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119. Normal Basis of a Qaasi-field.

By Tadasi NAKAYAMA.
Mathematical Institute, Osaka Imperial Univerity.

(Comm. by T. TAKAGI, M.I.A., Dec. 12, 1940.)

Recently N. Jacobson extended the fundamental theorem of the
Galois theory to quasi-fidds in the following sense’S: Let P be a quasi-
field and there be given a finite group of outer automorphisms) (= {E,
S, ..., T}, of order, say . If # is the sub-quasifield of invariant ele-
ments, then P has the rank n over (at both left and right) and
there exists a 1-1 correspondence between subgroups of ( and sub-
quasifields between P and (P. The purpose of the present note is to
show that moreover P possesses a (one-sided) normal basis over ,
that is, there exists an element b in P such that the n conjugates, so
to speak, bE, bs, ..., bT of b form a (linearly independent)left (say)-basis
of P over (P. The proof is a generalization of M. Deuring’s second
proof to the theorem of commutative normal bases ;) the proof has
been emancipated, by the present writer, from the restriction on the
semisimplicity of the group ring. But it involves modifications caused
by the non-commutativity and makes use of a generalization of the
I-Iilbert-Speiser theorem in a refined form.

Let P, (, n and be as above. Denote the center of P by Z,
and put K-P c Z. Let further K* be a finite extension of K, and let

P=PK.
be the rings obtained from P and ( by extending the ground field K
to K*. (They are not, in general, quasi-fields any fnore). Automor-
phisms E, S, ..., T of P can be looked upon, in natural manner, as
those of P* (and in fact 9" consists of the totality of invariant ele-
ments).

Lemna 1 (Generalized Hilbert-Speiser theorem). Let to each S in

1) N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann.
Math. 41 (1940).

2) We mean that all the automorphisms in except the identity are outer.
3) For the theorem of normal basis of a commutative field see: E. Noether,

Normalbasis bei KSrpern ohne hShere Verzweigung, Crelle, 167 (1931); M. Deuring,
Galoissche Theorie und Darstellungstheorie, Math. Ann. 107 (1932) H. Hasse, Klassen-
kSrpertheorie, Marburg (1932) R. Brauer, Ober die Kleinsche Theorie der algebraischen
Gleichungen, Matn. Ann. 110 (1934); M. Deuring, Anwendungen der Darstellungen
yon Gruppen durch linearen Substitutionen auf die Galoissche Theorie, Math. Ann. 113
(1936); R. Stauffer, The construction of a normal basis in a separable normal extension
field, American J. Math, 58 (1936). There is also an unpublished proof by E. Artin.

4) M. Deuring, Math. Ann. 110, 1.c.
5) T. Nakayama, On Frobeniusean algebras, II (forthcoming in Math. Ann.), 3.

Appendix.
6) We are interested only in the case where P has an infinit ’ank over its

center. For, otherwise the theorem can readily be reduced to the commutative case,
because of Jacobson’s result.
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( correspond a regular matrix Cs in P*, of degree (=order), say, r,
such that

(1) CsCS Crs for every S, T.

Then there exists in P* a regular matrix A of degree r such that

(2) Cs=A-As for every S.

The case where K* =K whence P* =P was treated in Jacobson’s
paper, I.c. The present case can be manipulated in like manner. Con-
sider namely a crossed product

*--uEP* +usP*+ +uTP*
where UE, US,---, UT are abstractly introduced n dements linearly in-
dependent over * and satisfyilg yus=usyS(y e P*), UsUr=UsT. *
contains a subring (R)=UEP+UsP+"’/uP, and * is obtained from

by extending the ground field K to K*. is a simple ring with
the center K, as was shown in Jacobson, 1. c. Hence) * is a simple
ring with the center K*.

