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107. An Abstract integral

By Shin-ichi IZUML
Mathematical Institute, Tohoku Imperial University, Sendal.

(Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1942.)

Introduction. The first section s devoted to simplify the theory
of general Denjoy integral. The essential point is to use Romanowski’s
lemma. He used the lemma to develop the theory of the special
Denjoy integral in abstract space. In 2 we define an "abstract
Denoy integral" The integral which is called -integral, becomes
general or special Denjoy integral and others by the suitable specializa-
tion. The ()-integral is defined as the inverse of an "abstract
derivative " which is defined axiomatically. Finally, we remark
that the theory developed here can be extended to the case of abstract
valued functions defined in an abstract space.

1. Let f() be a real valued function in the interval Io=(a, b).
If f() is a continuous function in I0 such that there is a sequence of

sets (Eo) such as Io= /E and f() is absolutely continuous in Eo
(k--1, 2, 3, ...), then f() is called to be generalized absolutely continuous
in Io, and we write feCACro or simply fiGAC. Approximate derivative
ADF() of f() is defined in the ordinary manner.

We will begin by two lemmas.

(1.1) Let E be a closed set in Io and Io= /E, then there is a

portion P of E such that a suitable E is dense in P.
Proof. If the theorem is not true, then there is a portion P of

E such that P E=O. There s also a portion P. of P such that
1, E=O. Thus proceeding we get a sequence (P,) of portions such

that P P+. (k 1, 2, 3,...). Evidently / Po = (). If / P, then
k-1 k-1

xE. On the other hand xE (k=l,2, 3, ...), and then xI which is.
a contradiction.

(1.2) (Romanowski) Let be a system of open intervals in Io,
such thatD

1. h (k 1, 2, ..., n) and (/h)=I imply I.
k=l

2. Ie and ’ I imply Ie.
3. if ’ I implies I’e, then Ie.
4 if I is a subsystem of such that does not cover I0,

then there is an Ie such that does not cover /.
Then /o.
Proof. 4 implies /(I; I)I0. Let IIo. By the Heine-

Borel theorem there are I. (k= 1, 2, ..., n) in " such as I < /h. End

1) Romanowski, Recueil math., 1940.
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points of I and I (/c= 1, 2, ..., n) devides I0 in a system of open inter-
vals (J ]= 1, 2, ..., m). J I implies the existence of k’ such that
J /, By 2 Je. Thus 2 implies Ie". Finally by 3 Io.

1.1. We will now prove fundamental theorems. They are well
known but the proof given here is very simple.

(1.3) If fiGAC+/-o, and ADf()=O almost everywhere in Io, then
f() is constant.

Proof. Let I be a system of all intervals in which f is constant.
satisfies evidently 1, 2 and 3 in (1.2). If we show that 4 is

satisfied, then the theorem is proved by (1.2). Let be a subsystem
of and E be a set not covered by . By fGAC there is a sequence

of sets (E) such that /E=Io and f(x) is absolutely continuous in
k=l

E (]=1, 2, 3 ). By (1.1) there is a portion> P=[a, ] E such that
E P for a suitable k. Since f is continuous in I0, f is absolutely
continuous in P. Thus f’() exists and =ADf(x) almost everywhere.
By ADf()=O almost everywhere in Io, f is constant in [a,/]. There,
fore [a,/] but is not covered by .

(1.4) If fGAC, then f() is infinitely approximately differentiable
almost everywhere.

Proof. Let be a system of intervals in which f() is finitely
approximately differentiable almost everywhere. satisfies 1, 2, and
3 in (1.2). In orddr to prove 4 we proceed as in (1.3). Take P as
in (1.3), then f is absolutely continuous in P. Therefore f is finitely
differentiable almost everywhere in P. That is, f is finitely ap-
proximately differentiable almost everywhere in [a, ]. Thus [a,
but is not covered by .

1.. Under these preparations we can state the definition of the
general Denjoy integral as follows"

(1.5) f() is integrable in the general Denjoy sense if there is a
function F()GAC such that ADF()=f(x) almost everywhere.

Uniqueness of F() follows from (1.4).
2. We will now generalize the above integral.

(2.1). If f() is a real valued function defined on I=(a, b), then
f() is called absolutely continuous in E I and is written fACF.
provided that

1. E1 E and fE imply f-c(E,
2. if E (a, b), f(x) is continuous in (a, b) and f?[( then

and. an operation tiff(x) (abstract derivative of f(x) at x) is defined
and

3. For a closed set F, f(-r implies the almost everywhere
existence of

4. if f(x)is continuous in I=(a,b) and is locally constant in
the complement of a closed set F in /, and further if fA6:F and
,)[f(x)=O almost everywhere in F, then f(x) is constant in L

(2.2) f(.) is called generalized absolutely continuous in I0 and we

l) [a, ] denotes cl(ised interval.
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write f(AEo, if there is a sequence of sets (E) such that Io= \! E
and f{(f.c (k= 1, 2, 3, ...).

