60. On One-parameter Groups of Operators.

By Masanori FUKAMIYA.

Mathematical Institute, Osaka Imperial University. (Comm. by M. FUJIWARA, M.I.A., July 12, 1940.)

1. Theorem. Let E be a separable Banach space, and let $\{U_t\}$, $(-\infty < t < \infty)$ be a one-parameter group of operators on E to E such that: (1) $|| U_t || = 1$, (2) $U_t U_s = U_{t+s}$ for any t, s, (3) $f(U_t x)$ is measurable in t for every $x \in E$ and for every $f \in \overline{E}$. Then there exist the operators R_z (resolvents) and A, which satisfy the following properties:

- (1) R_z is defined for every complex number z, with $\mathcal{I}_m(z) \neq 0$,
- (2) R_z is a bounded, linear operator on E to E, and $||R_z|| \leq \frac{1}{|\mathcal{F}_m(z)|}$,
- (3) $(z-z') R_z R_{z'} = R_z R_{z'}$, for every z, z' with $\mathscr{I}_m(z) \neq 0$, $\mathscr{I}_m(z') \neq 0$,
- (4) $R_z x = 0$ implies x = 0, for any z;
- (5) A is a closed linear oparator on E to E, whose domain D(A) is dense in E, and

$$(A-zI)\cdot R_z=I,$$
 $R_z(A-zI)=I$ (in $D(A)$)

(6) For any
$$x \in D(A)$$
, $\lim_{t\to 0} \frac{U_t-1}{t} \cdot x = A \cdot x$.

We will prove these results, following the method of M. H. Stone.¹⁾ Recently similar facts were obtained by I. Gelfand.²⁾ But the method is completely different from ours.

2. Proof: Let $\psi(\tau; z)$ be defined by

$$\begin{split} \psi(\tau;z) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\lambda - z} e^{-i\lambda\tau} d\lambda \qquad \left(\mathscr{I}_m(z) \neq 0\right) \\ &= \begin{cases} 0 & \tau > 0 \\ i e^{-iz\tau} & \tau < 0 \end{cases} \left(\mathscr{I}_m(z) > 0\right), \quad = \begin{cases} -i e^{-iz\tau} & \tau > 0 \\ 0 & \tau < 0 \end{cases} \left(\mathscr{I}_m(z) < 0\right). \end{split}$$

Then

(i)
$$\frac{1}{\lambda - z} = \int_{-\infty}^{\infty} \psi(\tau; z) e^{i\lambda\tau} d\tau ,$$

(ii)
$$(z - z') \int_{-\infty}^{\infty} \psi(\tau; z) \psi(\sigma - \tau; z') d\tau = \psi(\sigma; z) - \psi(\sigma; z') ,$$

(iii)
$$\overline{\psi(\tau; z)} = \psi(-\tau; \overline{z}).$$

We define F(f) by

$$F(f) = \int_{-\infty}^{\infty} \psi(\tau; z) f(U_{\tau} x) d\tau, \quad f \in \overline{E}, \quad x \in E \text{ and } \mathscr{G}_m(z) \neq 0.$$

1) M. H. Stone, Linear Transformations in Hilbert Space, 1932, Chap. IV, V; Annals of Math., 33 (1932), pp. 643-648.

J. von Neumann, Annals of Math., 33 (1932), pp. 567–573.

²⁾ Gelfand, C. R. U. R. S. S., 25 (1939).

As a functional on \overline{E} , F(f) is weakly continuous for every z $(\mathscr{I}_m(z) \neq 0)$. For, if $f_n \to f$ weakly in the sense that $f_n(x) \to f(x)$ for every $x \in E$, then $||f_n|| \leq M$ for some M (independent of n), and the functions of τ : $f_n(U_\tau x)$ are uniformly bounded. Consequently $\psi(\tau; z) =$ $f_n(U_\tau x)$ are uniformly integrable in $(-\infty, \infty)$. As $f_n(U_\tau x) \to f(U_\tau x)$ for all τ , it follows

$$F(f_n) = \int_{-\infty}^{\infty} \psi(\tau; z) f_n(U_r x) d\tau \to F(f) = \int_{-\infty}^{\infty} \psi(\tau; z) f(U_r x) d\tau.$$

Therefore, by a theorem of Banach, there exists an $x_z \in E$ such that $F(f) = f(x_z)$, for any $f \in \overline{E}$. We define R_z by $x_z = R_z x$.

Evidently R_z is defined and additive over the whole E, and

and

 R_z is linear. For z, z' with $\mathcal{I}_m(z) \neq 0$, $\mathcal{I}_m(z') \neq 0$,

$$f(R_z R_{z'} x) = \int_{-\infty}^{\infty} \psi(t; z') f(U_t R_z x) dt$$
$$= \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} \psi(s; z) \psi(t; z') f(U_{t+s} x) ds$$
$$= \int_{-\infty}^{\infty} f(U_t x) dt \int_{-\infty}^{\infty} \psi(s; z) \psi(t-s; z') ds,$$

and by (ii), 2,

$$(z-z')f(R_zR_{z'}x) = f(R_zx) - f(R_{z'}x)$$
.

If $R_{z_1}=0$, for certain z_1 with $\mathscr{I}_m(z_1) \neq 0$, then by virtue of (2), $R_z x=0$ for all $z(\mathscr{I}_m(z) \neq 0)$, and

$$0=f(R_z x)-f(R_{\bar{z}} x)=\int_{-\infty}^{\infty}f(U_t x)e^{-\eta|t|}e^{-i\xi t}dt, \quad z=\xi+i\eta, \quad \eta\neq 0.$$

As $f(U_t x)$ is continuous in t,

 $f(U_tx)=0$, for all t; in particular, $f(U_0x)=f(x)=0$,

and, as this holds for all $f \in \vec{E}$, we must have x=0.

