104. Analytical Characterization of Displacements in General Poincaré Space.

By Kiiti Morita.
Tokyo Bunrika Daigaku, Tokyo.
(Comm. by T. Takagi m.I.A., Dec. 12, 1941.)

In recent papers M. Sugawara has constructed a theory of automorphic functions of higher dimensions, as a generalization of Poincaré's theory ${ }^{1)}$. He has considered the space $\mathfrak{A}_{(n)}$, whose points are symmetric matrices of order n with the property $E^{(n)}-\bar{Z}^{\prime} Z>0$, and defined the displacements in $\mathfrak{H}_{(n)}$ as follows: Let $U=\binom{U_{1} U_{2}}{U_{3} U_{4}}$ be a matrix of order $2 n$ satisfying the conditions $U^{\prime} J U=J, \quad U^{\prime} S \bar{U}=S$, where $J=$ $\left(\begin{array}{cc}0 & E^{(n)} \\ -E^{(n)} & 0\end{array}\right), \quad S=\left(\begin{array}{cc}E^{(n)} & 0 \\ 0 & -E^{(n)}\end{array}\right)$. Then the transformation $W=$ $\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$ is called a displacement in $\mathfrak{A}_{(n)}$. In the classical case $n=1$, as is well known, the transformations of the type described above exhaust all the one-to-one analytic transformations which map $\mathfrak{U}_{(n)}$ into itsfelf. Then arises the problem: Does this fact remain true in our general case? In what follows this problem will be discussed for the spaces $\mathfrak{H}_{(n)}$ and $\mathfrak{H}_{(n, m)}{ }^{2}$. The answer is affirmative except for $\mathfrak{A}_{(n, n)}$. As in the classical case we are led to this result by an analogue to Schwarz's lemma in higher dimensions.

1. The set of all matrices of type (n, m) shall be denoted by $\mathfrak{R}_{(n, m)}$.

Theorem 1. If a mapping f of $\Re_{(n, m)}$ into itself satisfies the conditions: (1) $f(\alpha A+\beta B)=\alpha f(A)+\beta f(B),(\alpha, \beta$ being complex numbers) (2) according as the rank of Z is 1 or 2 , the rank of the image $f(Z)$ is 1 or $\geqq 2$, then the mapping f can be written in the following form: $f(Z)=A Z B$, when $n \neq m ; f(Z)=A Z B$ or $A Z^{\prime} B$, when $n=m$. Here A and B are non-singular constant matrices of orders n and m respectively.

Proof. We shall denote the matrix units by $E_{\alpha \beta}$: the (α, β)-element of $E_{\alpha \beta}$ is equal to 1 and the other elements are all zeroes. For brevity let us call that a matrix A has the form (a) or (b), according as A can be written in the form $A=\sum_{a=1}^{n} a_{a 1} E_{a 1}$ or $A=\sum_{\beta=1}^{m} a_{1 \beta} E_{1 \beta}$, where $a_{a 1}, a_{1 \beta}$ are numbers. Now, by the condition (2), there exist non-singular matrices A_{1} and B_{1} (of orders n and m) such that $A_{1} f\left(E_{11}\right) B_{1}=E_{11}$. Then $A_{1} f\left(E_{i 1}\right) B_{1}(i>1)$ has the form (a) or (b). For, if we put $A_{1} f\left(E_{i 1}\right) B_{1}=$ $\sum_{\alpha, \beta} c_{\alpha \beta} E_{\alpha \beta}$ for a fixed i, we have, by the condition (2), $c_{11} c_{\alpha \beta}-c_{\alpha 1} c_{1 \beta}=0$

[^0]for $\alpha>1, \beta>1$. Applying the condition (2) to the matrix $E_{11}+E_{i 1}$, we get $\left(c_{11}+1\right) c_{\alpha \beta}-c_{a 1} c_{1 \beta}=0$. Hence $c_{\alpha \beta}=0$ for $\alpha>1, \beta>1$. Noting again the rank of $A_{1} f\left(E_{i 1}\right) B_{1}$ we know that $A_{1} f\left(E_{i 1}\right) B_{1}$ must be of the form (a) or (b). This reasoning holds equally for matrices $A_{1} f\left(E_{1 j}\right) B_{1}(j>1)$.

