119. Normal Basis of a Quasi-field.

By Tadasi Nakayama.
Mathematical Institute, Osaka Imperial Univerity.
(Comm. by T. Takagi, m.I.A., Dec. 12, 1940.)

Recently N. Jacobson extended the fundamental theorem of the Galois theory to quasi-fields in the following sense ${ }^{1)}$: Let P be a quasifield and there be given a finite group of outer automorphisms ${ }^{2)} \mathscr{G}=\{E$, $S, \ldots, T\}$, of order, say n. If Φ is the sub-quasifield of invariant elements, then P has the rank n over Φ (at both left and right) and there exists a 1-1 correspondence between subgroups of $\mathfrak{C S}$ and subquasifields between P and Φ. The purpose of the present note is to show that moreover P possesses a (one-sided) normal basis ${ }^{3}$ over Φ, that is, there exists an element b in P such that the n conjugates, so to speak, $b^{E}, b^{S}, \ldots, b^{T}$ of b form a (linearly independent) left (say)-basis of P over Φ. The proof is a generalization of M. Deuring's second proof to the theorem of commutative normal bases; ${ }^{4)}$ the proof has been emancipated, by the present writer, ${ }^{5)}$ from the restriction on the semisimplicity of the group ring. But it involves modifications caused by the non-commutativity and makes use of a generalization of the Hilbert-Speiser theorem in a refined form.

Let $P,\left(\mathscr{G}, n\right.$ and Φ be as above. Denote the center ${ }^{6)}$ of P by Z, and put $K=\Phi \cap Z$. Let further K^{*} be a finite extension of K, and let

$$
P^{*}=P_{K^{*}}, \quad \Phi^{*}=\Phi_{K^{*}}
$$

be the rings obtained from P and Φ by extending the ground field K to K^{*}. (They are not, in general, quasi-fields any more). Automorphisms E, S, \ldots, T of P can be looked upon, in natural manner, as those of P^{*} (and in fact Φ^{*} consists of the totality of invariant elements).

Lemma 1 (Generalized Hilbert-Speiser theorem). Let to each S in

[^0](\$) correspond a regular matrix C_{S} in P^{*}, of degree (=order), say, r, such that
\[

$$
\begin{equation*}
C_{S} C_{T}^{S}=C_{T S} \quad \text { for every } S, T \tag{1}
\end{equation*}
$$

\]

Then there exists in P^{*} a regular matrix A of degree r such that

$$
\begin{equation*}
C_{S}=A^{-1} A^{S} \quad \text { for every } S \tag{2}
\end{equation*}
$$

The case where $K^{*}=K$ whence $P^{*}=P$ was treated in Jacobson's paper, 1. c. The present case can be manipulated in like manner. Consider namely a crossed product

$$
\mathfrak{S}^{*}=u_{E} P^{*}+u_{S} P^{*}+\cdots+u_{T} P^{*}
$$

where $u_{E}, u_{S}, \ldots, u_{T}$ are abstractly introduced n elements linearly independent over Φ^{*} and satisfying $\eta u_{S}=u_{S} \eta^{S}\left(\eta \in P^{*}\right), u_{S} u_{T}=u_{S T} . \quad \mathfrak{S}^{*}$ contains a subring $\mathfrak{S}=u_{E} P+u_{S} P+\cdots+u_{T} P$, and \mathfrak{S}^{*} is obtained from \mathfrak{S} by extending the ground field K to K^{*}. S is a simple ring with the center K, as was shown in Jacobson, l. c. Hence ${ }^{1)} \mathfrak{S}^{*}$ is a simple ring with the center K^{*}.

Consider, on the other hand, an r-dimensional (right-) vector space

$$
V=v_{1} P^{*}+v_{2} P^{*}+\cdots+v_{r} P^{*}
$$

over P^{*}. That a system of matrices C_{S} satisfies (1) means that if we associate with u_{S} the semi-linear transformation $\sigma=\left(C_{S}, S\right)$:

$$
\left(v_{1}, \ldots, v_{r}\right)^{\sigma}=\left(v_{1}, \ldots, v_{r}\right) C_{S}, \quad(v \eta)^{\sigma}=v^{\sigma} \eta^{S}\left(v \in V, \eta \in P^{*}\right)
$$

and with $\xi \in P^{*}$ the transformation $v \rightarrow v \xi$ then V becomes a rightmodule of \mathfrak{S}^{*}; we denote the \mathfrak{S}^{*}-module V thus obtained by V_{1}. Further, if we use the system $\left\{E_{S}=E\right.$ (unit matrix of degree r) $\}$ instead of $\left\{C_{S}\right\}$ then we get a second \mathfrak{S}^{*}-right-module V_{0} from V. But (finite) moduli of a simple ring \mathfrak{S}^{*} are characterized, up to isomorphism, by their behaviors with respect to the center K^{*}. Therefore, the two moduli V_{0} and V_{1} are operator-isomorphic, and if A is the matrix of the isomorphic transformation, which is certainly regular, then $C_{S}=$ $A^{-1} E A^{S}=A^{-1} A^{S}$ as desired.

