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104. Analytical Characterization of Displacements
in General Poincar Space.

By Kiiti MORITA.
Tokyo Bunrika Daigaku, Tokyo.

(Comm. by T. TAKAGI M.I.A., Dec. 12, 1941.)

In recent papers M. Sugawara has constructed a theory of auto-
morphic functions of higher dimensions, as a generalization of Poincar6’s
theory). He has considered the space t(), whose points are symmetric
matrices of order n with the property E()-Z’Z> 0, and defined the

displacements in N( as follows" Let U= UaU2 be a matrix of

order 2n satisfying the conditions U’JU=J, USU=S, where J=

:()/ Then the transformation W=
(UZ+ U)(UZ/ U)- is called a displacement in (). In the classical
case n= 1, as is well known, the transformations of the type described
above exhaust all the one-to-one analytic transformations which map
() into itsfelf. Then arises the problem" Does this fact remain
true in our general case ? In what follows this problem will be dis-
cussed for the spaces (,) and I(,)). The answer is affirmative except
for (,). As in the classical case we are led to this result by an
analogue to Schwarz’s lemma in higher dimensions.

1. The set of all matrices of type (n,m) shall be denoted by
}:(n, m).

Theorem 1. If a mapping f of 91(.) into itself satisfies the con-
ditions (1) f(aA/B)=.f(A)//f(B), (a,/ being complex numbers)
(2) according as the ranl of Z is 1 or 2, the rank of the image f(Z)
is 1 or 2, then the mapping f can be written in the following form
f(Z) AZB, when n m f(Z) AZB or AZ’B, when n m. Here A
and B are non-singular constant matrices of orders n and m respec-
tively.

Proof. We shall denote the matrix units by E" the (a,/)-element
of E is equal to 1 and the other elements are all zeroes. For brevity
let us call that a matrix A has the iorm (a) or (b), according as A
can be written in the form A=-aE or A=aE, where a,

a=l =1
are numbers. Now, by the condition (2), there exist non-singular matrices
A and B (of orders n and ) such that Af(E)B=Em Then
Af(E)B(i 1) has the form (a) or (b). For, if we put Af(E)B=
,cE for a fixed i, we have, by the condition (2), cc-cc=O

1) M. Sugawara, Ober eine allgemeine Theorie der Fuchsschen Gruppen und
Theta-Reihen, Ann. Math., 41 (1940), 488-494. On the general zetafuchsian functions,
Proc. 16 (1940), 367-372. A generalization of Poincar-space, Proc. 16 (1940), 373-377,
to be cited as [S-3].

2} K. Morita, A remark on the theory of general fuchsian groups, Proc. 17
(1941), 233-237, to be cited as [M--l].
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for a :> 1, / ::> 1. Applying the condition (2) to the matrix Eu+Em
we get (c+1)c,-cc=O. Hence c=O for a :> 1, / > 1. Noting
again the rank of Af(E)B we know that Af(EOB must be of
the form (a) or (b). This reasoning holds equally for matrices
Alf(E)B1 (3" > 1).

Next we will show that, if Alf(E2I)B has the form (a), then the
forms of Af(EOB and Aff(E)B(i > 1, j> 1) must be (a) and (b)
respectively. Suppose that Aff(EOB were of the form (b) for some

i > 2. Then we could put Alf(EOB= cDE. Among the numbers
=1ct) there would exist a number 1o V 0(/0 > 1). (Otherwise, the rank

of (il)Aif(c Eu-EiOB is equal to zero.) Similarly there exists a number
() 0(a0 }> 1), where Alf(E.)B=2] (l)l. Then the rank oftaol

Af(E+E)B would be equal to 2, which contradicts the condition
(2). On the other hand, Aff(E)B are clearly of the form (b). There-
fore the only possible cases are the following.

(1st case) The matrices Af(EOB (i 1)are all of the form (a)
and Af(E)B (j 1) are all of the form (b).

(2nd case) The matrices Af(EOB (i}> 1) are all of the form (b)
and Af(E)B (j::> 1) are all of the form (a).

