60. On One-parameter Groups of Operators.

By Masanori Fukamiya.
Mathematical Institute, Osaka Imperial University. (Comm. by M. Fujiwara, m.I.A., July 12, 1940.)

1. Theorem. Let E be a separable Banach space, and let $\left\{U_{t}\right\}$, ($-\infty<t<\infty$) be a one-parameter group of operators on E to E such that: (1) $\left\|U_{t}\right\|=1$, (2) $U_{t} U_{s}=U_{t+s}$ for any t, s, (3) $f\left(U_{t} x\right)$ is measurable in t for every $x \varepsilon E$ and for every $f \varepsilon \bar{E}$. Then there exist the operators R_{z} (resolvents) and A, which satisfy the following properties:
(1) R_{z} is defined for every complex number z, with $\mathscr{J}_{m}(z) \neq 0$,
(2) R_{z} is a bounded, linear operator on E to E, and $\left\|R_{z}\right\|$ $\leqq \frac{1}{\left|\mathscr{I}_{m}(z)\right|}$,
(3) $\left(z-z^{\prime}\right) R_{z} R_{z^{\prime}}=R_{z}-R_{z^{\prime}}$, for every z, z^{\prime} with $\mathscr{I}_{m}(z) \neq 0$, $\mathscr{I}_{m}\left(z^{\prime}\right) \neq 0$,
(4) $R_{z} x=0$ implies $x=0$, for any z;
(5) A is a closed linear oparator on E to E, whose domain $D(A)$ is dense in E, and

$$
(A-z I) \cdot R_{z}=I, \quad R_{z}(A-z I)=I \quad(\text { in } D(A)),
$$

(6) For any $x \in D(A), \quad \lim _{t \rightarrow 0} \frac{U_{t}-1}{t} \cdot x=A \cdot x$.

We will prove these results, following the method of M. H. Stone. ${ }^{1)}$ Recently similar facts were obtained by I. Gelfand. ${ }^{2}$) But the method is completely different from ours.
2. Proof: Let $\psi(\tau ; z)$ be defined by

$$
\begin{aligned}
& \psi(\tau ; z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\lambda-z} e^{-i \lambda \tau} d \lambda \quad\left(\mathcal{I}_{m}(z) \neq 0\right) \\
= & \left\{\begin{array}{ll}
0 & \tau>0 \\
i e^{-i z \tau} & \tau<0
\end{array}\left(\mathcal{f}_{m}(z)>0\right), \quad\left\{\begin{array}{cc}
-i e^{-i z \tau} & \tau>0 \\
0 & \tau<0
\end{array}\left(\mathcal{f}_{m}(z)<0\right) .\right.\right.
\end{aligned}
$$

Then
(i) $\frac{1}{\lambda-z}=\int_{-\infty}^{\infty} \psi(\tau ; z) e^{i \tau \tau} d \tau$,
(ii) $\left(z-z^{\prime}\right) \int_{-\infty}^{\infty} \psi(\tau ; z) \psi\left(\sigma-\tau ; z^{\prime}\right) d \tau=\psi(\sigma ; z)-\psi\left(\sigma ; z^{\prime}\right)$,
(iii) $\overline{\psi(\tau ; z)}=\psi(-\tau ; \bar{z})$.

We define $\boldsymbol{F}(f)$ by

$$
F(f)=\int_{-\infty}^{\infty} \psi(\tau ; z) f\left(U_{\tau} x\right) d \tau, \quad f \varepsilon \bar{E}, \quad x \varepsilon E \text { and } \mathscr{I}_{m}(z) \neq 0
$$

[^0]As a functional on $\bar{E}, F(f)$ is weakly continuous for every z $\left(\mathscr{I}_{m}(z) \neq 0\right)$. For, if $f_{n} \rightarrow f$ weakly in the sense that $f_{n}(x) \rightarrow f(x)$ for every $x \varepsilon E$, then $\left\|f_{n}\right\| \leqq M$ for some M (independent of n), and the functions of $\tau: f_{n}\left(U_{\tau} x\right)$ are uniformly bounded. Consequently $\psi(\tau ; z)=$ $f_{n}\left(U_{\tau} x\right)$ are uniformly integrable in $(-\infty, \infty)$. As $f_{n}\left(U_{\tau} x\right) \rightarrow f\left(U_{\tau} x\right)$ for all τ, it follows

$$
F\left(f_{n}\right)=\int_{-\infty}^{\infty} \psi(\tau ; z) f_{n}\left(U_{\tau} x\right) d \tau \rightarrow F(f)=\int_{-\infty}^{\infty} \psi(\tau ; z) f\left(U_{\tau} x\right) d \tau .
$$

Therefore, by a theorem of Banach, there exists an $x_{z} \varepsilon E$ such that $F(f)=f\left(x_{z}\right)$, for any $f \varepsilon \bar{E}$. We define R_{z} by $x_{z}=R_{z} x$.