Next we will show that, if $A_{1} f\left(E_{21}\right) B_{1}$ has the form (a), then the forms of $A_{1} f\left(E_{i 1}\right) B_{1}$ and $A_{1} f\left(E_{1 j}\right) B_{1}(i>1, j>1)$ must be (a) and (b) respectively. Suppose that $A_{1} f\left(E_{i 1}\right) B_{1}$ were of the form (b) for some $i>2$. Then we could put $A_{1} f\left(E_{i 1}\right) B_{1}=\sum_{\beta=1}^{m} c_{1 \beta}^{(i)} E_{1 \beta}$. Among the numbers $c_{1 \beta}^{(i)}$ there would exist a number $c_{1 \beta_{0}}^{(i)} \neq 0\left(\beta_{0}>1\right)$. (Otherwise, the rank of $A_{1} f\left(c_{11}^{(i 1)} E_{11}-E_{i 1}\right) B_{1}$ is equal to zero.) Similarly there exists a number $c_{a_{01}}^{(21)} \neq 0\left(\alpha_{0}>1\right)$, where $A_{1} f\left(E_{21}\right) B_{1}=\sum_{a=1}^{n} c_{a 1}^{(21)} E_{a 1 .}$. Then the rank of $A_{1} f\left(E_{21}+E_{i 1}\right) B_{1}$ would be equal to 2 , which contradicts the condition (2). On the other hand, $A_{1} f\left(E_{1 j}\right) B_{1}$ are clearly of the form (b). Therefore the only possible cases are the following.
(1st case) The matrices $A_{1} f\left(E_{i 1}\right) B_{1}(i>1)$ are all of the form (a) and $A_{1} f\left(E_{1 j}\right) B_{1}(j>1)$ are all of the form (b).
(2nd case) The matrices $A_{1} f\left(E_{i 1}\right) B_{1}(i>1)$ are all of the form (b) and $A_{1} f\left(E_{1 j}\right) B_{1}(j>1)$ are all of the form (a).
(1st case). Let us put $A_{1} f\left(E_{i 1}\right) B_{1}=\sum_{a=1}^{n} c_{a 1}^{(i 1)} E_{a 1}, A_{1} f\left(E_{1 j}\right) B_{1}=\sum_{\beta=1}^{m} c_{1 \beta}^{(1 j)} E_{1 \beta}$. By the conditions (1) and (2) we know that there exist non-singular matrices A_{2} and B_{2} of orders n and m satisfying the conditions: $\left(c_{11}^{(11)} c_{21}^{(11)} \ldots c_{n 1}^{(11)}\right) A_{2}^{\prime}=(10 \ldots 0),\left(c_{11}^{(21)} c_{21}^{(21)} \ldots c_{n 1}^{(21)}\right) A_{2}^{\prime}=(010 \ldots 0), \ldots,\left(c_{11}^{(n 1)} c_{21}^{(n 1)} \ldots c_{n 1}^{(n 1)}\right)$ $A_{2}^{\prime}=(0 \ldots 01) ; \quad\left(c_{11}^{(11)} c_{12}^{(11)} \ldots c_{1 m}^{(11)}\right) B_{2}=(10 \ldots 0), \quad\left(c_{11}^{(12)} c_{12}^{(12)} \ldots c_{1 m}^{(12)}\right) B_{2}=(010 \ldots 0), \ldots$, $\left(c_{11}^{(1 m)} c_{12}^{(1 m)} \ldots c_{1 m}^{(1 m)}\right) B_{2}=(0 \ldots 01)$. Since $A_{1} f\left(E_{11}\right) B_{1}=E_{11}$, we have $A_{2} A_{1} f\left(E_{i 1}\right)$ $B_{1} B_{2}=E_{i 1}, A_{2} A_{1} f\left(E_{1 j}\right) B_{1} B_{2}=E_{1 j}$.

