124. On the Zeros of the Riemann Zeta-function.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University.

(Comm. by T. YOSIE, M.I.A., Dec. 12, 1942.)

Littlewood¹⁾ proved that the Riemann zeta-function $\zeta(s)$ $(s=\sigma+it)$ has a zero in the domain: $0 < \sigma < \infty$, $|t-T| < \frac{16}{\log \log \log T} (T \ge T_0)$. Simple proofs are given by Hoheisel²⁾, Titchmarsh³⁾ and Kramaschke⁴⁾. These authors use the Hadamard's three circles theorem in the proof. I will here give a still simpler proof, where I use the Doetsch's three lines theorem⁵⁾ in the modified form.

Theorem. $\zeta(s)$ has a zero in the domain : $0 < \sigma < \infty$,

 $|t-T| < \frac{\kappa}{\log \log \log T}$ $(T \ge T(\kappa))$, where κ is any positive number

greater than $\frac{\pi}{4}$.

Especially we may take $\kappa = 1$.

First we will prove a lemma.

Lemma. Let f(z) be regular and bounded in |z| < 1 and K(r) be a circle: $|z-(1-r)| = r \ (0 < r \leq 1)$ and $M(r) = \underset{z \text{ on } K(r)}{\text{Max.}} |f(z)|$. Then

$$M(r_2) \leq M(r_1)^{\frac{\frac{1}{r_2} - \frac{1}{r_3}}{\frac{1}{r_1} - \frac{1}{r_3}}} M(r_3)^{\frac{\frac{1}{r_1} - \frac{1}{r_2}}{\frac{1}{r_1} - \frac{1}{r_2}}} (0 < r_1 < r_2 < r_3 \leq 1).$$

Proof. By $s = \frac{1}{1-z}$, we map |z| < 1 on the half-plane $\Re(s) > \frac{1}{2}$,

then K(r) becomes a line $\Re(s) = \frac{1}{2r}$, so that the lemma follows from the Doetsch's three lines theorem⁵⁾.

Proof of the theorem.

Suppose that $\zeta(s)$ has no zero in the domain $\Delta: 0 < \sigma < \infty$, $|t-T| < c = \frac{\varkappa}{\log \log \log T} \left(\varkappa > \frac{\pi}{4}\right)$, then $\log \zeta(s)$ is regular in Δ . We map Δ on |z| < 1 by

¹⁾ Littlewood: Two notes on the Riemann zeta-function. Proc. Cambridge Phil. Soc. 22 (1924).

²⁾ Hoheisel: Jahresbericht Schles. Ges. vaterl. Kultur 99.

³⁾ Titchmarsh: On the Riemann zeta-function. Proc. Cambridge Phil. Soc. 28 (1932).

⁴⁾ Kramaschke: Nullstellen der Zetafunktion. Deutsche Math. 2 (1937).

⁵⁾ Doetsch: Über die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden. Math. Z. 8 (1920).

M. TSUJI

[Vol. 18,

(6)

$$z = \varphi(s) = \frac{1 - 2e^{-a(s-iT)}}{1 + 2e^{-a(s-iT)}} \cdot \frac{2 + e^{-a(s-iT)}}{2 - e^{-a(s-iT)}}, \qquad (1)$$

where $a = \frac{\pi}{2c} = \lambda \log \log \log T \left(\lambda = \frac{\pi}{2\varkappa} < 2 \right)$. Then $s = \infty + iT$ corresponds to z = 1 and

$$1 - z = 3e^{-a(s-iT)} (1 + o(1)), \qquad (2)$$

where $o(1) \rightarrow 0$ for $T \rightarrow \infty$, uniformly for $\Re(s) = \sigma \ge \varepsilon > 0$. Hence the segment: $\sigma = \text{const.} (\ge \varepsilon > 0), |t - T| \le c$ is mapped on a curve, which lies between two circles:

$$|z-1| = 3e^{-a\sigma} (1+o(1)), \quad |z-1| = 3e^{-a\sigma} (1-o(1)).$$
 (3)

If we put

$$z_1 = \varphi(1 + \varepsilon + iT), \quad z_2 = \varphi\left(\frac{1}{2} - \varepsilon + iT\right), \quad z_3 = \varphi(\varepsilon + iT)\left(o < \varepsilon < \frac{1}{2}\right), \quad (4)$$

then by (2),

$$1 - z_{1} = 3e^{-\alpha(1+\epsilon)} (1 + o(1)), \qquad 1 - z_{2} = 3e^{-\alpha(\frac{1}{2}-\epsilon)} (1 + o(1)),$$

$$1 - z_{3} = 3e^{-\alpha\epsilon} (1 + o(1)). \qquad (5)$$

Let two circles; $C_0: \left|\frac{z-z_1}{1-z_1z}\right| = z_1$ and $C_1: \left|z-\frac{3}{4}\right| = \frac{1}{4}$ meet at ξ , then we have easily

$$|\xi-1| = \frac{1-z_1}{\sqrt{3-4z_1+3z_1^2}} = \frac{1-z_1}{\sqrt{2}} = \frac{3}{\sqrt{2}} e^{-\alpha(1+\epsilon)} (1+o(1)).$$

