100. On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point, II.

By Masatsugu TSUJI.

Tokyo Imperial University. (Comm. by T. Yosie, M.I.A., Dec. 12, 1941.)

In my former paper¹⁾, I have proved a theorem concerning the behaviour of an inverse function of a meromorphic function at its transcendental singularity w=0.

In the proof of $\lim_{r\to\infty} A(r) = \infty$, I have tacitly assumed that the boundary of Δ has a branch tending to infinity. I will here give a proof of $\lim_{r\to\infty} A(r) = \infty$ in the general case, where the boundary of Δ has a branch tending to infinity or it has no such a branch, but it consists of only closed curves. We will follow Mr. K. Kunugui's proof (in the paper cited in my former paper), but simplify it at some points.

Proof of $\lim A(r) = \infty$.

Case I, where for some w_0 $(0 < |w_0| < \rho)$, $w_0 = f(z)$ has only finite number of roots in Δ . Then by Mr. K. Noshiro's extension of Iversen-Valiron's theorem (in the paper cited in my former paper), there exists a curve Γ_1 in Δ tending to infinity, such that $\lim f(z) = w_0$, when z tends to ∞ along Γ_1 . Also, as we have remarked in my former paper, there exists a curve Γ in Δ tending to infinity, such that $\lim f(z) = 0$, when z tends to ∞ along Γ . As before, let $\{a_i^{(r)}\}$ be the part of the boundary of Δ_r which lies on $|z-z_0|=r$ and let $a_{i_0}^{(r)}$ intersect Γ . There occurs two cases: (i) two end-points of $a_{i_0}^{(r)}$ lie on the boundary of Δ or (ii) the circle $|z-z_0|=r$ does not interesect the boundary of Δ .

In the case (i), we have as before $L(r) \ge \frac{\rho}{2}$ for $r \ge r_1$, and in the case

(ii), since $|z-z_0|=r$ intersects Γ and Γ_1 , $L(r) \ge \frac{|w_0|}{2}$ for $r \ge r_2 > r_1$. In either case, $L(r) \ge l$ for $r \ge r_2$, where $l = \text{Min.}\left(\frac{\rho}{2}, \frac{|w_0|}{2}\right)$, whence we conclude as before $\lim_{n \to \infty} A(r) = \infty$.

Case II, where w=f(z) has infinitely many roots in Δ for every $w \ (0 < |w| < \rho)$. Let n(r, w) be the number of roots of w=f(z) in Δ_r , then $\lim_{x \to \infty} n(r, w) = \infty$.

¹⁾ M. Tsuji: On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point. This Proc. 17 (1941), 414-417. During the correction of my former paper Mr. Y. Tumura's paper: Sur le problème de M. Kunugui appeared in this Proc. 17 (1941), 289-295 and its full detail will appear in the Japanese Journal of Mathematics, 18, where a more general theorem as mine is proved, but in somewhat different definition of $\Lambda(r)$ and S(r).

No. 10.] On the Behaviour of an Inverse Function of a Meromorphic Function. 475

Now $A(r) = \int_{|w| < \rho} n(r, w) d\omega(w)$, where $d\omega(w)$ is the surface element at w. Since n(r, w) is an increasing function of r, we have by Beppo Levi's theorem

$$\lim_{r\to\infty} A(r) = \int_{|w| < \rho} \lim_{r\to\infty} n(r, w) d\omega(w) = \infty \qquad \text{q. e. d.}$$

Hence our theorem in the former paper holds for any domain Δ .