No. 3.]

PAPERS COMMUNICATED

13. On Regularly Convex Sets.

By Kôsaku Yosida and Masanori Fukamiya. Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, M.I.A., March 12, 1941.)

§ 1. Introduction. We denote by E a Banach space and by \bar{E} its conjugate space. A set $X \subseteq E$ is called convex if $x, y \in E$ implies $ax + (1-a)y \in E$ for all a $(1 \supseteq a \supseteq 0)$. According to M. Krein and V. Smulian¹⁾, a set $F \subseteq \bar{E}$ is called regularly convex if for every $g \in F$ $(g \in \bar{E})$ there exists $x_0 \in E$ such that $\sup_{f \in \bar{F}} f(x_0) < g(x_0)$. It is easy to see that only convex sets in \bar{E} may be regularly convex. Moreover we may prove

Theorem 1. A convex set $F \subseteq \overline{E}$ is regularly convex if and only if F is closed in the weak topology of \overline{E} as functionals.

Hereby, for any $f_0 \in \overline{E}$, its weak neighbourhood $U(f_0, x_1, x_2, ..., x_n, \varepsilon)$ is defined as the totality of $f \in \overline{E}$ such that $\sup_{1 \le i \le n} |f(x_i) - f_0(x_i)| < \varepsilon$, where $\{x_i\}_{i=1,2,...,n}$ is an arbitrary system of points εE and ε is an arbitrary positive number²⁾.

The purpose of the present note is to show that there exists a kind of duality between (strongly) closed convex sets $\subseteq E$ and regularly convex sets $\subseteq E$. By this duality we may give, to almost all the theorems in Chapter 1 of [K-S], geometrical interpretations and new proofs. We then give a proof to Krein-Milman's³⁾

Theorem 2. If a (strongly) bounded set $F \subseteq \bar{E}$ is regularly convex, then F has extreme points f_0 , viz. points f_0 such that $f_0 \not= \frac{1}{2}(g+h)$ for any two $g, h \in F$, $g \not= f_0$, $h \not= f_0$.

If E is separable, the above duality shows that Theorem 2 is an immediate corollary of a theorem due to S. Mazur⁴⁾. The proof for non-separable E is also given by transinite induction. This was obtained by one of us (Fukamiya): Zenkoku Shijyô-Sugaku Danwakai, 207 (Japanese). After the present note is completed, we received a letter from S. Kakutani, now in Princeton, and we knew that F. Bohnenblust

¹⁾ Ann. of Math., **41** (1940), 556-583, to be referred as [K-S].

²⁾ The importance of weak topologies in the theory of Banach spaces was especially stressed on by S. Kakutani with much success: Proc. **15** (1939), 169–173 and **16** (1940), 63–67. We omit the easy proof of Theorem 1, since it is similar to his proof of the equivalence between the transfinite closure and the regular closure of linear subspaces $\leq \overline{E}$. The equivalence of the two notions: transfinitely closed convex sets $\leq \overline{E}$ and regularly convex sets $\leq \overline{E}$, was proved in [K-S], 569.

³⁾ The vol. 9 of the Stud. Math. is not yet arrived at our institute. We knew their result from M. and S. Krein's paper: C. R. URSS, 27, 5 (1940), 427-430.

⁴⁾ Stud. Math., 4 (1933), 70-84.

also obtained the same proof. Kakutani also says in the letter that Chap. 1 of [K-S] may be rewritten by his method (Theorem 1).

§ 2. The duality. For any $X \subseteq E$, let X^* denote the totality of $f \in \overline{E}$ such that $\sup_{x \in X} f(x) \subseteq 1$. In the same way, for any set $F \subseteq \overline{E}$, let F' denote the totality of $x \in E$ such that $\sup_{f \in F} f(x) \subseteq 1$. Then we have

Lemma 1. $X^{*/*} = X^*, F^{/*/} = F'.$

Proof. Surely $X \subseteq X^{*'}$ and $F \subseteq F'^*$. Moreover we have $X_1^* \subseteq X_2^*$ $(F_1' \subseteq F_2')$ from $X_1 \supseteq X_2$ $(F_1 \supseteq F_2)$.

Theorem 3. For any $X \subseteq E$, $X^{*'}$ is the (strong) closure $\overline{conv}(X, 0)$ of the convex hull conv(X, 0) of X and the zero vector X of X.

Proof. Surely we have $X^{*'} \ge \overline{\operatorname{conv}}(X, 0)$. If $x_0 \in X^{*'} - \overline{\operatorname{conv}}(X, 0)$, there exists, by Ascoli-Mazur's theorem, an $f_0 \in \overline{E}$ such that $f_0(x_0) > 1$ and $f_0(x) \le 1$ at every $x \in \overline{\operatorname{conv}}(X, 0)$. Then $f_0 \in X^*$ and hence x_0 must be $\overline{\in} X^{*'}$, contrary to the hypothesis. Thus we must have $X^{*'} = \overline{\operatorname{conv}}(X, 0)$.

