# 30. On some Property of Regular Functions in $|z|<1$. 

By Tatsujiro Shimizu.<br>Mathematical Institute, Osaka Imperial University. (Comm. by T. Yosie, M.I.A., March 12, 1942.)

§ 1. We shall introduce some of the directional maximum modulus of a regular function in the circle $|z|<1$, and give some theorem on it.

Let $f(z)$ be a regular function in $|z|<1$ and $M_{\theta}(r, \varepsilon)=$ $\underset{|z|=r, \theta-\varepsilon<\operatorname{Arg} z<\theta+\varepsilon}{\text { l. u. b. }}|f(z)|, \varepsilon$ being a positive number, and

$$
\begin{aligned}
& \varlimsup_{r \rightarrow 1} \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)}=\bar{M}_{\theta}(1, \varepsilon)_{\varphi} \\
& \varlimsup_{r \rightarrow 1} \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)}=\underline{M}_{\theta}(1, \varepsilon)_{\varphi}
\end{aligned}
$$

where $\varphi(r)$ is a monotonously increasing function for $r \rightarrow 1$.

$$
\begin{array}{ll}
\text { Now } \quad & \text { g. }_{0<\varepsilon<\delta} \operatorname{l.~}^{\text {b. }} \bar{M}_{\theta}(1, \varepsilon)_{\varphi}=\bar{M}_{\theta}(1)_{\varphi}{ }^{1)} \\
& \text { l. u. b. } \\
0<\varepsilon<\delta \\
M_{\theta}(1, \varepsilon)_{\varphi}=\underline{M}_{\theta}(1)_{\varphi}
\end{array}
$$

These measures are of some use for a regular function in $|z|<1$. In the following we shall consider the case $\varphi(r) \equiv 1$ and denote by $\bar{M}_{\theta}(1)$ and $\underline{M}_{\theta}(1)$ respectively.
§2. Let $E_{\theta}$ be a set of $\theta$, which is everywhere dense in $(0,2 \pi)$ and if $f(z)$ converges (to limits, $\infty$ included) for all $\theta$, belonging to $E_{\theta}$ when $z=r e^{i \theta} \rightarrow 1, \theta$ being fixed, then we shall call $f(z)$ has $F$-property.

Let $E_{\theta}$ be a set of $\theta$, which is everywhere dense in $(0,2 \pi)$ and if $\bar{M}_{\theta}(1)=\infty$ for all $\theta$, belonging to $E_{\theta}$, then we shall call $f(z)$ has $M$ property.
Theorem: Let $f(z)$ be regular in $|z|<1$ and have $F$ - and $M$-properties, then the Riemann surface of the inverse function of $f(z)$ has no parts of boundary in the finite plane ${ }^{2}$.

By to have parts of boundary ${ }^{3}$, having $\alpha, \beta$ as the end-points, in the finite plane, we shall mean the following:

[^0]Let $\alpha$ and $\beta$ be two accessible singular points when we prolong some element of the function on the Riemann surface along two straight lines respectively from a point $p$, then we can not prolong the element of the function on the Riemann surface, in the angle $<\alpha p \beta$, in any manner outside a certain domain lying in the limited part of the plane ${ }^{1)}$.
§3. Proof of the theorem: If there were a part of boundary, $\alpha$ and $\beta$ being the end-points, consider the images $\overline{p^{\prime} \alpha^{\prime}}$ and $\overline{p^{\prime} \beta^{\prime}}$ of $\overline{p \alpha}$ and $\overline{p \beta}$ by $z=f^{-1}(w)$ respectively.

The curves $\overline{p^{\prime} \alpha^{\prime}}$ and $\overline{p^{\prime} \beta^{\prime}}$ converges to two points $\alpha^{\prime}$ and $\beta^{\prime}\left(\alpha^{\prime}\right.$ and $\beta^{\prime}$ may coincicle) on $|z|=1$ respectively.

For, $\overline{p^{\prime} \alpha^{\prime}}$, for instance, can neither oscillate infinitely often within $|z| \leqq \delta<1$, nor approach oscillating infinitely often to some arc on $|z|=1$ by the $F$-property. If it were so, let $\overline{0 a}$ and $\overline{0 b}$ be two radius vectors intersecting infinitely often the curve $\overline{p^{\prime} \alpha^{\prime}}$, and on which $f(z)$ tends to $\xi$ and $\eta$ respectively.

Since $f(z) \rightarrow \alpha$ along $\overline{p^{\prime} \alpha^{\prime}}, \xi$ and $\eta$ are both equal to $\alpha$. Thus $|f(z)|$ is limited in some vicinity of the arc $\widehat{a b}$ on $|z|=1$ and $f(z)$ must be a constant by Koebe's theorem ${ }^{2}$.

Now the first case; $\alpha^{\prime}$ and $\beta^{\prime}$ are different.
However we may prolong some element in a domain bounded by $\overline{p^{\prime} \alpha^{\prime}}, \overline{p^{\prime} \beta^{\prime}}$ and $\overline{\alpha^{\prime} \beta^{\prime}}$ we can not prolong the element outside the domain on the Riemann surface bounded by $\overline{p \alpha}, \overline{p \beta}$ and $\overparen{\alpha \beta}$. Thus in the angle $<\alpha^{\prime} 0 \beta^{\prime}$ we have $\bar{M}_{\theta}(1)<K$ in a sufficiently small vicinity of the arc $\alpha^{\prime \prime} \beta^{\prime \prime}$ lying on $\widetilde{\alpha^{\prime} \beta^{\prime}}$.

