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I. Hausdorff’s measure and upper density.
Let Y be any separable metric space with the distance (p, q) for

p, qe l2.
A phere m . with radius r, of centre a is the set of points p

such that p(p, a) <: r.
Given any set E/2. let (E) be the diameter of E, that is,

8(E)--sup p(p, q).
oqeE

Now, let () be a positive, continuous, monotone-increasing func-
tion defined or > 0 near the origin such that

lim h(r) O

Taking any sequence, of spheres {S}.2 such that

(i) , S E, (ii) (S) < (i= 1, 2, ...),
i-I

let us put m(E,)=infJh[3(S)] for fixed 0, and write

m,(E) =lim m(E, ) which is called h-measure of E. In this definition,
$->0

we may assume, wthout loss of generality, that each S has points
common with E. This measure, introduced first by F. HausdorffD is
known to have the property of Carathodory’s outer measure and
therefore the measurable class of sets with respect to the h-measure
contains all the Borel sets.

Moreover, h-measure is a regular measure2), that is to say, for
any set E .Q, there exists a Borel set, He (3, such that H E and
m(H) m(E).

If ’ is 2-dimensional Euclidean space, m(E) for h(r)=-/-r, h(r)=r

(z 0) and h(r)= log are Lebesgue’s plane measure, a-dimensional

measure (if a= 1, then called Carathodory’s linear measure or length
of E) and logarithmic measure respectively.

Given a set E and a point p e(2, we shall define the upper density
of E at p with respect to the h-measure by the following expression"

&(p, E)=ii m(E. S)
,-,o h[(S)]

1) F. Hausdorff. Dimension una iusseres Mass, Math. Annalen., 78 (1919).
2) F. Hausdorff. Loc. cit.
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where S is any sphere containing the point p.
II. Density theorem.
We sha]] prove in this section the o]lowing fndamental theorem.
Density theorem" Le E be any bounded set wih finite h.measure.

Then the subse H of points p(eE) which satisfy he condition
J(p, E) 1 is of h-measure zero.

Proof. Denoting by H the set of points peE which satisfy
/(p, E) <: 1-m-, (m= 2, 3, ...), we have

H=H+Hs+ ....
For any point p of H, for a fixed m, there exists a positive

integer n such that for all the spheres S containing the point , with
diameters less than n-, we have

Z) < ,.
Fixing again n for a moment, let us denote by H the set of alI the
points p(eH) which satisfy the condition (1) for all S with 8(S)<7 n-and S p. Then, varying n from I to , we have evidently

Hence we have

and accordingly
ma(H) ma(H,).

Suppose now that our theorem were false. Then we would have
ma(H):>O and find two positive integers m--/, n-- for which
ma(H) > O.

By the definitioa of H, for any peH and for any sphere S
containing p, with diameter -, we have

(2) ma(S. E) < (1 p-) h[(S)].

By the relation ma(H) 0, we can choose a sequence of spheres
{S} such that (S) < -, S H, H.S 0 and

(3) Z h[(S)] < (1 +Z-)ma(H).
Since each S contains points of H, we have

ma(H) .. ma(H S) <= ma(E. S)

< (1-Z-) h[(S)] (from (2))

< (from (S))
from which we must have an absuM relation 1 < l-Z-’ and this
comNetes the proof.

Besides the generality of our theorem, this result is rather unex-
pected, since if we use "symmetric" upper density for a(p, E), that
is, in the definition of (p, E), we consider a little narrower class of



No. 10.J On some Properties of Hausdorif’s Measure and the Concept. 619

spheres, of centre p, then our theorem does not hold as stated. Indeed,
in case of 2-dimensional Euclidean space and h(r)--r, A.S. Besicovitch
has shown that there exists a set of finite length at almost every

pointD of which the upper symmetric density is __1.
2

III. Generalized potentials and capacity.
Let (P(r) be a monotone-decreasing, continuous function defined for

0 <:: r <:+ o such that lira (P(r)ffi + o. It is always possible to find a
positive number o such that for 0 <: r <::/o we have always e$(r) :> 0.

1 ( :> 0) (r)--log 1Samples- (r.) =-- --,
(log-)(log !og-)r’’’

= r, 0).

Let D be the family of all the Borel sets in the metric space
considered.

Given a bounded Borel set E, we define a positive mass-distribution
/ on E, of total mass n(:> 0), as the total additive, non-negative set
function (A)(A e D) such that

/(E)=m and (9-E)=0.

The function ((p,q)), regarded as a function of p and q
(p:k=q), being continuous .and bounded from below for each fixed
the integral

always exists and has the value + o and :>- o.
We call this integral, regarded as a function of p(e 9) the potential

by the distribution/, of the function
Let z be any positive mass-distribution on E, of total mass 1, and

let us put

q))d/(q) .= V(E)

Varying/, let us consider the lower bound inf V(E)= V(E).,
We define (-capacity of E, C(E), as follows"

if V(E)<= + then C(E)=C)-{V(E)}

and if V(E) + o, then C(E)=O.

It is evident that -capacity is non-negative and if E, E., then
V/(E) V(E) and C(E)

_
C(E).

1) This means "with a possible exception of a set of h-measure zero". A.S.
Besicovitch’s example is given in his paper entitled "On the fundamental geometrical
properties of linearly measurable plane set of points". Math. Annalen, 98 (1928).
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Given an arbitrary set A in , let us define C(A) as sup C(E)
for any bounded E A, Ee.

Then, we have again

C(A) <= C(A)
whenever A A.

If C(A):> 0, we can find a bounded Borel set E, contained in A,
satisfying the condition P(C*(E)) =V(E) <:+ , from which we have
for me positive mass-distribution Z on E, of total mass 1,

where e is a given positive number. This shows that the potential
u(p) is unded from ave.