On taking reduction into account we show further
Lemma 2 (Refinement of the Hilbert-Speiser theorem). Let C_{S} in Lemma 1 be of the form

$$
C_{S}=\left(\begin{array}{c}
D_{S} H_{S} \tag{3}\\
0
\end{array} F_{S}\right)
$$

Then we can take the regular matrix A, satisfying (2), in the similarly reduced form

$$
A=\left(\begin{array}{c}
A_{1} A_{3} \tag{4}\\
0
\end{array} A_{2}\right)
$$

1) See E. Noether, Nichtkommutative Algebra, Math. Zeitschr. 37 (1933).

Furthermore, if there are given already specified regular matrices A_{1} and A_{2} satisfying $D_{S}=A_{1}^{-1} A_{1}^{S}$ and $F_{S}=A_{2}^{-1} A_{2}^{S}$ then we can take a suitable A_{3} so that A given by (4) fulfills (2).')

Let for the proof g be the degree of D_{S}, and consider the subspace $W=v_{1} P^{*}+\cdots+v_{g} P^{*}$ of V. If we look upon V as V_{1}, defined above, W is an allowable submodule, as the form (3) shows; in this interpretation we write W_{1} for W. Similarly the same space W is an allowable submodule of V_{0}, which we shall denote by W_{0}. The \mathfrak{S}^{*}-right-moduli W_{0} and W_{1} are operator-isomorphic, and such an isomorphism can be extended to that of the over-moduli V_{0} and V_{1}, because they are completely reducible. But the matrix A of such an extended isomorphism has the form (4). This proves the first half of the lemma. As for the second half, we have simply to observe that to specify A_{1} and A_{2} means to specify the isomorphisms $W_{0} \cong W_{1}$ and $V_{0} / W_{0} \cong V_{1} / W_{1}$, and we can, because of the complete reducibility, combine them into an isomorphism between V_{0} and V_{1}.

Now we come to
Theorem (Existence of normal bases). Let P, $\sqrt{5}$ and Φ be as before. Then there exists in P an element b such that its conjugates b^{E}, $b^{S}, \ldots, b^{T}(\mathbb{G}=\{E, S, \ldots, T\})$ form a (linearly independent) left-basis ${ }^{2}$ of P over Φ. In other words, the Φ-(S-module P is operator-isomorphic to the group ring $G(\Phi)$ of (S) over Φ.

Let the above field K^{*} be sufficiently large so that all the absolutely irredicible representations of (S) lie in it. Let $S \rightarrow G_{S}$ be one of them, and let U_{S} be the directly indecomposable component of the regular representation of \mathfrak{G} belonging, in the sense of R . Brauer-C. Nesbitt; ${ }^{3)}$ to G_{S}. We suppose that U_{S} lie in K^{*} too and be reduced in the form that the right upper part is zero; the first largest completely reducible part (as well as the last) of U_{S} is G_{S};

$$
\begin{equation*}
U_{S}=\binom{G_{S} 0}{*} \tag{5}
\end{equation*}
$$

Let r and g be the degrees of U_{S} and G_{S} respectively. From $U_{S} U_{T}=$ $U_{S T}$ follows $U_{T}^{\prime} U_{S}^{\prime}=U_{S T}^{\prime}$, and so we see, on observing the reduced form of U_{S}^{\prime}, the existence of a regular matrix $A=\left(a_{i j}\right)$ of the reduced form $\binom{A_{1^{*}}}{0}$ in P^{*} such that

$$
\begin{equation*}
U_{S}^{\prime}=A^{-1} A^{S}, \text { that is, } A^{S}=A U_{S}^{\prime} \text { for every } S \in \mathbb{G} . \tag{6}
\end{equation*}
$$

The submatrix A_{1} is regular too and satisfies

$$
\begin{equation*}
A_{1}^{S}=A_{1} G_{S}^{\prime} \tag{7}
\end{equation*}
$$

1) In case of a commutative field Speiser's construction gives, as a matter of fact, the first part of the lemma; his construction, however, does not apply to our non-commutative case. As for the second part, it seems to the writer necessary to employ a structural argument as below even in the commatative case.
2) Similarly P has a normal right-basis over \varnothing.
3) R. Brauer-C. Nesbitt, On regular representations, Proc. Nat. Acad. Sci. 23 (1937).

