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88. On the Cauchy’s Integral Theorem.

By Unai MINAMI.
Kokushikangakko,

(Comm. by S. KAKEYA, M.I.A., Oct. 12, 1942.)

S. Pollard have obtained a following theorem, for extension of the
Cauchy’s well-known theoremS>:

Theorem. Le C be any closed plane ordan curve with no multiple
points, and let D be a connected domain enclosed by C in its interior.
Let further f(z) be a uniform function defined in D and satisfy the
following conditions"

1 The real and imaginary parts of f(z) have partial derivative
which satisfy Cauchy’s equations at all points within D, and are inte-
grable over every rectangle within D... integrability being understood
either in the sense of Riemann, or more general sense of Lebesgue.

2 f(z) is continuous on C so far as values at points within and
on it are concerned.

3 C is a curve of bounded variation.
Then the integral of f(z) round the contour C is zero, that is

Icf(z) dz= O

But the proof of this theorem given by S. PollardD seems to us
to be insufficient for the general casez. The object of this paper is
to give a correct proof of this theorem which modifies and simplifies
Pollard’s proof.

First, let us give certain lemmas.
Lemma 1. Suppose that C be a rectifiable plane curve with no

multiple point and denote its length by L. Then, for any positive
number , there exists a polygon inside C, which satisfies the follow-
ing conditions"

(1 Its sides are parallel to one or other of the axes.
(2) It is possible to divide C and , into equal number n of

small arcs C, C, ..., C,, and broken lines r, r, ...,r respectively, so
that, for each pair (C, ) (i=1, 2, ..., n), hold the inequality

(a,b)<: as neck, be
and that n, < ,L.

(3) Denoting by l(=) the length of r, we have l(=) <2 IlL l(=)
is therefore uniformly bounded.

1) s. Pollard: On the conditions for Cauchy’s theorem, proceedings of the London
Math. Soc. Second Series, vol. 21 (1923), p. 456-482. Cf. also, E. Kamke: Zu dem
Integralsatz yon Cauchy, Math. Zeitschrift, Bd. 35 (1932), p. 535-543; J.L. Walsh:
Approximation by polynomials in the complex domain, Paris, 1935, p. 9.

2) For example, consider the case where C has an angular point with angle wich
is sufficiently small, and one of the tangents "at this point is parallel to one or other
of the axes. In this case, their non-consecutive links surely overlap, and the chain
is not "regular."
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Demonstration. Let us take any one interior point P of D and
fix it. Associated with any positive number , take a number n such
as 2L/n /2 L/n and take any initial point P on C and obtain the
points P2, Pa, ..., P. whose distance from P1 measured along the curve
C are respectively L/n, 2L/n, ..., (n-1)L/n.

Denote the arcs PP2, P2P, ..., PP by C, C., ..., C, respectively
and let be the minimum distance between non consecutive C’s.
Join. P and P by a jordan simple curve F in D.

Corresponding to each point P, construct a square S with center
at P, whose sides are parallel to one or other of the axes, disjoint
from any F(3" i), and of side length less than /V

Denote by C the part of C whose one end point is a first point
of intersection C and S and other end point is the last point of
intersection of C and S+, considered along C with its initial point
P. Let the minimum distance between the arcs C each other and

between C and ] be denoted by ’.
Devide each C,’- into at least two small arcs with length less than

’/2. And, corresponding to each f these small arcs, construct a square
with its sides parallel to one or other of the axes, the center of these
squares being at the center of the arcs. Furthermore, we suppose that
the side length of these squares is greater than the length of small arc
and less than the minimum of the double of this length and

Remark that each square attached to small arcs on C- is disjoint

from each of F (j=l, 2, 3, ..., n), and since the diagonals of all these
squares are of length less than ’/2, no square attached to C can touch
a square attached to C’(j -i).

The square attached to the small arcs of any given C overlap
two by two and forms together a connected region entirely enclos-
ing C and with its boundary consisting of certain number of polygons,
whose sides are parallel to one or other of the axes.

We obtain, from the above construction,

_<__ <
Furthermore, we can say that the distance between any point on
and any point on these boundary polygons is less than e. In fact, let
a be any point of C and b be any point on these polygons, and Q be
the center of a square which contains the point b, then

fl(a, Q) < L/n < ]2, p(b, Q) < < /2
p(a, b) < p(a, Q)+p(Q, b) < /2+/2= (1)

Let us consider the whole region : z. This total sum forms a

connected region and its boundary forms a finite number of polygons
whose sides are composed of segments parallel to one or other of the
axes. Among these boundary polygons, there exists only one polygon
which contains the fixed point P in its interior and is situated inside
C. Denote this polygon by =, then we can conclude that the polygon
= is just what we have demanded
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In fact, the polygon contains surely part of contour of , for,
if we denote by Q. the last point of the intersection of F and S,
considered along the curve I’ from the point P, then no point on the
arc QP of the curve / can touch to any square. Thus, this arc is
contained inside = and Q is a point on the polygon and z.

From the construction of the small squares on the arcs C and
C’_, we can see that a part of the square S in the vicinity of Q on
the boundary of J is situated outside all small squares attached to C
and C_. Thus, this part is. contained on the polygon =.