(1st case). Let us put Af(E)B=,
a=l

By the conditions (1) and (2) we know that there exist non-singular
matrices A. and B of orders n and m satisfying the conditions:

,(ll)A [,(21),(21) c(2"A’ [,(nl)(nl) c(nl)t11 21 ""tnl /z-x2"--(10"’0), kt’11 t21

A--(0 01)* /,(11)(11).c(,2))B2 (10 .0),,t11 td2 ..1m/_2.tll tv19. =(010 .0), ...,
(.(i)(1) c))B2 (0 ..01) Since Aif(Eii)Bi EI, we have A2Alf(Ei)(II 12

BB_=Em AAf(EI)BIB.=E.
Now let us put f(Z)=AAlf(Z)BB. Then the above result

shows that f(EO=EI and f(E)=E. However, we can further
prove that f(E)=E for all i,j. For fixed i > 1 and j :> 1 we put

f(E)=c,E,.. First we will show that c,=O for all a, t such

that a :> 1, :> 1, (a,/) (i, j). If a :> 1, a i, we get cc-cc O.
Since the rank of f(E+E) is equal to 1, (1 +cOc,a-c,ca=O. Hence
c=O. In case / ::> 1,/ j, we have c=O similarly. Next we will
show that c = 0. If c=O, f(E) would be of the form (a) or (b),
and hence the rank of f(E+E) would be less than 2, contrary to
the condition (2). Therefore c 0, and consequently f(E)=cE+
cE+cE+cE. Now it is easily seen that c-c=c-- 0. By
considering the rank of f(E+E+E+E) we have c=l. Thus we
have proved that f(E)=E for all i and j. Accordingly f(Z)=Z
for any Ze R(. ), that is, f(Z) AAIZBB;.

(2nd case). If nm, this case is clearly impossible. If n=m,
this case is reduced to the 1st case by considering the transposed
matrices of Alf(EOB and Alf(E)B.

Thus Theorem 1 is completely proved.
Remark. As an immediate corollary to this theorem we can
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mention a theorem of I. Schur).
Theorem 2. If a mapping f of (.m) into itself satisfies the con-

ditions (1) f(aA- fiB) af(A) / f(B), (a, being numbers) (2)
Ill(Z) I[=l[ ZII), then the mapping f is of the form f(Z)= UZV when
n-m. In case n m, f(Z)- UZV or f(Z) UZ V. Here U and V
are constant unitary matrices of orders n and m respectively.

Proof. Let us assume that n ::> m (the other case being treated
similarly) and put (; Z)=det. (E()-Z’Z), (; Z)=(;f(Z)).
Then, by the condition (2), (2; Z) and ().;Z) have at least one root
in common for each Ze(.). Now we put z,=x,/iy, i=V-+/--i,
Z--(z). Then (2 Z) and (; Z) can be regarded as polynomials
with coefficients in the ring K[xm x, ..., x, Ym ..., Y] K[x, yJ (To
make this point clear we write (2" x, y) etc.), where x, and y, are
considered as independent indeterminates and K means the field of all
complex numbers. If we construct the resultant R(, ) of (2; x, y)
and (2;x, y), R(, ) is the zero element as an element of K[x, y],
since R(, ) vanishes, if x and y take real values. Therefore
((;x,y) and ();x,y), regarded as elements of K(x,y)[2], have a
common factor. However the polynomial (;x,y) is irreducible.
Suppose that it is reducible" (X x, y)-g(it; x, y)h( x, y). Here we
can assume by a well-known theorem that g(2;x, y) and h(2;x, y) be-
long to K[x, y][]. Now let us put x--O or a ::> m and y=O for
all a,/. Then we have (O;X)=(-1)(det.(x,)), where (2;X)
means the polynomial obtained by this substitution and X=(x,)
(1 <2 a, / m). Therefore (-1)(det. (x,))=g(0; Z)h(O;Z). Since
det. (x,) is irreducible in K[x,x., ...,x] (x, are indeterminates),
we have either g(0; X) 1)-det. (xs), h(0; X) -.det. (x), or