We want to prove that the g^{2} elements $a_{i j}(i, j=1,2, \ldots, g)$ in A_{1} are left-linearly independent over Φ^{*}. To do so, let

$$
\begin{equation*}
\sum_{i=j}^{g} \sum_{j=1}^{g} \varphi_{i j} a_{i j}=0, \quad \varphi_{i j} \in \Phi^{*} \tag{8}
\end{equation*}
$$

Now, there exists a linear combination $L\left(G_{S}^{\prime}\right)$ of G_{S}^{\prime} with coefficients in K^{*} equal to the matrix unit ε_{11}. The corresponding linear combination $L(S)$ of S effects, according to (7), the transformation: $a_{i 1} \rightarrow a_{i 1}$, $\dot{a}_{i j} \rightarrow 0(j=2,3, \ldots, g)$. Hence we get from (8)

$$
\begin{equation*}
\sum_{i=1}^{g} \varphi_{i 1} a_{i 1}=0 \tag{9}
\end{equation*}
$$

But there exists for each $k=1,2, \ldots, g$ also a linear combination $L_{k c}(S)$ of S whose corresponding matrix $L_{k}\left(G_{S}^{\prime}\right)$ is the matrix unit $\varepsilon_{k 1}$. By $L_{k}(S) a_{i 1} \rightarrow a_{i k}, a_{i j} \rightarrow 0(j=2,3, \ldots, g)$, again according to (7). Thus we obtain from (9)

$$
\begin{equation*}
\sum_{i=1}^{g} \varphi_{i 1} a_{i k}=0 \quad(k=1,2, \ldots, g), \quad \text { that is, } \quad\left(\varphi_{11}, \ldots, \varphi_{g 1}\right) A_{1}=0 \tag{10}
\end{equation*}
$$

Therefore, since A_{1} is regular, $\varphi_{11}=\cdots=\varphi_{g 1}=0$. Similarly all the $\varphi_{i j}$ are 0 . So the g^{2} elements in A_{1} are left-linearly independent over Φ^{*}.

Now, write (6) in the form

$$
\begin{equation*}
\left(A^{\prime}\right)^{S}=U_{S} A^{\prime} \tag{11}
\end{equation*}
$$

(Observe that the coefficients in U_{S} are in K^{*}). This shows that a Φ^{*}-left-module $\mathfrak{M}_{i}\left(\subseteq P^{*}\right.$) generated by the r elements $a_{i 1}, a_{i 2}, \ldots, a_{i r}$ forming a column in A^{\prime} (that is, a row in A) is a Φ^{*}-(G)-double-module and is operator-homomorphic to the representation Φ^{*}-(\$)-module \mathfrak{u} belonging to U_{S}. This is the case for every $i=1,2, \ldots, r$. But we take only the first g of them : $\mathfrak{M}_{1}, \mathfrak{M}_{2}, \ldots, \mathfrak{M}_{g}$, and consider their sum

$$
\mathfrak{M}=\left(\mathfrak{M}_{1}, \mathfrak{M}_{2}, \ldots, \mathfrak{M}_{g}\right)
$$

in P^{*}. Evidently \mathfrak{M} is operator-homomorphic to a direct sum

$$
\mathfrak{B}=\mathfrak{u}_{1}+\mathfrak{u}_{2}+\cdots+\mathfrak{u}_{g}
$$

of g moduli \mathfrak{U}_{i} isomorphic with \mathfrak{H}. Let \mathfrak{W} be the submodule (of dimension g over Φ^{*}) in \mathfrak{u} corresponding to the first largest completely reducible part G_{S} of U_{S}, and \mathfrak{W}_{i} be the corresponding submodule in \mathfrak{U}_{i}. Then the (direct) sum $\mathfrak{Y}=\mathfrak{W}_{1}+\mathfrak{W}_{2}+\cdots+\mathfrak{W}_{g}(\subseteq \mathfrak{B})$ is mapped by this homomorphism onto the submodule \mathfrak{N} of \mathfrak{M} generated by the g^{2} elements in the submatrix A_{1}. Since these g^{2} elements are (left-) linearly independent over Φ^{*}, this homomorphism between \mathfrak{R} and \mathfrak{Y} must be an isomorphism. But \mathfrak{Y} contains ${ }^{1)}$ the largest completely reducible sub-

[^1]module of \mathfrak{B}, and therefore, the whole homomorphism between \mathfrak{M} and \mathfrak{B} is necessarily an isomorphism too (or, the $g r$ elements $a_{i j}(i=1,2$, $\ldots, g ; j=1,2, \ldots, r$) are left-linearly independent over Φ^{*}).