Now let us put $f_{1}(Z)=A_{2} A_{1} f(Z) B_{1} B_{2}$. Then the above result shows that $f_{1}\left(E_{i 1}\right)=E_{i 1}$ and $f_{1}\left(E_{1 j}\right)=E_{1 j}$. However, we can further prove that $f_{1}\left(E_{i j}\right)=E_{i j}$ for all i, j. For fixed $i>1$ and $j>1$ we put $f_{1}\left(E_{i j}\right)=\sum_{\alpha, \beta} c_{a \beta} E_{\alpha \beta}$. First we will show that $c_{\alpha \beta}=0$ for all α, β such that $\alpha>1, \beta>1,(\alpha, \beta) \neq(i, j)$. If $\alpha>1, \alpha \neq i$, we get $c_{i 1} c_{a \beta}-c_{a 1} c_{i \beta}=0$. Since the rank of $f_{1}\left(E_{i 1}+E_{i j}\right)$ is equal to $1,\left(1+c_{i 1}\right) c_{a \beta}-c_{a 1} c_{i \beta}=0$. Hence $c_{a \beta}=0$. In case $\beta>1, \beta \neq j$, we have $c_{a \beta}=0$ similarly. Next we will show that $c_{i j} \neq 0$. If $c_{i j}=0, f_{1}\left(E_{i j}\right)$ would be of the form (a) or (b), and hence the rank of $f_{1}\left(E_{11}+E_{i j}\right)$ would be less than 2 , contrary to the condition (2). Therefore $c_{i j} \neq 0$, and consequently $f_{1}\left(E_{i j}\right)=c_{11} E_{11}+$ $c_{i 1} E_{i 1}+c_{1 j} E_{1 j}+c_{i j} E_{i j}$. Now it is easily seen that $c_{11}=c_{i 1}=c_{1 j}=0$. By considering the rank of $f_{1}\left(E_{11}+E_{i 1}+E_{1 j}+E_{i j}\right)$ we have $c_{i j}=1$. Thus we have proved that $f_{1}\left(E_{i j}\right)=E_{i j}$ for all i and j. Accordingly $f_{1}(Z)=Z$ for any $Z \in \Re_{(n, m)}$, that is, $f(Z)=A_{1}^{-1} A_{2}^{-1} Z B_{2}^{-1} B_{1}^{-1}$.
(2nd case). If $n \neq m$, this case is clearly impossible. If $n=m$, this case is reduced to the 1st case by considering the transposed matrices of $A_{1} f\left(E_{i 1}\right) B_{1}$ and $A_{1} f\left(E_{1 j}\right) B_{1}$.

Thus Theorem 1 is completely proved.
Remark. As an immediate corollary to this theorem we can
mention a theorem of I. Schur ${ }^{3)}$.
Theorem 2. If a mapping f of $\Re_{(n, m)}$ into itself satisfies the conditions: (1) $\quad f(\alpha \mathrm{~A}+\beta B)=\alpha f(A)+\beta f(B)$, (α, β being numbers) (2) $\|f(Z)\|=\|Z\|^{4}$, then the mapping f is of the form $f(Z)=U Z V$ when $n=m$. In case $n=m, f(Z)=U Z V$ or $f(Z)=U Z^{\prime} V$. Here U and V are constant unitary matrices of orders n and m respectively.