g(O;X)-(-1)m, h(O;X)-o-(det. (x)) ( being a number). But,
as is easily shown, both cases are impossible. Hence (;x,y) is
irreducible, and accordingly we have (2;x, y)=(2;x, y). Therefore

hermitian matrices Z’Z and f(Z)’f(Z) are equivalent. In particular,
the rank of f(Z) is equal to that of Z. Hence, by Theorem 1, there
exist non-singular constant matrices A and B such that f(Z)=AZB
(or AZ’B, when n=m. The treatment of this case we omit in the
following.) To these A and B we can choose unitary matrices U, U,
V and V so that UAU=A and VBV-B. are positive diagonal
matrices. Then we have ZlI=llf(Z)II=ll AUZVBII and consequent-
ly IIZII (=1I UZV.II)=IIAZBII. From the last relation, we know that
A and B are scalar matrices. Hence we get f(Z)=UUZVV.
This completes the proof of the theorem.

2. Now we are in a situation to prove Schwarz’s lemma in higher
dimensions. (.) denotes the set of all matrices Z such that Z[[ <: 1

3) I. Schur, Sitzungsber. preuss. Akad. Wiss. 1925, 454-463. Satz II. As is shown
there, the condition of his theorem is satisfied for r--l, 2, if it is satisfied for some
r :> 2. Hence our theorem is applicable.

4) Contrary to our previous notation, IIZtl here means the norm of a matrix
Z" Z ll= 1.u.b. Z /II II, where runs over all m-dimensional vectors.
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and ZeR(,). By an analytic mapping f of (,)into itself we
mean that each (matrix-) element of f(Z) is a regular function of
complex variables zm z2, ..., z in the domain ZII<: 1 (Z= (z)).

Theorem 3. Let f be an analytic mapping of I(,,) into itself,
which fixes the zero point. Then it holds that IIf(Z)II IIZll. If the
equality holds at every point in a neighbourhood of one point Zo in
l(. ), then f is of the form f(Z)= UZV when n - m. In case n m,
we have either f(Z)= UZV or f(Z)= UZ’V. Here U and V are con-

",/5)stant unitary matrices of orders n and m respectzvety
Proof of the first part. Take an arbitrary point A in (.), and

put A =a. Then there exist two unitary matrices U0 and V0 such that
Uof(A)Vo=B is of the form B=:] &E-. Let us put fi(Z)= Uof(Z)Vo.

If we denote the elements of f(ua-A)by (u)(f(ua-A)=((u))),
then (u) are regular functions of a complex variable u in the domain
]ul<::l. Moreover, (0)=0 and ](u)]<::l for ]ul<::l, since
g(u) = Ilf (u-lA)Ilo Hence, by Schwarz’s lemma (in the case of one

variable), we have Therefore z(a) a, that is,
I&la for ljn, ljm. Hence it follows that Ilf(A)
B a, which completes the proof.

Proof of the second part. In the proof of Theorem 2, we have
shown that (; x, y) is an irreducible polynomiala). Hence ( ;x, y)= 0
defines an algebraic function (x,y) of complex variables x,x., ...,
x, ym..., Ynm. If (x, y0) (Z0= (z), z, =x,O+iyO) is a branch point
of (x, y), we can find a regular point Z in its neighbourhood. There-
fore we can assume that the point (x, y0) is not a branch point. Since,
by the assumption, a suitable branch of (x, y) satisfies the equation
(2;x, y)=O in a neighbourhood of the point (x, y0), we can conclude
( x, y) ( x, y) by analytic continuations. If the variables x and

y, assume real values, we have SpZ’Z=Spf(z)’f(Z)for Ze(n,).
If SpZ’Z< 1, we can regard Z as a point of (.). Hence the above
relation shows that f is an analytic mapping of (m.) into itself and
satisfies the condition Ilf(Z)lI=lIZll or Ze(nm, 1). Therefore, if we
can prove that any analytic mapping g of l(,) into itself with the
property llg(Z)ll=llZll for Ze (,) is linear, we know the linearity
of the given mapping f and consequently the theorem follows from

Theorem 2. Now, let us put Z=\’:/z g(Z) Since the
\g(zl, ..., z)l

domain .) is what H. Cartan calls "domaine cercl," we have the

following expansion)" g(z, ..., z)= Pzt(z, ..., z) (t= 1, 2, ..., p).
l=l

Here P(z, ..., z) are homogenious polynomials of degree in z, ...,z,,
and the series is absolutely and uniformly convergent in the neigh-

5) This is also proved by M. Sugawara. See the foregoing paper of M. Sugawara"
On the general Schwarzian lemma.