Theorem 4. For any $F \subseteq \overline{E}$, F'^* is the closure $\overline{\text{conv}}$ (F, 0) (in the sense of weak topology of \overline{E} as functionals) of the convex hull $\overline{\text{conv}}$ (F, 0) of F and the zero vector 0 of \overline{E} .

Proof. Surely we have $F'^* \supseteq \overline{\text{conv}}(F,0)$. If $f_0 \in F'^* - \overline{\text{conv}}(F,0)$, then there exists, by the definition of weak topology, $\varepsilon > 0$ and x_1 , $x_2, \ldots, x_n, \varepsilon E$ such that $\sup_{1 \le i \le n} |f(x_i) - f_0(x_i)| > \varepsilon$ at every $f \in \overline{\text{conv}}(F,0)$. Thus the point $\xi_{f_0} = \left(f_0(x_1), f_0(x_2), \ldots, f_0(x_n)\right)$ in n-dimensional euclidian space E_n is of euclidian distance $> \varepsilon$ from the convex point set $\{\xi_f\}$ in E_n , where $\xi_f = \left(f(x_1), f(x_2), \ldots, f(x_n)\right)$, $f \in \overline{\text{conv}}(F,0)$. Hence, by Ascoli-Mazur's theorem, there exists real numbers a_1, a_2, \ldots, a_n such that $\sum_{i=1}^n a_i f_0(x_i) > 1$ and $\sum_{i=1}^n a_i f(x_i) \le 1$ at every $f \in \overline{\text{conv}}(F,0)$. Put $x_0 = \sum_{i=1}^n a_i x_i$, then $x_0 \in F'$ by $f(x_0) \le 1$. This contradicts to $1 < f_0(x_0)$, $f_0 \in F'^*$. Therefore we must have $F'^* = \overline{\text{conv}}(F,0)$.

By Lemma 1, Theorem 1, 3 and 4 we obtain the following duality Theorem 5. Regularly convex set $F \subseteq \overline{E}$ containing 0 is characterised by the property that it is expressible as $F = X^*$, $X \subseteq E$. (Strongly) closed convex set $X \subseteq E$ containing 0 is characterised by the property that it is expressible as X = F', $F \subseteq \overline{E}$.

§ 3. Boundedness of convex sets and regularly convex sets. Regularly convex set F need not be (strongly) bounded. However we may prove

Theorem 6. In order that a regularly convex set F be (strongly) bounded, it is necessary and sufficient that 0 is the inner point of the (strongly) closed convex set $F' \subseteq E$.

Proof. Let $\sup_{f \in F} ||f|| = \alpha < \infty$, and assume that 0 is not an inner point of F'. Then we have a sequence $\{x_i\} \subseteq E$ with the properties

¹⁾ Cf. Garrett Birkhoff: Lattice Theory, New York (1940), 24.

 $x_i \in F'(i=1,2,\ldots), \lim_{i o \infty} \|x_i\| = 0.$ This contradicts to $|f(x_i)| \le \|f\| \cdot \|x_i\| \le a\|x_i\|, (i=1,2,\ldots), f \in F.$ For we have $|f(x_i)| \le 1$, viz. $x_i \in F'$ if $\|x_i\| \le \frac{1}{a}$. Next let the sphere $\|x\| \le a, \ a > 0$, of E be $\le F'$, and assume that F is not (strongly) bounded. Then there exists $f_0 \in F$ such that $f_0(x_0) > 1$ or $f_0(x_0) < -1$ at a point x_0 with $\|x_0\| = a$. Since $\|-x_0\| = \|x_0\|, \ x_0$ and $-x_0$ both $\in F'$, and thus we must have a point $x_1 \in F'$ such that $f_0(x_1) > 1$. This contradicts to the fact that $f_0 \in F$.

Dually we may prove

Theorem 7. In order that a regularly convex set F contains 0 as an inner point, it is necessary and sufficient that the (strongly) closed convex set F' be (strongly) bounded.

Proof. Let $\sup_{x \in \bar{F}'} \|x\| = a$, $0 < \alpha < \infty$, then $f \in \bar{E}$ with $\|f\| \leq \frac{1}{\alpha}$ surely belongs to $F'^* = F$. Next let the sphere $\|f\| \leq \alpha$, $0 < \alpha < \infty$, be contained in F. By Hahn-Banach's theorem, there exists, for any $x_0 \in E$, an $f_0 \in \bar{E}$ such that $\|f_0\| = 1$, $f_0(x_0) = \|x_0\|$. Thus we must have $\|x\| \leq \frac{1}{\alpha}$ for any $x \in F'$.