Proof. Let us assume that $n \geqq m$ (the other case being treated similarly) and put $\varphi(\lambda ; Z)=\operatorname{det} .\left(\lambda E^{(m)}-\bar{Z}^{\prime} Z\right), \psi(\lambda ; Z)=\varphi(\lambda ; f(Z))$. Then, by the condition (2), $\varphi(\lambda ; Z)$ and $\psi(\lambda ; Z)$ have at least one root in common for each $Z \in \Re_{(n, m)}$. Now we put $z_{\alpha \beta}=x_{\alpha \beta}+i y_{\alpha \beta}, i=\sqrt{-1}$, $Z=\left(z_{\alpha \beta}\right)$. Then $\varphi(\lambda ; Z)$ and $\psi(\lambda ; Z)$ can be regarded as polynomials with coefficients in the ring $K\left[x_{11}, x_{21}, \ldots, x_{n m}, y_{11}, \ldots, y_{n m}\right]=K[x, y] \quad$ (To make this point clear we write $\varphi(\lambda: x, y)$ etc.), where $x_{\alpha \beta}$ and $y_{\alpha \beta}$ are considered as independent indeterminates and K means the field of all complex numbers. If we construct the resultant $R(\varphi, \psi)$ of $\varphi(\lambda ; x, y)$ and $\psi(\lambda ; x, y), R(\varphi, \psi)$ is the zero element as an element of $K[x, y]$, since $R(\varphi, \psi)$ vanishes, if $x_{\alpha \beta}$ and $y_{\alpha \beta}$ take real values. Therefore $\varphi(\lambda ; x, y)$ and $\psi(\lambda ; x, y)$, regarded as elements of $K(x, y)[\lambda]$, have a common factor. However the polynomial $\varphi(\lambda ; x, y)$ is irreducible. Suppose that it is reducible: $\varphi(\lambda ; x, y)=g(\lambda ; x, y) h(\lambda ; x, y)$. Here we can assume by a well-known theorem that $g(\lambda ; x, y)$ and $h(\lambda ; x, y)$ belong to $K[x, y][\lambda]$. Now let us put $x_{\alpha \beta}=0$ for $\alpha>m$ and $y_{\alpha \beta}=0$ for all α, β. Then we have $\varphi(0 ; X)=(-1)^{m}\left(\operatorname{det} .\left(x_{\alpha \beta}\right)\right)^{2}$, where $\varphi(\lambda ; X)$ means the polynomial obtained by this substitution and $X=\left(x_{\alpha \beta}\right)$ $(1 \leqq \alpha, \beta \leqq m)$. Therefore $(-1)^{m}\left(\operatorname{det} .\left(x_{\alpha \beta}\right)\right)^{2}=g(0 ; X) h(0 ; X)$. Since det. $\left(x_{\alpha \beta}\right)$ is irreducible in $K\left[x_{11}, x_{21}, \ldots, x_{m m}\right]$ ($x_{\alpha \beta}$ are indeterminates), we have either $g(0 ; X)=(-1)^{m} \omega \cdot \operatorname{det} .\left(x_{a \beta}\right), h(0 ; X)=\omega^{-1} \cdot \operatorname{det}$. $\left(x_{\alpha \beta}\right)$, or $g(0 ; X)=(-1)^{m} \omega, h(0 ; X)=\omega^{-1}\left(\operatorname{det} .\left(x_{a \beta}\right)\right)^{2}(\omega$ being a number). But, as is easily shown, both cases are impossible. Hence $\varphi(\lambda ; x, y)$ is irreducible, and accordingly we have $\varphi(\lambda ; x, y)=\psi(\lambda ; x, y)$. Therefore hermitian matrices $\bar{Z}^{\prime} Z$ and $\overline{f(Z)^{\prime} f}(Z)$ are equivalent. In particular, the rank of $f(Z)$ is equal to that of Z. Hence, by Theorem 1 , there exist non-singular constant matrices A and B such that $f(Z)=A Z B$ (or $A Z^{\prime} B$, when $n=m$. The treatment of this case we omit in the following.) To these A and B we can choose unitary matrices U_{1}, U_{2}, V_{1} and V_{2} so that $U_{1} A U_{2}=A_{1}$ and $V_{2} B V_{1}=B_{1}$ are positive diagonal matrices. Then we have $\|Z\|=\|f(Z)\|=\left\|A_{1} U_{2}^{-1} Z V_{2}^{-1} B_{1}\right\|$ and consequently $\|Z\|\left(=\left\|U_{2} Z V_{2}\right\|\right)=\left\|A_{1} Z B_{1}\right\|$. From the last relation, we know that A_{1} and B_{1} are scalar matrices. Hence we get $f(Z)=U_{1}^{-1} U_{2}^{-1} Z V_{2}^{-1} V_{1}^{-1}$. This completes the proof of the theorem.
2. Now we are in a situation to prove Schwarz's lemma in higher dimensions. $\mathfrak{A}_{(n, m)}$ denotes the set of all matrices Z such that $\|Z\|<1$

[^1]and $Z \in \Re_{(n, m)}$. By an analytic mapping f of $\mathfrak{A}_{(n, m)}$ into itself we mean that each (matrix-) element of $f(Z)$ is a regular function of complex variables $z_{11}, z_{21}, \ldots, z_{n m}$ in the domain $\|Z\|<1\left(Z=\left(z_{\alpha \beta}\right)\right)$.