Evidently R_{z} is defined and additive over the whole E, and
and

$$
\left|f\left(R_{z} \cdot x\right)\right|=\left|\int_{-\infty}^{\infty} \psi(\tau ; z) f\left(U_{\tau} x\right) d \tau\right| \leqq \frac{\|f\| \cdot\|x\|}{\left|\mathscr{I}_{m}(z)\right|}
$$

$$
\left\|R_{z}\right\| \leqq \frac{1}{\left|\mathscr{I}_{m}(z)\right|}
$$

R_{z} is linear. For z, z^{\prime} with $\mathscr{I}_{m}(z) \neq 0, \mathscr{I}_{m}\left(z^{\prime}\right) \neq 0$,

$$
\begin{aligned}
f\left(R_{z} R_{z^{\prime}} x\right) & =\int_{-\infty}^{\infty} \psi\left(t ; z^{\prime}\right) f\left(U_{t} R_{z} x\right) d t \\
& =\int_{-\infty}^{\infty} d t \int_{-\infty}^{\infty} \psi(s ; z) \psi\left(t ; z^{\prime}\right) f\left(U_{t+s} x\right) d s \\
& =\int_{-\infty}^{\infty} f\left(U_{t} x\right) d t \int_{-\infty}^{\infty} \psi(s ; z) \psi\left(t-s ; z^{\prime}\right) d s
\end{aligned}
$$

and by (ii), 2,

$$
\left(z-z^{\prime}\right) f\left(R_{z} R_{z^{\prime}} x\right)=f\left(R_{z} x\right)-f\left(R_{z^{\prime}} x\right)
$$

If $R_{z_{1}}=0$, for certain z_{1} with $\mathscr{I}_{m}\left(z_{1}\right) \neq 0$, then by virtue of (2), $R_{z} x=0$ for all $z\left(\mathcal{I}_{m}(z) \neq 0\right)$, and

$$
0=f\left(R_{z} x\right)-f\left(R_{\bar{z}} x\right)=\int_{-\infty}^{\infty} f\left(U_{t} x\right) e^{-\eta|t|} e^{-i \xi t} d t, \quad z=\xi+i \eta, \quad \eta \neq 0
$$

As $f\left(U_{t} x\right)$ is continuous in t,

$$
f\left(U_{t} x\right)=0, \text { for all } t \text {; in particular, } f\left(U_{0} x\right)=f(x)=0
$$

and, as this holds for all $f \in \bar{E}$, we must have $x=0$.
3. Proof (continued). The operator A.
i) Definition. Let z_{0} be a complex number, with $\mathscr{I}_{m}\left(z_{0}\right) \neq 0$, and let A take $y=R_{z_{0}} x$ into $x+z_{0} R_{z_{0}} \cdot x$, where x is any element of E :

$$
y=R_{z_{0}} x, \quad A y=x+z_{0} R_{z_{0}} x .
$$

Then the domain $D(A)$ of A is everywhere dense in E. For, if this is not the case, then there exists an $f \varepsilon \bar{E}$ such that $f \neq 0$ and $f(x)=0$ for any $x \varepsilon D(A)$. Thus we have $f\left(R_{z_{0}} x\right)=0$ for all $x \varepsilon E$, and consequently, for $\mathscr{I}_{m}\left(z_{0}\right)>0$, and for any $x \varepsilon E$,

$$
0=f\left(R_{z_{0}} U_{t} x\right)=i \int_{-\infty}^{0} e^{i z_{0} \tau} f\left(U_{\tau} U_{t} x\right) d \tau=i e^{-i z_{0} t} \int_{-\infty}^{t} e^{i z_{0} s} f\left(U_{s} x\right) d s,
$$

for every t, and we have, for all $t, f\left(U_{t} x\right)=0$.
As x is any element of E, we have $f=0$.
ii)

$$
R_{z}(A-z I) y=(A-z I) \quad R_{z} y=y, \quad\left(y=R_{z_{0}} x\right) .
$$

In fact, for $y=R_{z_{0}} x$,

$$
R_{z}(A-z I) y=R_{z}\left(x+z_{0} R_{z_{0}} x-z R_{z_{0}} x\right)
$$

and

$$
\begin{aligned}
(A-z I) \cdot R_{z} y & =A\left(R_{z_{0}}\left(R_{z} x\right)\right)-\left(z R_{z} R_{z_{0}} x\right) \\
& =R_{z} x+z_{0} R_{z_{0}} R_{z} x-z \cdot R_{z} R_{z_{0}} x .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
R_{z}(A-z I) \cdot y & =(A-z I) \cdot R_{z} y=R_{z} x+\left(z_{0}-z\right) R_{z} R_{z_{0}} x \\
& =R_{z} x+\left(R_{z_{0}} x-R_{z} x\right)=R_{z_{0}} x=y .
\end{aligned}
$$

