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68. Note on Banach Spaces (IV): On a Decomposition
of Additive Set Functions.

By Masahiro NAKAMURA and Gen-ichir6 SUNOUCHI.
Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., July 13, 1942.)

This paper is devoted to prove an abstract decomposition theorem
from which flow three types of decompositions. The first is the de-
composition theorem concerning cardinal number which is due to R.S.
Phillips), the second concerns with category, and the last concerns with
Lebesgue measure which is due to H. Hahn). The second type seems
to be new. In the proof of the theorem of the third type, Pettis’
theorem is used. Since the complete proof is not yet published, we
give it in the last section.

Throughout this paper, we denote by L an abstract Boolean algebra
and by x(e) a completely additive function from L to a Banach space.
And finally we suppose I is a a-ideal in L. Obviously, in the real
valued case, our proof is also applicable to bounded, finitely additive
set functions.

1. Let {e} be a set in L such that {e} is a disjoint system in
L and x(e)-0 for all e). Such {e} form evidently a system F with
finite character, thus by the use of Zorn’s lemma, F contains a maximal
collection {e}.

Since (e} is at most countable, a= /=e exists and belongs to /.
If we put

x’(e)=x(a r e) and x"(e)=x(a’ ( e)

then x=x’+x". We will now prove the unicity of decomposition. Let
{e} be another maximal collection and put b--/=e. By the identity
(ae)w{(b-a)re}=(bre){(a-b)re} and x{(b-a)e}=
x{(a-b) r e} 0 we have x(a e)= x(b e) for all e.

.Summing up above results we get

Theorem 1. For any a.ideal I in L. We can find an a e I such
that the decomposition

x(e) x(a r e) + x(a’ e) (1)

is unique and the second part vanishes for all elements of the ideal.

2. We will now give applications of Theorem 1.
Let L be a Borel field of subsets of a space, and I be the family

of all sets whose cardinal numbers do not exceed an infinite . Then
Theorem 1 reads as

1) R.S.. Phillips, Bull. of A.M.S., 46 (1940), 274-277. Idea of our proof is
essentially due to him.

2) H. Hahn, Theorie der reellen Fnnktionen, 1. Band, Berlin 1921, p. 422.
3) In the proof of Phillips, the last restriction is dropped.
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Theorem (of Phillips). If is an infinite cardinal number,
then completely additive set function is decomposed into two parts as
in (1), one of which vanishes on a set with cardinal number not
greater than

Secondly let T be a topological space and L be a Borel field in
T including all sets of the first category. Taking I as the system of
all sets of the first category, Theorem I becomes

Theorem 3. x(e) can be decomposed into two parts uniquely as in
(!), one of which vanishes on all sets of the first category.

Finally, let L be the family of all measurable sets in a space T
with respect to a completely additive measureD, and I be an ideal of
null sets, then we have by virtue of Theorem 1 the following

Theorem (of Hahn). Any completely additive set function is
decomposed into the singular and absolutely continuous parts uniquely.

Theorem 1 proves the vanishing of x"(e) on el=O. If real valued,
x" becomes absolutely continuous and this is Hahn’s decomposition. If
B-space valued, we need Pettis’ theorem whose proof is given in the
next article.

3. Let T be a space with a completely additive measure1). We
will now prove the following

Theorem 5 (of Pettis). If x(e) is B-space valued, completely ad-
ditive and weakly absolutely continuous, then x(e) becomes absolutely
continuous in the strong sense.

Suppose the contrary. Then there exists a sequence of measurable
sets {e} and :> 0, such that e I- 0 and Ix(e) (n- 1, 2, ...).
We will now show that there exists a sequence of disjoint sets (d}
such that d 0 and x(d)l e/2). This proves theorem since x(e)
is completely additive).

Let e= c. Evidently x(c)l . By the resonance theorem we
can find a linear functional fi such that

f 1, Ifox(cl) x(cl) I.
By the absolute continuity of fox(e), there is an Y0 such that
implies ]fox(e) t e/2. We can find a c. in (e} such as c
We have Ifox(c r c)l <:: /2. By the equalities (c c) ( (c-c)-0
and (c c) w (c- ce) c,

fox(c) fo(C c) +fox(c c)
and thus

1) If the measure of T is infinite, we suppose that T can be covered by an
enumerable sequence of measurable sets of finite measure.

2) This is the point of the proof. Kakutani presupposed this in Kunisawa, Proc.
I{ (1940), 68-72.

3) Cf. Pettis, Trans. of A. M. S., 4 (1938), 277-304.
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<:: e/2+ Ifo x(c--c.) /2+ x(c-c)
Thus we have

]x(c-c)l>-e/2>/2 and x(c)[>e.

Again by the resonance theorem, there exist linear functionals f
and f’ with norm 1 such

And there exists y > 0 such that e] y implies ]fx(e) /2 and
f’x(e)[ /2. We can also find ca in {e} such as [c ca[ y and
]c cl < y. This implies

lY/x(c c-c) < /2 A’x(c c)l< /2
Thus

]fx(c,-c c)l+ fx(v c-c)] x(cx-c w c) +/2.
< x(c)I (-c)I +/2

Hence

Continuing this process, we obtain the sequence (c} with the property"

n

i=n+l

with the required property.
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