Next the second case ; $\alpha^{\prime}$ and $\beta^{\prime}$ coincide.
In this case we can prolong some element up to $\infty$ in any direction $\theta$, except the set of $\theta$ of zero measure.

This comes from the method given by Gross.
We normalise the Riemann surface in the following way.
By $w_{1}=\frac{1}{w-p}$ the part of the star-region in the angle $<\alpha p \beta$ is transformed into a domain $\bar{G}$ on the $w_{1}$-plane such as $\infty$ into 0 and $p$ into $\infty$.

By $w_{1}=\frac{1}{f(z)-p}=g(z), \bar{G}$ is mapped on a simply connected domain $G$ of the $z$-plane, $G$ lying in a domain bounded by $\overline{p^{\prime} \alpha^{\prime}}$ and $\overline{p^{\prime} \beta^{\prime}}$.

Let $G(r)$ be the part of $G$ for which $\left|z-\alpha^{\prime}\right|<r$ and $|z|<1$, and $G(r, \varepsilon)$ the part of $G$ for which $\varepsilon<\left|z-\alpha^{\prime}\right|<r$.

In $\bar{G}$ there corresponds $\bar{G}(r)$ to $G(r)$, whose areal measure $J(\bar{G}(r))$ is given by

$$
\begin{equation*}
\operatorname{Lim}_{\varepsilon \rightarrow 0} \int_{G(r, s)}\left|g^{\prime}(z)\right|^{2} d z d \bar{z}=\operatorname{Lim}_{\varepsilon \rightarrow 0} \int_{G(r, \varepsilon)}\left|g^{\prime}(z)\right|^{2} r d r d \varphi \tag{1}
\end{equation*}
$$

[^1]where $z-\alpha^{\prime}=r e^{i \varphi}$.
$\int_{G(r, s)}\left|g^{\prime}(z)\right|^{2} r d r d \varphi$ being bounded and monotonously increasing for $\varepsilon \rightarrow 0$ the integral (1) exists.
$\int_{G(r)}\left|g^{\prime}(z)\right|^{2} r d r d \varphi$, for $r$ such as $r \rightarrow 0$, corresponds to the remainder of an integral which exists, hence
$$
\int_{G}\left|g^{\prime}(z)\right|^{2} r d r d \varphi \rightarrow 0 \text { for } \quad r \rightarrow 0 .
$$

To the set $\gamma(\rho)$ of $G$, which belongs to $\left|z-\alpha^{\prime}\right|=\rho$ there corresponds a set $\bar{\gamma}(\rho)$ of $\bar{G}$ whose linear measure is given, when it is finite, by the integral $\int_{\gamma(\rho)}\left|g^{\prime}(z)\right| \rho d \varphi$.

Now

$$
\begin{align*}
\left(\int_{G(r)}\left|g^{\prime}(z)\right| \rho d \rho d \varphi\right)^{2} & \leqq \int_{G(r)}\left|g^{\prime}(z)\right|^{2} \rho d \rho d \varphi \cdot \int_{G(r)} \rho d \rho d \varphi \\
& \leqq J(\bar{G}(r)) \pi r^{2} \tag{2}
\end{align*}
$$

If

$$
\lim _{\rho \rightarrow 0} \int_{\gamma(\rho)}\left|g^{\prime}(z)\right| \rho d \rho=g>0, \quad \text { so we would }
$$

have

$$
\int_{G(r)}\left|g^{\prime}(z)\right| \rho d \rho d \varphi \geqq g r .
$$

This contradicts (2), for, $J(\bar{G}(r)) \rightarrow 0$ for $r \rightarrow 0$.
Now let us return to the star-region over the $w$-plane. Let $r(\varphi, R)$ be the part of the set which corresponds to $\bar{\gamma}(\rho)$, for which $|w-p| \leqq R$.

Evidently for fixed $R$

$$
\lim _{\rho \rightarrow 0} J(r(\rho, R))=0, \quad J \text { being the linear measure of } \gamma(\rho, R)
$$

Every radial ray of the star-region, which ends at a point $\widetilde{w},|\widetilde{w}-p| \leqq R$, (which is a branch-point), must meet $\gamma(\rho, R)$ for every $\rho$.

A sufficiently small vicinity of $p$, belonging to the star-region, if we measure the set of the radial rays by the measure of a point-set, at which the unit circle about $p$ is intersected by the set of radial rays, so the measure of the above mentioned set of radial rays is given by

$$
\begin{equation*}
M(R) \leqq m J(r(\rho, R)) \tag{3}
\end{equation*}
$$

when $\rho$ is so small that $\gamma(\rho, R)$ does not appear in some vicinity of $p$.

Here $m$ is a constant depending only on the area of this vicinity of $p$.

This is evident, for, $\gamma(\rho, R)$ is a sequence of analytic curves so far as $r>0$, and the least value is given when they meet perpendiculary to the radial rays of the star-region.

From (3) we have $M(R)=0$.
Thus the theorem is proved.


[^0]:    1) 2. u. b. $=$ least upper bound.
    g. l. b . = greatest lower bound.
    1) A sort of modular functions has $F$ - and $M$-properties. $M$-property is equivalent to the unboundness of $|f(z)|$ in any sector.
    2) The boundary of the domain within the angle $<\alpha p \beta$ may be a line of singularity or a set of limit points of branch points. We suppose here $\alpha$ and $\beta$ both lie in the finite plane.
[^1]:    1) For the functions having only $F$-property the theorem is not true, and it seems to me so for the functions having only $M$-property.
    2) Tsuji: Hukuso Hensû Kansuron. Page 170.