Denote the part of between Q and Q/ on the boundary of ,
by . Finally, we obtain n arcs C, C2, ..., C on C and n broken lines
=, 2,--., = on =. Each pair (C, ) (i= 1, 2, ..., n) satisfies the condi-
tion (2) for the sake of the inequality (1).

And next, to demonstrate the condition (3), let us estimate the
length of . The side length of small squares attached to the arc C
is less than the double of the length of the small arc, and thus, the
sum of contours of all squares attached to C is less than eight time
of length of C. The length of contour of end square is less than
2-2- or than 2V’- L/n.

Since the length of is less than the sum of length of the con-
tours of all squares considered, we have thus

lot) < 8 l(C) +n.2/ 2 L/n <2 8L+3L= llL Q.E.D.

Lemma 2. Suppose that f(z) is uniform and continuous in a
closed domain D which is bounded by a rectifiable plane curve C with
no multiple point. Then, for any given positive number , there exists
a polygon = enclosed by C, with its sides parallel to one or other of
the axes, and such that the inequality

is hold.
Demonstration. Since the function f(z) be continuous in a closed

domain 0, it is uniformly continuous in 2. Thus we have, for any
positive number , there exists a suitable positive number which
depends only on 2, such that the inequality

f(z’)-f(z") < (2)

Z
f/is hold for any point pair z’, in / such that ]z’-z"l< .

Let us apply the lemma 1 for the curve C and the positive number
/2, then we can construct a polygon =, and satisfy the following con-
dition"

We can divide the curve C, into n small arcs C, C., ..., C,, with
its length less than /2 and n broken line ,=., ...,n. by their cut
points Q, Q., ..., Q, so that, for any one pair (C, ) and any two
points a, b where a e C, b e , the inequality

p(a, b) <
2

hold.
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Denote now, by r the closed (but not necessarily simple)curve
formed by C the line P/Q/, (described in the sense opposite to
C) and the line QP.

Consider the integral along r. Some of the line PQ may lie
partly outside C, and so the behaviour of f(z) on them is not altoge-
ther assured. In this case, we replace f(z) by an integrand (z) obtained
as follow.

(z)=f(z); on C and

=l(z) on PQ and P/Q+

where l(z) is a linear function which, for example on PQ, coincides
with f(z) at p and at Q. Then evidently we have

(z)dz= (z)dz- (z)dz

the line PQ being described twice, once in each direction, and the
integral along them destroying one another.

Now we have by lemma 1, for any point on r, p(P, z) <: e, thus
obtain by inequality (2)

P(z)-f(P,)l< 2

Put p(z) f(P,)+ [5(z)-f(P)], then we have

=Ir’(z)-f(P)]dz for If(P,)dz=Or,
Hence

i--1

and by lemma 1

, l(r,) <: llL+L+2 ]PQ

11L+ L-4-2< 11L+L+8L 20/.,

thus finaly we have

Sinee , is arbitraly number, now put a- Y then we have the
20L

initial inequality. Q.E.D.
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Using the S. Pollard’ and D. Menchofl’s results, we have the
following lemma.

Lemma 3. Suppose that f(z) be uniform and continuous in a closed
rectangle R whose sides are parallel to one or other of the axes. And
its rea and imaginary parts give partial derivatives which satisfy
Cauchy’s equations at all point within the contour integrability being
understood either on the sense of Riemann, or in the most general sense
of Lebesgue.

Then we have

Now it is easy to demonstrate our theorem by means of the
lemmas.

Demonstration of theorem. By hypothesis, f(z) is uniform and
continuous on and inside C. For any positive number , there exists
a polygon inside C, such that the inequality

hold, by lemma 2.
Since the sides of the polygon are parallel to one or other of the

axes, it is possible to divide the polygon into finite number of rectangles
with its sides parallel to one or other of the axes. Thus

and by lemma 3

f(z)dz=O
(5)

Since is arbitraly, and by (3), (4), (5) finaly we have

Icf(z)dz=O Q. E. D.

Remark 1. The condition 1 in our theorem is used only for the
demonstration of the equality (see lemma 3)

If(z)dz= O

where R is a rectangle with its sides parallel to one or other of the
axes and is unnecessary for evaluation of the difference

which tend to zero as -- C.
On the other hand, in the rectanglar case, by D. Menchoff’s result,

the condition 1 is replaced by the new condition.

1) D. Menchoff: Les conditions de menogneit(, Paris Hermann & cie, Editeurs,
1936.
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I’ Save for a set. of values of (superficial) measure zero, he

partial derivative of the function f(z)=u+iv, u, u v v existx Oy Ox y
in D and these derivative are summable, and save for a set of values
of measure zero in D these partial derivatives satisfy Cauchy’s equations.

And so, the same condition hold in general case.
Remark 2. Adding the continuity of f(z), to the condition 1

of this theorem, this generalized theorem which give us the equality

allow to conclude, by Morera’s that f(z) istheorem,

holomorphic in D"
The continuous function f(z) u+iv is holomorphie in D, if the

partial derivatives u, u v v exist with their derivative arex y 3x 3y
summable, their values are finite and satisfy the conditions

save for a set of values of measure zero.