5a) Here we assume that n m.
6) H. Cartan, Jour. de math. pures et appl. (9), 10 (1931), 1-114.
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bourhood of any point in I(,). Take an arbitrary point Z0 in
^- (z being the componentsand put in the above expression

of Z0). Then, by integrating with respect to 0 from 0 to 2, we

have ] [z ler=, (lP(z, ..., z)])r, since, by the assumption,
k=l /=1 k=l

rze ., rze) ]r.v , z Therefore P(z,..., z) 0 for all
k=l

1, that is, g(z, ..., z) (k=l, 2, ..., p) are linear homogenious func-
tions of z, ...,z. This completes the proof.

Remark. In order to remove the assumption f(O)=O in the above
theorem, we have only to make use of the metric p* and the group
!D(, ) defined previously).

3. The problem proposed in the introduction is solved by the
following

Theorem 4. Any one-to-one analytic mapping f of I.,) on it-
self belongs to (.)), when n : m. In case n--m f belongs to the
transformation group generated by the mapping o(Z)= Z" and the ele-
ments of (,, ).

Proof. If the zero point is fixed by f, then we have Ill(Z)
and hence the theorem follows from Theorem 3.

4. Theorem 4 can also be obtained as follows. Since (., ) is a
domaine cercl" in the sense of H. Cartan, a one-to-one analytic

mapping f of (,)on itself such that f(0)=0 is linears). Hence
IIf(Z)lI=llZl[, so that f(Z)=UZV or UZ’V by Theorem 2.

;. In this paragraph we are concerned with the space
Theorem 2’. If a linear mapping f of (R)() into itself ((R)() being

the set of all symmetric matrices of order n) satisfies the condition
IIf(g)l]=llZll, then f is of the form f(Z)-UZU’, where U is a con-
stant unitary matrix.

Theorem 3’. Let f be an analytic mapping of () into itself
which fixes the zero point. Then it holds that Ill(Z)II Z I. If the
equality holds at every point in a neighbourhood of one point Zo in
(), then f is of the form f(Z)= UZU’, where U is a constant unitary
matrix.

Theorem 4’. Any one-to-one analytic mapping f of l() on itself
is of the type mentioned in the introduction f(Z) (UZ+ U)
(UZ/U)-, U’JU=J, U’S=S.

The proofs of these theorems can be done by the same method
as in the case of I(,). For this purpose it is sufficient to prove
Theorem 2’.

Proof of Theorem 2’. If we consider the elements x of a sym-
metric matrix X as independent indeterminates, its determinant is ir-
reducible. Hence, by proceeding analogously as in Theorem 2, it is

shown that f(Z)’f(Z) and Z’Z are equivalent for any Ze(R)(). In
particular we have det. f(Z) I= det. Z. Since det. Z and det. f(Z)
are regular unctions of complex variables Zl, ..., Zn (Z=(z)), there

7) Cf. [S-3] and [M-l].
8) H. Cartan, loc. cit. Thdorme VI.
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exists a number such that det. f(Z)=o det. Z. From this, by a
theorem of G. Frobenius), we have f(Z)=AZA’, where A is a non-
singular constant matrix. By the similar reasoning as in Theorem 2,
we know that A is a unitary matrix. This completes the proof.

In conclusion I wish to express my hearty thanks to Prof. M.
Sugawara for his many valuable remarks.

9) G. Frobenius, Sitzungsber. preuss. Akad. Wiss. 1897, 994-1015. Satz III, 7.