This is the case for every irreducible representation G_{S} of © . So we get \mathfrak{M} for each G_{S}, and we consider the sum \mathfrak{R} (in P^{*}) of the \mathfrak{M} 's corresponding to all the different G_{S} 's. This sum is direct, since the summands have no isomorphic submoduli. Hence \mathfrak{R} is the whole P^{*} because both \Re and P^{*} have the same rank $n\left(K^{*}: K\right)$ over Φ. But \mathfrak{B} is, by its construction, operator-isomorphic to the group ring $\mathscr{G}\left(\Phi^{*}\right),^{1)}$ and so is \mathfrak{R}. That is, the Φ^{*}-(S)-module P^{*} is operatorisomorphic to the group ring $\mathscr{G}\left(\Phi^{*}\right)$. It follows then that the Φ-(S)moduli P and $\mathscr{H}(\Phi)$ are also operator-isomorphic to each other, as one easily sees from the Krull-Remak-Schmidt theorem asserting the up-to-isomorphism uniqueness of the direct decomposition of a group (with chain conditions).

Remark. In case the group ring $\left(\mathbb{G}(\Phi)\right.$ is semi-simple ${ }^{2)} U_{S}$ and G_{S} coincide and so we do not need Lemma 2. Even when $\mathscr{C}(\Phi)$ is nonsemisimple we could evade the same lemma if P^{*} were a quasi-field. In this case we take namely an arbitrary regular A satisfying (7) and consider its first g columns. There exist, since A is regular and P^{*} is assumed to be a quasi-field, g indices $i_{1}, i_{2}, \ldots, i_{g}$ such that the submatrix

$$
\begin{equation*}
\left(a_{i j} \quad \text { with } \quad i=i_{1}, i_{2}, \ldots, i_{g} ; j=1,2 \ldots, g\right) \tag{12}
\end{equation*}
$$

is regular, and we use this submatrix instead of A_{1}. Furthermore, the same would be the case if all the $P Z_{\nu}^{*}$ were quasi-fields, where $Z^{*}=$ $Z_{1}^{*}+Z_{2}^{*}+\cdots+Z_{m}^{*}$ is a decomposition of Z^{*} into a direct sum of mutually conjugate fields. ${ }^{3)}$ For, we consider the component of the matrix A with respect to $P Z_{1}^{*}$, for instance, and look for g indices i_{μ} such that the component of (12) is regular in $P Z_{1}^{*}$. Then the components of (12) for the other $P Z_{\nu}^{*}$ are automatically regular (in the corresponding quasi-fields $P Z_{\nu}^{*}$), as one easily sees, on observing that Z_{ν}^{*} are mutually conjugate under (G), from (7). The case of a commutative P, treated in Nakayama, l.c., can be classed into this last category.

[^2]
[^0]: 1) N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann. Math. 41 (1940).
 2) We mean that all the automorphisms in © except the identity are outer.
 3) For the theorem of normal basis of a commutative field see: E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, Crelle, 167 (1931); M. Deuring, Galoissche Theorie und Darstellungstheorie, Math. Ann. 107 (1932) ; H. Hasse, Klassenkörpertheorie, Marburg (1932) ; R. Brauer, Über die Kleinsche Theorie der algebraischen Gleichungen, Matn. Ann. 110 (1934); M. Deuring, Anwendungen der Darstellungen von Gruppen durch linearen Substitutionen auf die Galoissche Theorie, Math. Ann. 113 (1936) ; R. Stauffer, The construction of a normal basis in a separable normal extension field, American J. Math, 58 (1936). There is also an unpublished proof by E. Artin.
 4) M. Deuring, Math. Ann. 110, l.c.
 5) T. Nakayama, On Frobeniusean algebras, II (forthcoming in Math. Ann.), § 3. Appendix.
 6) We are interested only in the case where P has an infinite rank over its center. For, otherwise the theorem can readily be reduced to the commutative case, because of Jacobson's result.
[^1]: 1) If Φ^{*} is semi-simple then η is actually the largest completely reducible submodule of \mathfrak{B}. And, Φ^{*} is certainly semi-simple if K^{*} / K is separable. As a matter of fact, we could assume without loss of generality that this be the case.
[^2]: 1) The regular representation of ©S contains U_{s} exactly g times.
 2) This is the case if and only if n is not divisible by the characteristic of Φ (or, of K).
 3) Observe that Z is separable and normal over K. Its Galois group is homomorphic to $\mathbb{G}^{(}$