Theorem 3. Let f be an analytic mapping of $\mathfrak{H}_{(n, m)}$ into itself, which fixes the zero point. Then it holds that $\|f(Z)\| \leqq\|Z\|$. If the equality holds at every point in a neighbourhood of one point Z_{0} in $\mathfrak{A}_{(n, m)}$, then f is of the form $f(Z)=U Z V$ when $n \neq m$. In case $n=m$, we have either $f(Z)=U Z V$ or $f(Z)=U Z^{\prime} V$. Here U and V are constant unitary matrices of orders n and m respectively ${ }^{5}$.

Proof of the first part. Take an arbitrary point A in $\mathfrak{N}_{(n, m)}$, and put $\|A\|=\alpha$. Then there exist two unitary matrices U_{0} and V_{0} such that $U_{0} f(A) V_{0}=B$ is of the form $B=\sum_{j} \beta_{j} E_{j j}$. Let us put $f_{1}(Z)=U_{0} f(Z) V_{0}$. If we denote the elements of $f_{1}\left(u \alpha^{-1} A\right)$ by $\varphi_{i j}(u)\left(f_{1}\left(u \alpha^{-1} A\right)=\left(\varphi_{i j}(u)\right)\right)$, then $\varphi_{i j}(u)$ are regular functions of a complex variable u in the domain $|u|<1$. Moreover, $\varphi_{i j}(0)=0$ and $\left|\varphi_{i j}(u)\right|<1$ for $|u|<1$, since $\left|\varphi_{i j}(u)\right| \leqq\left\|f_{1}\left(u \alpha^{-1} A\right)\right\|$. Hence, by Schwarz's lemma (in the case of one variable), we have $\left|\varphi_{i j}(u)\right| \leqq|u|$. Therefore $\left|\varphi_{i j}(\alpha)\right| \leqq \alpha$, that is, $\left|\beta_{j}\right| \leqq \alpha$ for $1 \leqq j \leqq n, 1 \leqq j \leqq m$. Hence it follows that $\|f(A)\|=$ $\|B\| \leqq \alpha$, which completes the proof.