§ 4. Existence of extreme points. Let E be separable and let a (strongly) closed convex set $X \subseteq E$ contain 0 as an inner point. Then, by S. Mazur's theorem cited in § 1, there exists boundary point x_0 of X at which we have one and only one tangential hyperplane. This means that there exists one and only one $f_0 \in \overline{E}$ with the properties $f_0(x_0) = 1$, $\sup_{x \in X} f_0(x) \le 1$. Such f_0 is surely an extreme point of the (strongly) bounded regularly convex set X^* . Hence, combined with theorem 5 and 6, we obtain a new proof of Theorem 2 in the special case when E is separable.

In order to prove Theorem 2 for non-separable E we first prove the Lemma 2. A (strongly) bounded regularly convex set $F \subseteq \bar{E}$ is bicompact in the weak topology of \bar{E} as functionals.

Proof. Let $\sup_{f \in F} \|f\| = \alpha$, $\alpha < \infty$. The sphere $G: \|g\| \leq \alpha$ of \bar{E} is bicompact in the weak topology of \bar{E} as functionals¹⁾. Since, by Theorem 1, $F \subseteq G$ is closed in the weak topology of \bar{E} as functionals, F is bicompact with G.

Proof to Theorem 2. Let, as above, $\sup_{f \in F} \|f\| = a$, $0 < a < \infty$, where F is regularly convex. Well-order the points of the unit-sphere $\|x\| \le 1$ of E as follows:

(1)
$$x_0, x_1, x_2, ..., x_a, ... \quad (a < \eta)$$
.

F is bicompact in the weak topology of \overline{E} as functionals, by Lemma 2. Hence, for any $x \in E$, the continuous function f(x) on $F(f \in F)$ attains its supremum and infimum on F. Let $\sup_{f \in F} f(x_0) = f_1(x_0)$, $f_1 \in F$,

¹⁾ See S. Kakutani: loc. cit.

and let F_1 be the totality of such $f_1 \in F$. F_1 is convex and closed (in the weak topology of \overline{E} as functionals), and is thus bicompact. If F_1 contains only one point f_1^0 , f_1^0 is surely an extreme point of F and the Theorem 2 is proved. Assume that F_1 consists of more than one point, and let x_a be the first point in the well-ordered sequence (1) which satisfies $f(x_a) \not\equiv \text{constant}$ on F_1 . Put $a = a_1$ and let $\sup_{f_1 \in F_1} f_1(x_{a_1}) = f_2(x_{a_1})$, $f_2 \in F_1$, and denote by F_2 the totality of such $f_2 \in F_1$. In this way let possibly transfinite sequence of convex, bicompact sets $F \supseteq F_1 \supseteq F_2 \supseteq \cdots \supseteq F_{\xi} \supseteq \cdots$ be defined for all $\xi < \xi_1(< \eta)$. If ξ_1 is not a limit ordinal, let a_{ξ_1-1} be the least a such that $f(x_a) \not\equiv \text{constant}$ on F_{ξ_1-1} . Let $\sup_{f \in F_{\xi_1-1}} f(x_{a_{\xi_1-1}}) = f_{\xi_1}(x_{a_{\xi_1-1}})$, $f_{\xi_1} \in F_{\xi_1-1}$, and define F_{ξ_1} as the totality of such $f_{\xi_1} \in F_{\xi_1-1}$. If ξ_1 is a limit ordinal, put F'_{ξ_1} the intersection $f_{\xi_1} \in F_{\xi_1}$ as $f_{\xi_1} \in F_{\xi_1-1}$. If $f_{\xi_1} \in F_{\xi_1-1}$ is not void. We then define $f_{\xi_1} \in F_{\xi_1}$ taking $f'_{\xi_1} \in F_{\xi_1}$ in place of $f_{\xi_1-1} \in F_{\xi_1-1}$ in the above argument.

Thus, assuming the process not to give any extreme point of F, we define bicompact sets F_{ξ} for all $\xi < \eta$ such that: $F \ge F_1 \ge \cdots \ge F_{\xi} \ge \cdots$. Then $f_{\xi} > F_{\xi}$ is not void. $f_{\xi} > F_{\xi}$ consists of only one point. For, if $f, g \in f_{\xi} > F_{\xi}$, $f \ne g$, then $f(x) \ne g(x)$ for a certain $x = x_a$, $a < a_{\xi}$. This contradicts $f(x_a) = g(x_a)$ (by $f, g \in F_{\xi}$). Thus let $f_0 = f_{\xi} > f_{\xi}$, f_0 is an extreme point of f_0 . For the proof, take any two f_0 , f_0 is f_0 . Then there exists the least f_0 such that f_0 both f_0 . Thus f_0 is f_0 , f_0 . Then there exists the least f_0 such that f_0 both f_0 . Thus f_0 is f_0 . This proves that f_0 both f_0 .