Consider, on the other hand, an r-dimensional (right-)vector space

V=vP*+v,P* +... +v,P*

over P*. That a system of matrices Cs satisfies (1) means that if we
associate with us the semi-linear transformation a=(Cs, S):

(v, ..., v)=(v, ..., v)Cs (v)=v’S(v e V, y e P*)

and with e e P* the transformation v-)v then V becomes a right-
module of *; we denote the *-module V thus obtained by V1.
Further, if we use the system (Es=E (unit matrix of degree r)} in-
stead of (Cs} then we get a second *-right-module V0 from V. But
(finite) moduli of a simple ring * are characterized, up to isomorphism,
by their behaviors with respect to the center K*. Therefore, the two
moduli V0 and V are operator-isomorphic, and if A is the matrix of
the isomorphic transformation, which is certainly regular, then Cs--
A-EAz=A-Az as desired.

On taking reduction into account we show further
Lemma 2 (Refinement of the Hilbert-Speiser theorem). Let Cs in

Lemma 1 be of the form
(nsHs(3) Cs=\ 0 Fs]"

Then we can take the regular matrix A, satisfying (2), in the similarly
reduced form

(4) A=(AAa\ 0 A.]"

1) See E. Noether, Nichtkommutative Algebra, Math. Zeitschr. 37 (1933).
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Furthermore, if there are given already specified regdar matrices
A and A. satisfying Ds AAS and Fs A2 A2 then we can take a
suitable A3 so tha$ A given by () fulfills ().1

Let for the proof g be the degree of Ds, and consider the subspace
W=vP*/.../vP* of V. If we look upon V as V, defined above,
W is an allowable submodule, as the form (3) shows; in this interpreta-
tion we write W for W. Similarly the same space W is an allowable
submodule of V0, which we shall denote by W. The *-right-moduli W0
and W are operator-isomorphic, and such an isomorphism can be ex-
tended to that of the over-moduli V0 and V, because they are com-
pletely reducibl But the matrix A of such an extended isomorphism
has the form (4). This proves the first half of the lemma. As for
the second half, we haye simply to observe that to specify A and A2
means to specify the isomorphisms W0_ W and Vo/Wo V/W, and
we can, because o the complete reducibility, combine them into an
isomorphism between V0 and V.

Now we come to
Theorem (Existence of normal bases). Le P, ( and be as be-

fore. Then there exists in P an elemen$ b such tha$ its conjugates b,
bs, ..., bT( {E, S, ..., T}) form a (linearly independent) left-basis2’ of
P over . In other words, he -ff-module P is operator-isomorphic
to the group ring G((P) of over

Let the above field K* be sufficiently large so that all the ab-
solutely irredicible representations of ( lie in it. Let S--* Gs be one
of them, and let Us be the directly indecomposable component of the
regular representation of ( belonging, in the sense of R. Brauer-C.
Nesbitt) to Gz. We suppose that Us lie in K* too and be reduced
in the form that the right upper part is zero; the first largest com-
pletely reducible part (as well as the last) of Us is

Let r and g be the degrees of Us and Gs respectively. From UsUT=
UST follows UrU’s= U’sr, and so we see, on observing the reduced
form of U, the existence of a regular matrix A=(a) of the reduced

(A* ’ p.form \ 0 * in such that
/

(6) Uz=A-1As that is, As=AU’s for every Se (.

The submatrix A is regular too and satisfies

(7) AS -AG’s

1) In case of a commutative field Speiser’s construction gives, as a matter of
fact, the first part of the lemma; his construction, however, does not apply to our
non-commutative case. As for the second part, it seems to the writer necessary to
employ a structural argument as below even in the commutative case.

2) Similarly P has a normal right-basis over .
3) R. Brauer-C. Nesbitt, On regular representations, Proc. Nat. Acad. Sci. 23 (1937).
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We want to prove that the gs dements a(i,j= 1, 2, ..., g) in A are
/eft-linearly independent over *. To do so, let

(8)

Now, there exists a linear combination L(G’s) of G with coefficients in
K* equal to the matrix unit cn. The corresponding linear combination
L(S) of S effects, according to (7), the transformation" a---)a,

a#-- 0(3"= 2, 3, ..., g). Hence we get from (8)

(9) ,a 0.
i=l

But there exists for each k= 1, 2, ..., g also a linear combination L(S)
Lof S whose corresponding matrix (G) is the matrix unit e. By

L(S) al---> a, av--, 0(= 2, 3, ..., g), again according to (7). Thus we_
obtain from (9)

g

(10) _Ja=0 (k= 1, 2, ..., g), that is, (Pll, "", tOal)A=0.
i-1

Therefore, since A1 is regular, n= .----gl--0. Similarly all the a,#
are 0. So the gS elements in Ax are left-linearly independent over *.