By (2.1’), (2.2’) we denote (2.1), (2.2) where E,E and E are
supposed closed, and then 2 becomes evident. In this case we denote

We can prove that
(2.3) If f(2o and f(x)=O almost everywhere in I0, then

f(x) is constant in I0.
(2.4) If f(R)l(o, then there exists f(x) almost everywhere

in I0.
Thus we can define the integral
(2.5) f(x) is called -integrable if there is a function F(x)(Aq;

such that F(x)=f(x) almost everywhere. F(x) is denoted by

()If(t)dt.
2.1. If we suppose that
(2.6) t( and satisfy the condition"
5. A is an additive operation, that is if lf(x) and

exist, then (af(x)/bg(x)) exists and is equal to aOIf(x)+blg(x),
a and b being constant,

6. for a closed set F in an interval I, if fiI(, tf(x)O
almost everywhere in F and f(x) is 0 in I-F, then f(x) 0 in L

Then we have
(2.7) If f(t) and g(t) are ()-integrable in (a, b), then af(t)+bg(t)

(2.8) If f(x) is ()-integrable and f(x) is 0 almost everywhere,
then f(x) is integrable n the Lebesgue sense.

It is sufficient to prove that ()_1: f(t)dt 0, which followsProof.
from (1.2) and the definition of the ()-integral

(2.9) Let (fi.(t)) be a convergent sequence of ().integrable func-
tions in I such that g(x) fi.(x) h(x) (n= 1, 2, 3, ...), g(x)’ and h(x)

being ()-integrable, then limf(x) is ()-integrable and lim (-)l-ff(x)dx
2,2. If we take (R)( as 1($ (or (R)(*) and as AD (or D

(ordinary derivative, that is, when f(x) is considered in a set E, Df(x)
is the derivative concerning E), then ()-integral becomes general (or
special) Denjoy integral. Moreover we can take ([( as GACD (or
class of almost everywhere differentiable functions in GAC’) and
as AD (or D). Thus we get two integrals, one of which is due to
Denjoy and Khintchine, and the other contains an integral due to
Burkill as a special case. We can take also { as -approximate

1) In this case it requires evident modification of 4 in (2.1).
2) Burkill, lath. Zeitschrift, 34.
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derivative. Then we get the integral due to authorD. But in this
case (2.6), 5. and then (2.7) do no hold.

3. (3.1) is a regular topological space satisfying the second
countability axiom and having Lebesgue measure. Further in R there
is a system I of "intervals," that is,

1. is a complete system of neighbourhoods.
2. l,I implies the compactness of .
3. For any open set 0, (I = 1, 2, ..., ) is called the decomposi-

tion of 0 if II, I I=O (i -j) and mean (0-/I)=0. Each

is called the term of decomposition. If I’ /, I’I and I, then
there is a decomposition of I with term I’. And if II, I2, then
I r I. has a decomposition.

(3.2) If f(I) is a real valued function of intervals in I0 R, then
/(I) is called absolutely continuous in E I0 and we write
provided that

1. E E and feIEz imply f(E,
2. if E L f(I) is continuous in I and fIEE, then feI,

and a point function If(x) (abstract derivative) is defined and
3. for a closed set F, fe-IEF implies the almost everywhere

existence of
4. if f(I) is continuous in I0 and is locally constant in the com-

plement of a closed set F in I0, and further if fcACF and 2f(x)=O
almost everywhere in F, then f(I) is constant in I0.

(3.3) f(x) is called generalized absolutely continuous in Io and we
writer fi(R)?Io, if there is a sequence of sets (E) such that (i=

1, 2, 3, ...) is compact, Io= /E,: and E is contained in a boundary set
i-1

of an interval or flEE,.
Thus we can define the integral by (2.5) which contains the

Romanowski-Denjoy integral as a special case. If we introduce (2.6)
5 and 6, then we get theorems as in 2.

3.1. We will now consider the functions with value in an abstract
space X and of a real variable. Then we can define the ()-integral
by (2.1)-(2.5).

For example, we take X as a Banach space. As I taking strong
derivative, weak derivative, approximate weak derivative, pseudo-deri-
vative and approximate pseudo-derivative, we can associate "generalized
absolute continuity" to each derivative such that the condition in (2.1’)
holds. Thus we can define the corresponding integrals, which contain
known integrals as special case.

For example as (2E’ we take the class of absolutely continuous
(in the Pettis sense) and almost everywhere pseudo-differentiable func-
tions and as I, pseudo-derivative. Then ()-integral becomes the
Pettis in integral. We can get many generalizations of the Pettis
integral and their Denjoy generalizations. Concerning general Dunford
integral we can also get such generalization. We can similarly define

1) Izuini, thi, Proc. 12 (1936).
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the Bochner integral as the inverse of the strong derivative, and its
Denjoy generalization. Finally we can get the integral as the inverse
of weak derivative and its Denjoy generalization, which seem to be
new.

For a locally convex linear topological space X we develop the
above theory.

3.2. We are easy to define ()-integral of (B)-space valued func-
tions defined in R (in (3.1)).

The author expresses his hearty thanks to Mr. G. Sunouchi who
gave me valuable remarks and criticism.