Proof of the second part. In the proof of Theorem 2, we have shown that $\varphi(\lambda ; x, y)$ is an irreducible polynomial ${ }^{5 \mathrm{a})}$. Hence $\varphi(\lambda ; x, y)=0$ defines an algebraic function $\Phi(x, y)$ of complex variables x_{11}, x_{21}, \ldots, $x_{n m}, y_{11}, \ldots, y_{n m}$. If $\left(x^{0}, y^{0}\right)\left(Z_{0}=\left(z_{\alpha \beta}^{0}\right), z_{\alpha \beta}^{0}=x_{\alpha \beta}^{0}+i y_{\alpha \beta}^{0}\right)$ is a branch point of $\Phi(x, y)$, we can find a regular point Z_{1} in its neighbourhood. Therefore we can assume that the point $\left(x^{0}, y^{0}\right)$ is not a branch point. Since, by the assumption, a suitable branch of $\Phi(x, y)$ satisfies the equation $\psi(\lambda ; x, y)=0$ in a neighbourhood of the point $\left(x^{0}, y^{0}\right)$, we can conclude $\varphi(\lambda ; x, y)=\psi(\lambda ; x, y)$ by analytic continuations. If the variables $x_{\alpha \beta}$ and $y_{\alpha \beta}$ assume real values, we have $S p \bar{Z}^{\prime} Z=S p \overline{f(Z)^{\prime}} f(Z)$ for $Z \in \mathfrak{H}_{(n, m)}$. If $S p \bar{Z}^{\prime} Z<1$, we can regard Z as a point of $\mathfrak{A}_{(n m, 1)}$. Hence the above relation shows that f is an analytic mapping of $\mathfrak{H}_{(n m, 1)}$ into itself and satisfies the condition $\|f(Z)\|=\|Z\|$ for $Z \in \mathfrak{A}_{(n m, 1)}$. Therefore, if we can prove that any analytic mapping g of $\mathfrak{A}_{(p, 1)}$ into itself with the property $\|g(Z)\|=\|Z\|$ for $Z \in \mathfrak{H}_{(p, 1)}$ is linear, we know the linearity of the given mapping f and consequently the theorem follows from
Theorem 2. Now, let us put $Z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{p}\end{array}\right), g(Z)=\left(\begin{array}{c}g_{1}\left(z_{1}, \ldots, z_{p}\right) \\ \ldots \ldots \ldots \ldots \\ g_{p}\left(z_{1}, \ldots, z_{p}\right)\end{array}\right)$. Since the domain $\mathfrak{H}_{(p, 1)}$ is what H. Cartan calls "domaine cerclé," we have the following expansion ${ }^{6}$: $\quad g_{k}\left(z_{1}, \ldots, z_{p}\right)=\sum_{l=1}^{\infty} P_{k l}\left(z_{1}, \ldots, z_{p}\right) \quad(k=1,2, \ldots, p)$. Here $P_{k l}\left(z_{1}, \ldots, z_{p}\right)$ are homogenious polynomials of degree l in z_{1}, \ldots, z_{p}, and the series is absolutely and uniformly convergent in the neigh-

[^2]bourhood of any point in $\mathfrak{H}_{(p, 1)}$. Take an arbitrary point Z_{0} in $\mathfrak{A}_{(p, 1)}$ and put in the above expression $z_{\nu}=r z_{\nu}^{0} e^{i \theta}$ (z_{ν}^{0} being the components of Z_{0}). Then, by integrating with respect to θ from 0 to 2π, we have $\sum_{k=1}^{p}\left|z_{k}^{0}\right|^{2} r^{2}=\sum_{l=1}^{\infty}\left(\sum_{k=1}^{p}\left|P_{k l}\left(z_{1}^{0}, \ldots, z_{p}^{0}\right)\right|^{2}\right) r^{2 l}$, since, by the assumption, $\sum_{k=1}^{p}\left|g_{k}\left(r z_{1}^{0} e^{i \theta}, \ldots, r z_{p}^{0} e^{i \theta}\right)\right|^{2}=\sum_{k=1}^{p}\left|z_{k}^{0}\right|^{2} r^{2}$. Therefore $P_{k l}\left(z_{1}^{0}, \ldots, z_{p}^{0}\right)=0$ for all $l \neq 1$, that is, $g_{k}\left(z_{1}, \ldots, z_{p}\right)(k=1,2, \ldots, p)$ are linear homogenious functions of z_{1}, \ldots, z_{p}. This completes the proof.

Remark. In order to remove the assumption $f(0)=0$ in the above theorem, we have only to make use of the metric ρ^{*} and the group $\mathfrak{B}_{(n, m)}$ defined previously ${ }^{77}$.
3. The problem proposed in the introduction is solved by the following

Theorem 4. Any one-to-one analytic mapping f of $\mathfrak{H}_{(n, m)}$ on itself belongs to $\mathfrak{B}_{(n, m)}{ }^{7)}$, when $n \neq m$. In case $n=m f$ belongs to the transformation group generated by the mapping $\varphi_{0}(Z)=Z^{\prime}$ and the elements of $\mathfrak{B}_{(n, n)}$.

Proof. If the zero point is fixed by f, then we have $\|f(Z)\|=\|Z\|$ and hence the theorem follows from Theorem 3.
4. Theorem 4 can also be obtained as follows. Since $\mathfrak{H}_{(n, m)}$ is a "domaine cercle" in the sense of H. Cartan, a one-to-one analytic mapping f of $\mathfrak{A}_{(n, m)}$ on itself such that $f(0)=0$ is linear ${ }^{8)}$. Hence $\|f(Z)\|=\|Z\|$, so that $f(Z)=U Z V$ or $U Z^{\prime} V$ by Theorem 2.
5. In this paragraph we are concerned with the space $\mathfrak{H}_{(n)}$.