Now, write (6) in the form

(11) (A’)s= USA’.
(Observe that the coefficients in Us are in K*). This shows that a
#*-left-module 2(P*) generated by the r elements a,,...,a,
forming a column in A’ (that is, a row in A)is a (#*-(-double-module
and is operator-homomorphic to the representation *-ff3-module 11 be-
longing to Us. This is the case for every i= 1, 2, ..., r. But we take
only the first g of them: 9X, 9X, ..., il)l, and consider their sum

in P*. Evidently !)X is operator-homomorphic to a direct sum

of g moduli 11 isomorphic with 1I. Let be the submodule (of dimen-
sion g over (#*) in 11 corresponding to the first largest completely
reducible part Gs of Us, and !9 be the corresponding submodule in 1I.
Then the (direct)sum )=!Bx+!fi).+---+![B(!8)is mapped by this
homomorphism onto the submodule of generated by the gZ elements
in the submatrix A. Since these g elements are (left-) linearly in-
dependent over *, this homomorphism between 9 and ) must be an
isomorphism. But )containsu the largest completely reducible sub-

1) If * is semi-simple then ) is actually the largest completely reducible sub-
module of . And, #* is certainly semi-simple if K*/K is separable. As a matter of
fact, we could assume without loss of generality that this be the case.
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module of , and therefore, the whole homomorphism between and
is necessarily an isomorphism too (or, the gr elements a(i=l, 2,

..., g -1, 2, ..., r) are left-linearly independent over (*).
This is the case for every irreducible representation Gs of . So

we get for each Gz, and we consider the sum 9 (in P*) of the
)’s corresponding to all the different Gz’s. This sum is direct, since
the summands have no isomorphic submoduli. Hence 9 is the whole
P* because both 9 and P* have the same rank n(K*:K) over (.
But 8 is, by its construction, operator-isomorphic to the group ring
fS((P*),D and so is 9. That is, the (*--module P* is operator-
isomorphic to the group ring (((P*). It follows then that the -(-
moduli P and ((() are also operator-isomorphic to each other, as one
easily sees from the Krull-Remak-Schmidt theorem asserting the up-
to-isomorphism uniqueness of the direct decomposition of a group (with
chain conditions).

Remark. In case the group ring (() is semi-simple Us and Gz
coincide and so we do not need Lemma 2. Even when $((P) is non-
semisimple we could evade the same lemma if P* were a quasi-field.
In this case we take namely an arbitrary regular A satisfying (7) and
consider its first g columns. There exist, since A is regular and P*
is assumed to be a quasi-field, g indices i,/2, .-., i such that the sub-
matrix

(12) (as with i=i, i, ..., i j= 1, 2 ..., g)

is regular, and we use this submatrix instead of A. Furthermore, the
same would be the case if all the PZ* were quasi-fields, where Z*=
Z/Z+...+Z* is a decomposition of Z* into a direct sum of
mutually conjugate fields,s For, we consider the component of the
matrix A with respect to PZ, for instance, and look for g indices i
such that the component of (12) is regular in PZ. Then the com-
ponents of (12) for the other PZ* are automatically regular (in the
corresponding quasi-fields PZ*), as one easily sees, on observing that
Z* are mutually conjugate under (, from (7). The case of a com-
mutative P, treated in Nakayama, 1. c., can be classed into this last
category.

1) The regular representation of contains Us exactly g times.
2) This is the case if and only if n is not divisible by the characteristic of (or,

of K).
3) Observe that Z is separable and normal over K. Its Galois group is homo-

morphic to (.


