | fla'zd)—fla'zd)| < p(b, b').

1) More adequately, it would be called an “1invariant mean value.”

and
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Now #aX'b)—uaX'b)=—L (3 pan;Xub) 3] Ma'uXush)) by

%
1°), and as %, ..., %, iS an e-net, there exist certain j,, ko, S0 that
plauy, a'u;) <e, plud, uzd) <e. The right-hand side of the last equa-

tion= —1; (p(aulXulb) —;l(a,’u,-oXukob’» + - 2 ) In
m

1
m2 G RELD Gk RGo, ko)
evaluating this in taking account of 2°), we obtain (2).

Let X be the set obtained from X after operating » times the
process X— X’. We have then by (2)

Ose X < 2e+( ™21V (Ose X—20).
m

Either Osc X is already < 2¢, or else Osec X becomes << 3¢, say, for
a sufficiently large ». In any way, we get Osc X;<<3e for a certain
Xi; (X)) is then clearly a 3ec-appr. m.v. of f. In virtue of what we
have seen in the last paragraph, we have established herewith the

Theorem III. Ewvery a.p.f. has a unique m. v.

The m. v. of f is denoted by Mf. The known properties of this
functional are to show in the usual way; in particular, the linearity :
M(af+Bg)=aMf+BMg is an immediate consequence of the lemma 5.

1) See J.v. Neumann, 1. c.