3. Proof (continued). The operator A.

i) Definition. Let z_0 be a complex number, with $\mathscr{I}_m(z_0) \neq 0$, and let A take $y = R_{z_0}x$ into $x + z_0R_{z_0} \cdot x$, where x is any element of E:

$$y=R_{z_0}x$$
, $Ay=x+z_0R_{z_0}x$.

Then the domain D(A) of A is everywhere dense in E. For, if this is not the case, then there exists an $f \in \overline{E}$ such that $f \neq 0$ and f(x) = 0for any $x \in D(A)$. Thus we have $f(R_{z_0}x) = 0$ for all $x \in E$, and consequently, for $\mathscr{I}_m(z_0) > 0$, and for any $x \in E$, M. FUKAMIYA.

[Vol. 16,

$$0 = f(R_{z_0}U_tx) = i \int_{-\infty}^{0} e^{iz_0\tau} f(U_{\tau}U_tx) d\tau = i e^{-iz_0t} \int_{-\infty}^{t} e^{iz_0s} f(U_sx) ds,$$

for every t, and we have, for all t, $f(U_tx)=0$.

As x is any element of E, we have f=0.

ii)
$$R_z(A-zI)y = (A-zI) R_z y = y$$
, $(y=R_{z_0}x)$.

In fact, for $y = R_{z_0}x$,

$$R_z(A-zI) \ y = R_z(x+z_0R_{z_0}x-zR_{z_0}x)$$

and

$$(A-zI) \cdot R_z y = A \left(R_{z_0}(R_z x) \right) - (zR_z R_{z_0} x)$$
$$= R_z x + z_0 R_{z_0} R_z x - z \cdot R_z R_{z_0} x.$$

Consequently,

$$R_{z}(A-zI) \cdot y = (A-zI) \cdot R_{z}y = R_{z}x + (z_{0}-z) R_{z}R_{z_{0}}x$$
$$= R_{z}x + (R_{z_{0}}x - R_{z}x) = R_{z_{0}}x = y.$$

iii) A is additive (evident).

iv) A is closed. Let $y_n = R_{z_0}x_n \rightarrow y$, $Ay_n = x_n + z_0R_{z_0}x_n \rightarrow \overline{y}$. Then $x_n = Ay_n - z_0y_n \rightarrow \overline{y} - z_0y$ (=x), and $Ay_n = x_n + z_0R_{z_0}x_n \rightarrow x + z_0R_{z_0}x$. Consequently, $A \cdot R_{z_0}x = x + z_0R_{z_0}x$; this proves the closedness.

v) The domain of A is independent of each choice of z_0 : For, if $z_0 \to A$, $z'_0 \to A'$ (\to is the sense of the definition), then, at first $D(A') \subset D(A)$. In fact, for any $y' = R_{z_0}x$, take $y = R_{z_0}x \in D(A)$ Then, $y - y'R_{z_0}x - R_{z_0}x = (z - z'_0) R_{z_0}R_{z_0}x$. As $y, R_{z_0}y' \in D(A)$, and D(A) is linear, $y' = y - (z_0 - z'_0)R_{z_0}y' \in D(A)$. By symmetry, we have D(A') = D(A).

On the other hand, we have

$$R_z(A-zI)=I$$
, $R_z(A'-zI)=I$ (in $D(A)\equiv D(A')$)

 $R_z(A-A')=0$, therefore $A\equiv A'$ (cf. (4)).

and

vi)
$$\lim_{t\to 0} \frac{U_t - I}{t} y = A \cdot y, \text{ for } y \in D(A).$$

Let

$$y = R_{z_0} \cdot x$$
, and $\mathscr{I}_m(z_0) > 0$, say.

$$\begin{split} f\Big(\frac{U_t - I}{t} R_{z_0} \cdot x\Big) &= \int_{-\infty}^{\infty} f(U_\tau x) \frac{\psi(\tau - t; z_0) - \psi(\tau; z_0)}{t} d\tau \\ &= \int_{-\infty}^{0} + \int_{0}^{\varepsilon} + \int_{\varepsilon}^{\infty}, \\ \int_{0}^{\varepsilon} f(U_\tau x) \frac{\psi(\tau - t; z_0) - \psi(\tau; z_0)}{t} d\tau \\ &= \int_{0}^{\varepsilon} f(U_\tau x) \frac{\psi(\tau - t; z_0)}{t} d\tau \\ &= \frac{1}{t} \int_{-\varepsilon}^{0} (U_{t+\sigma} x) \psi(\sigma; z_0) d\sigma; \end{split}$$

264

On One-parameter Groups of Operators.

$$\lim_{t\to 0} \frac{1}{t} \int_{-l}^{0} f(U_{t+\sigma}x) \psi(\sigma; z_0) d\sigma$$
$$= \lim_{t\to 0} \frac{1}{t} \int_{-t}^{0} f(U_{\sigma}x) \psi(\sigma; z_0) d\sigma$$
$$= f(U_0x) \cdot \psi(0; z_0) = f(x) .$$

We have

$$\lim_{t\to 0} f\left(\frac{U_t-I}{t}R_{z_0}\cdot x\right) = f(x) + z_0 f(R_{z_0}x) = f(Ay),$$

by definition.

265