Theorem 2' $^{\prime}$. If a linear mapping f of $\mathfrak{S}_{(n)}$ into itself $\left(\mathbb{S}_{(n)}\right.$ being the set of all symmetric matrices of order n) satisfies the condition $\|f(Z)\|=\|Z\|$, then f is of the form $f(Z)=U Z U^{\prime}$, where U is a constant unitary matrix.

Theorem 3'. Let f be an analytic mapping of $\mathfrak{H}_{(n)}$ into itself which fixes the zero point. Then it holds that $\|f(Z)\| \leqq\|Z\|$. If the equality holds at every point in a neighbourhood of one point Z_{0} in $\mathfrak{A}_{(n)}$, then f is of the form $f(Z)=U Z U^{\prime}$, where U is a constant unitary matrix.

Theorem 4'. Any one-to-one analytic mapping f of $\mathfrak{A}_{(n)}$ on itself is of the type mentioned in the introduction: $f(Z)=\left(U_{1} Z+U_{2}\right)$ $\left(U_{3} Z+U_{4}\right)^{-1}, U^{\prime} J U=J, U^{\prime} S \bar{U}=S$.

The proofs of these theorems can be done by the same method as in the case of $\mathfrak{U}_{(n, m)}$. For this purpose it is sufficient to prove Theorem 2^{\prime}.

Proof of Theorem 2'. If we consider the elements $x_{\alpha \beta}$ of a symmetric matrix X as independent indeterminates, its determinant is irreducible. Hence, by proceeding analogously as in Theorem 2, it is shown that $\overline{f(Z)^{\prime}} f(Z)$ and $\bar{Z}^{\prime} Z$ are equivalent for any $Z \in \Im_{(n)}$. In particular we have $|\operatorname{det} . f(Z)|=|\operatorname{det} . Z|$. Since det. Z and $\operatorname{det} . f(Z)$ are regular functions of complex variables $z_{11}, \ldots, z_{n n}\left(Z=\left(z_{a \beta}\right)\right)$, there
7) Cf. $[S-3]$ and $[M-1]$.
8) H. Cartan, loc. cit. Théorème VI.
exists a number ω such that det. $f(Z)=\omega$ det. Z. From this, by a theorem of G. Frobenius ${ }^{9}$, we have $f(Z)=A Z A^{\prime}$, where A is a nonsingular constant matrix. By the similar reasoning as in Theorem 2, we know that A is a unitary matrix. This completes the proof.

In conclusion I wish to express my hearty thanks to Prof. M. Sugawara for his many valuable remarks.
9) G. Frobenius, Sitzungsber. preuss. Akad. Wiss. 1897, 994-1015. Satz III, §7.

[^0]: 1) M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen, Ann. Math., 41 (1940), 488-494. On the general zetafuchsian functions, Proc. 16 (1940), 367-372. A generalization of Poincaré-space, Proc. 16 (1940), 373-377, to be cited as [S-3].
 2) K. Morita, A remark on the theory of general fuchsian groups, Proc. 17 (1941), 233-237, to be cited as [$M-1$].
[^1]: 3) I. Schur, Sitzungsber. preuss. Akad. Wiss. 1925, 454-463. Satz II. As is shown there, the condition of his theorem is satisfied for $r=1,2$, if it is satisfied for some $r>2$. Hence our theorem is applicable.
 4) Contrary to our previous notation, $\|Z\|$ here means the norm of a matrix $Z:\|Z\|=$ l.u.b. $\|Z \mathfrak{y}\| /\|\mathfrak{x}\|$, where \mathfrak{x} runs over all m-dimensional vectors.
[^2]: 5) This is also proved by M. Sugawara. See the foregoing paper of M. Sugawara : On the general Schwarzian lemma.

 5a) Here we assume that $n \geqq m$.
 6) H. Cartan, Jour. de math. pures et appl. (9), 10 (1931), 1-114.