Let $C_1 = C'_1 + C''_1$, where C'_1 is the part of C_1 , which lies inside C_0 and C''_1 is the part of C_1 , which lies outside C_0 . Then by (6), C''_1 is contained in the circle $|z-1| \leq 3e^{-a(1+\epsilon)} (1-o(1))$, so that by (3), the image of C''_1 in Δ lies on the right of the line $\Re(s) = 1 + \epsilon$. Hence $|\log \zeta(s)|$ is bounded on C''_1 . To evaluate $|\log \zeta(s)|$ on C'_1 , we map |z| < 1 on |x| < 1 by $x = \frac{z-z_1}{1-z_1 z}$ and put $F(x) = \log \zeta(s)$, then $|F(0)| = |\log \zeta(1+\epsilon+iT)|$ is bounded for $T \to \infty$ and $\Re(F(x)) = \log |\zeta(s)| \leq \log T$ ($T \geq T_0$)¹.

Hence by Carathéodory's theorem (Math. Ann. 73), we have in $|x| < z_1$, or in C_0 and hence on C'_1 ,

$$|\log \zeta(s)| = |F(x)| \leq \frac{2}{1-z_1} (\log T + 2 |F(0)|) \leq e^{2a} \log T \quad (T \geq T_0)$$

so that on C_1 ,

632

¹⁾ Bieberbach: Lehrbuch der Funktionentheorie, II. S. 348.

No. 10.]

On the Zeros of the Riemann Zeta-function.

$$|\log \zeta(s)| \leq e^{2a} \log T \qquad (T \geq T_0).$$
 (7)

We put

$$K_i: \left|z - \frac{1+z_i}{2}\right| = \frac{1-z_i}{2} = r_i \ (i=1, 2, 3), \ M_i = \text{Max.} \left|\log \zeta(s)\right| \ \text{on} \ K_i,$$

then by (5),

$$r_{1} = \frac{3}{2} e^{-a(1+\epsilon)} (1+o(1)), \qquad r_{2} = \frac{3}{2} e^{-a(\frac{1}{2}-\epsilon)} (1+o(1)),$$
$$r_{3} = \frac{3}{2} e^{-a\epsilon} (1+o(1)).$$

Since K_1 is contained in a circle: $|z-1|=1-z_1 < 3e^{-a(1+\frac{s}{2})}(1-o(1))$, we see by (3), that its image in Δ lies on the right of the line $\Re(s) = 1 + \frac{\varepsilon}{2}^{1}$, so that $M_1 = O(1)$ for $T \to \infty$ and since for $T \ge T_0$, K_3 is contained in C_1 , we have by (7), $M_3 \le e^{2a} \log T$.

Hence by the lemma,

$$M_{2} \leq M_{1}^{\frac{1}{r_{2}}-\frac{1}{r_{3}}} M_{3}^{\frac{1}{r_{1}}-\frac{1}{r_{3}}} = M_{1}^{o(1)}M_{3}^{1-e^{-a\left(\frac{1}{2}+2\epsilon\right)}(1+o(1))} \leq 1-2^{\left(\frac{1}{2}+2\epsilon\right)}$$

const. log
$$T e^{2\lambda \log \log \log T - (\log \log T)^{1-\lambda(\frac{1}{2}+2\varepsilon)}} (1+o(1))$$

Since $\lambda < 2$, we take ϵ so small that $1 - \lambda \left(\frac{1}{2} + 2\epsilon\right) > 0$, then $M_2 = o(1) \log T$, so that

$$\zeta\left(\frac{1}{2}-\varepsilon+iT\right)\Big|=T^{o(1)},\qquad(8)$$

$$\left|\zeta\left(\frac{1}{2}+\varepsilon+iT\right)\right|=T^{o(1)}.$$
(9)

From the functional equation of $\zeta(s)$, we have

$$\left|\zeta\left(\frac{1}{2}-\varepsilon+iT\right)\right| = \left|\zeta\left(\frac{1}{2}+\varepsilon+iT\right)\right| \cdot \left|\chi\left(\frac{1}{2}+\varepsilon+iT\right)\right|, \quad (10)$$

where $\left|\chi\left(\frac{1}{2}+\epsilon+iT\right)\right|\sim \text{const. }T^{*} \text{ for } T\rightarrow\infty.$

633

¹⁾ In fact, the image of K_1 in Δ lies on the right of the line $\Re(s)=1+\epsilon$. For, since Δ is a convex domain, by Radó's theorem (Math. Ann. **102**) any circle |z|=r(<1) corresponds to a convex curve in Δ and since any circle in |z| < 1 can be transformed into a circle of the form |z|=r(<1), its image is also a convex curve. K_1 , being the limit of circles in |z| < 1, is mapped on a convex curve in Δ . Since the image of K_1 passes through $s=1+\epsilon+iT$ and is symmetric to the line t=const.=T, it lies on the right of the line $\Re(s)=1+\epsilon$.

From (9), (10), we have $\left|\zeta\left(\frac{1}{2}-\varepsilon+iT\right)\right| \ge T^{\frac{\varepsilon}{2}}$ $(T\ge T_0)$, which contradicts (8). Hence $\zeta(s)$ has a zero in the domain: $0 < \sigma < \infty$, $|t-T| < \frac{\varkappa}{\log\log\log T}$ $(T\ge T(\varkappa))$, where \varkappa is any positive number greater than $\frac{\pi}{4}$