iii) A is additive (evident).
iv) A is closed. Let $y_{n}=R_{z_{0}} x_{n} \rightarrow y, A y_{n}=x_{n}+z_{0} R_{z_{0}} x_{n} \rightarrow \bar{y}$. Then $x_{n}=A y_{n}-z_{0} y_{n} \rightarrow \bar{y}-z_{0} y(=x)$, and $A y_{n}=x_{n}+z_{0} R_{z_{0}} x_{n} \rightarrow x+z_{0} R_{z_{0}} x$. Consequently, $A \cdot R_{z_{0}} x=x+z_{0} R_{z_{0}} x$; this proves the closedness.
v) The domain of A is independent of each choice of z_{0} :

For, if $z_{0} \rightarrow A, z_{0}^{\prime} \rightarrow A^{\prime}(\rightarrow$ is the sense of the definition), then, at first $D\left(A^{\prime}\right) \subset D(A)$. In fact, for any $y^{\prime}=R_{z_{0}} x$, take $y=R_{z_{0}} x \in D(A)$ Then, $y-y^{\prime} R_{z_{0}} x-R_{z_{0}} x=\left(z-z_{0}^{\prime}\right) R_{z_{0}} R_{z_{0}} x$. As $y, R_{z_{0}} y^{\prime} \varepsilon D(A)$, and $D(A)$ is linear, $y^{\prime}=y-\left(z_{0}-z_{0}^{\prime}\right) R_{z_{0}} y^{\prime} \varepsilon D(A)$. By symmetry, we have $D\left(A^{\prime}\right)=D(A)$.

On the other hand, we have

$$
R_{z}(A-z I)=I, \quad R_{z}\left(A^{\prime}-z I\right)=I \quad\left(\text { in } D(A) \equiv D\left(A^{\prime}\right)\right)
$$

and

$$
R_{z}\left(A-A^{\prime}\right)=0, \quad \text { therefore } \quad A \equiv A^{\prime} \quad(\text { cf. (4) })
$$

vi)

$$
\lim _{t \rightarrow 0} \frac{U_{t}-I}{t} y=A \cdot y, \text { for } y \varepsilon D(A)
$$

Let

$$
y=R_{z_{0}} \cdot x, \text { and } \mathcal{I}_{m}\left(z_{0}\right)>0, \text { say }
$$

$$
\begin{aligned}
& f\left(\frac{U_{t}-I}{t} R_{z_{0}} \cdot x\right)=\int_{-\infty}^{\infty} f\left(U_{\tau} x\right) \frac{\psi\left(\tau-t ; z_{0}\right)-\psi\left(\tau ; z_{0}\right)}{t} d \tau \\
&=\int_{-\infty}^{0}+\int_{0}^{\varepsilon}+\int_{\varepsilon}^{\infty} \\
& \begin{array}{rl}
\left.\int_{0}^{\varepsilon} f\left(U_{\tau} x\right) \frac{\psi(\tau-t ;}{} z_{0}\right)-\psi\left(\tau ; z_{0}\right) \\
t & d \tau \\
& =\int_{0}^{\varepsilon} f\left(U_{\tau} x\right) \frac{\psi\left(\tau-t ; z_{0}\right)}{t} d \tau \\
& =\frac{1}{t} \int_{-t}^{0}\left(U_{t+\infty} x\right) \psi\left(\sigma ; z_{0}\right) d \sigma ;
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t} \int_{-l}^{0} f\left(U_{t+\sigma} x\right) & \psi\left(\sigma ; z_{0}\right) d \sigma \\
& =\lim _{t \rightarrow 0} \frac{1}{t} \int_{-t}^{0} f\left(U_{\sigma} x\right) \psi\left(\sigma ; z_{0}\right) d \sigma \\
= & f\left(U_{0} x\right) \cdot \psi\left(0 ; z_{0}\right)=f(x) .
\end{aligned}
$$

We have

$$
\lim _{t \rightarrow 0} f\left(\frac{U_{t}-I}{t} R_{z_{0}} \cdot x\right)=f(x)+z_{0} f\left(R_{z_{0}} x\right)=f(A y),
$$

by definition.

[^0]: 1) M. H. Stone, Linear Transformations in Hilbert Space, 1932, Chap. IV, V ; Annals of Math., 33 (1932), pp. 643-648.
 J. von Neumann, Annals of Math., 33 (1932), pp. 567-573.
 2) Gelfand, C. R. U. R.S.S., 25 (1939).
