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30. On some Property of Regular Functions
in
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(Comm. by T. YOSIE, M.I.A., March 12, 1942.)

1. We shall introduce some of the directional maximum modulus
of a regular function in the circle zl <:1, and give some theorem
on it.

Let f(z) be a regular function in [z]<:l and M(r, )=
1. u.b. If(z) I, being a positive number, and

[z[--r, 0-< Argz 0+

lim Mo(, D o(1, e)
(r)

lim Mo(r, ) Mo(1, e)
->l v(r)

where (r) is a monotonously increasing function for r--)1.

Now g.I.b. /(1, e) (1) )

0<<

1. u. b. Mo(1, )=Mo(1),.
0<<

These measures are of some use for a regular function in [z]< 1.
In the following we shall consider the case (r):--I and denote by
/(1) and _M0(1) respectively.

2. Let Eo be a set of 0, which is everywhere dense in (0, 2)
and if f(z) converges (to limits, o included) for all O, belonging to E
when z=reO-. 1, 0 being fixed, then we shall call f(z) has F.proper$y.

Let Eo be a set of 0, which is everywhere dense in (0, 2) and if
(1)= o for all O, belonging to Eo, then we shall call f(z) has M.
property.
Theorem Let f(z) be regular in z 1 and have F- and M-pro..
perties, then the Riemann surface of the inverse function of f(z) has
no parts of boundary in the finite plane).

By to have parts of boundary), having a, fl as the end-points, in
the finite plane, we shall mean the following:

1) 1. u. b.=least upper bound.
g. 1. b. greatest lower bound.

2) A sort of modular functions has F- and M-properties. M-property is equivalent
to the unboundness of If(z) in any sector.

3) The boundary of the domain within the angle <: ap may be a line of singu-
larity or a set of limit points of branch points. We suppose here a and both lie in
the finite plane.
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Let a and / be two accessible singular points when we prolong
some element of the function on the Riemann surface along two
straight lines respectively from a point p, then we can not pro-
long the element of the function on the Riemann surface, in the angle
< ap, in any manner outside a certain domain lying in the limited
part of the plane.

3. Proof of the theorem" If there were a part of boundary,
a and being the end-points, consider the images p’a’ and p’/’ of
and pfl by z=f-(w) respectively.

The curves p’a’ and p’’ converges to two points a’ and ’ (a’ and
/’ may coincicle) on ]zl= 1 respectively.

For, p’a’, for instance, can neither oscillate infinitely often within
]z] ___< <: 1, nor approach oscillating infinitely often to some arc on
zl 1 by the F-property. If it were so, let 0- and 0- be two radius

vectors intersecting infinitely often the curve p’a’, and on which f(z)
tends to $ and ] respectively.

Since f(z)--, a along p’a’, $ and y are both equal to a. Thus
is limited in some vicinity of the arc ab on zl= 1 and f(z)must be a
constant by Koebe’s theorem2>.

Now the first case; a’ and /9’ are different.
However we may prolong some element in a domain bounded by

p’a’, p’’ and a’/’ we can not prolong the element outside the domain
on the Riemann surface bounded by pa, p and a/. Thus in the angle
<: a’0/’ we have (1)< K in a sufficiently small vicinity of the arc

a"" lying on a’’.
Next the second case; a’ and ’ coincide.
In this case we can prolong some element up to oo in any direc-

tion 0, except the set of O of zero measure.
This comes from the method given by Gross.
We normalise the Riemann surface in the following way.

1By w,- the part of the star-region in the angle <: apfl is

transformed into a domain G on the wrplane such as oo into 0 and
into oo.

By w,=l=g(z), C is mapped on a simply connected domain

G of the z-plane, G lying in a domain bounded by 9’a---7 and p’.
Let G(r) be the part of G for which z-a’l< r and zl< 1, and

G(r, e) the part of G for which <iz-a’l <: r.
In C there corresponds (7(r) to G(r), whose areal measure J(C(r))

is given by

1) For the functions having only F-property the theorem is not true, and it
seems to me so for the functions having only M-property.

2) Tsuji" Hukuso Hens5 Kansuron. Page 170.



where z-

........l’!g:!z) Irdrd being bounded and monotonously increasing for

-* 0 the integral (1) exists.

[ ]g’(z)Irdrd, for r such as r-- 0, corresponds to the remainder
JG

of an integral which exists, hence

I!’(z) I rdrd --, 0 for r-- 0.

To the set r(P) of G, which belongs to Iz-all= there corresponds
a set ?() of G whose linear measure is given, when it is finite, by

the integral ,(|g’(z)Ipd.

If

have

(2)

This contradicts (2), for, d(G(r))-0 for r--0.

Now let us return to the star-region over the w-plane. Let
’(,R) be the part of the set which corresponds to ?(), for which
Iw-pl <:R.

Evidently for fixed R

lim J (r(P, R))=0, d being the linear measure of r(, R).

Every radial ray of the star-region, which ends at a point, -Pi --<_ R, (which is a branch-point), must meet r(e, R) for
every .

A sufficiently small vicinity of p, belonging to the star-region, if
we measure the set of the radial rays by the measure of a point-set,
at which the unit circle about p is intersected by the set of radial
rays, so the measure of the above mentioned set of radial rays is
given by

M(R) <= mJ(r(, R)) (3)

when p is so small that 7(p, R) does not appear in some vicinity
of p.

Here m is a constant depending only on the area of this vicinity
ofp.
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This is evident, for, r(P, R) is a sequence of analytic curves so far
as r :> 0, and the least value is given when they meet perpendicu!ary
to the radial rays of the star-region.

From (3) we have M(R)=O.
Thus the theorem is proved.