Converly, if there exist a unded Borel t E, confined in A,
and a positive mass-distribution z on E such that the tential u(p)
by is bounded from ave, then we have C(A)> O.

For, =Z/z(E) being a sitive mass-distribution on E of tol
mass 1, we have

which shows V(E) M/z(E) and consequently V*(E) M/z(E).
Hence

C’(A) C’(E) -’(M/z(E)) > O

Theorem 1. IfEe and C(E)=0 (4=1,2,...), then C( E)=0.

Proof. First we prove this theorem under the condition that the
set E=E is bounded and conquently each E is also bounded.

Suppose that C(E) > O.
Then we can d a positive mass-distribution z on E, of total

mass 1, by which the potential u(p) is bounded from above < M.
Since I=z(E)z(E), there exists an integer i for which
> 0.
Now we distinish here two cas.
1) If (p (p, q)) 0 for every pair of p and q e 9, then

This shows C(E)> 0, which is a contradiction.
2) If (p(p, q))< 0 for some p and q, then there exists a posi-

tive numr & such that (r)0 for 0<r0 and (r)<0 for
r>&.

Let S be a sphere which contains E and S0 a spre concentric
with S with radius ’%+o, where r0 is the radi of S.

We have then for p S0 and E’< E, e
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(4) I, (p (p, q))dp(q) O

It is obvious that

(5) [(z0)] < 0.

From M> I(P(P’ q))dl(q)=IIF._F
we have

If p e So on the one hand, we see by (5)

M- [a(So)] :> t (P(P’ q))dlu(q)"

if p So on the other hand, we see from (4)

0 :>= I (P(P’ q))d/x(q).

Then we have for every

:Max (M-)[(So)], O) I (P(P’ q))dl(q),

which shows that C(E)> 0, hence a contradiction.
Next we shall show that the theorem holds true even if , E=E

is not bounded.
Let E’ be any bounded Borel set contained in E. We have only

to prove that C*(E’)=O.
Put E’. E=E’( E) and we find that these are Borel sets, whose

sum is a bounded Borel set E’.
But C(E)=O, hence C(E)=O and this shows, from what is

proved above, that E’=,E is of (P-capacity zero, which establishes

our proof completely.
Theorem 2. Given any positive mass-distribution/ on a bounded

Borel set E, then the set E of points at which the potential u(p) by Z
has the value + oo is of .capacity zero.

Proof. As is easily seen, /(p) is a semi-continuous function and
the set E is a Borel set. Morever, since every point of E is a limit-
ing point of E, E is also bounded.

If C(E)2> 0, there would exist a positive mass-distribution on
E for which

I?( (’, < + =)"
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by Tone|]i’s theorem and from this we have

u(p)d(p) < M dz(q)=M.(E) <+
which shows that at least at one point of E, u(p) must not take the
value +, and this disagrees with the definition of E.

IV. Relations between capacity and h-measure.
The object of this section is to prove the following important

result.
Theorem A. If C(A) O, then m(A)= + , where h(r)=[(r)]-.

That is to say, if m(A)+, then C(A)=0.
This theorem, in case of 2-dimensional Euclidean plane and the

special function (r)=log --1 had been conjectured by R. Nevanlinna

and was proved by P. ErdSs and J. Gillis after complicad calculations,

and, in case of Euclidean plane and (r)=1, has been proved by
r

T. Ugaheri).
The proof of our theorem depends essentially upon our Density

Theorem given in section II.
Let us begin with some definitions.
Denoting by S(p, r) the sphere of centre p with radius r, we see

at once that ma(E. S(p, r)) can not increase as r decreases and put

oa(p, E) =lim m,(E. S(p, ’))
r->O

Lemma 1. If ma(E)-, then the set H of all the points
p(eE) for which oa(p,E) :>0 is enumerable and consequently, of h-
measure zero.

Proof. Let H, be the set of points p(e E) for which

n- oa(p, E).

Then H=] H.

We see that each H is a finite set. For, supposing the contrary,
there would exist m different points p, p, ..., p of H,, m being an
integer n re(E).

1) Saks. Thorie de L’integmle. (1933) p. 75, but in a restricted form, which
can be modified easily in the general form. We remark here that the function
#((p, q)) for p E and q e E is bounded from below since E and E are bounded, so
that Tonelli’s theorem can be applicable.

2) T. Ugaheri. Proc. 18 (1942), 602.
P. ErdSs and J. Gillis. Note on the Transfinite Diameter, Journ. of Lond. Math.

Soc. Vol. Z (1937).
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Then there exist m spheres S(p, r)(i=l, 2, ..., m) each of which
lies outside the others. Hence

m

>.n- > (E),which is absurd.
Lemma 2. If E is a bounded Borel set and C(E)0, then

m(E) 0, whe =[h]- near the origin.
Proof. Take & such that (r)>0 for 0r< 0. t {&} be

any sequence of spheres satisfying the following conditions

(<& and

Then we have 0 C*(E)=C( E. S). Hence there is an inger
i=io for which C(E&,) O, for, otherwise, we would have C(E)=O
by Theorem 1. Hence there exists a positive mass-distribution z on
Eo=E.&, such that

u(p) = f. (P (P’ q))dz(q) <M
where M is a positive constant.

Let (S}_. any sequence of spheres satisfying the followin
conditions"

SgEo, Sg.E#0 and (S)<o.
il

Since each S. Eo is not empty, let p any one of the points
beloning to S. E0. Now, as ((p, q)) > 0 for every p, q e Eo, we
have evidently

and

or combining both,

M z(Eo" St) <
and summing up,

in which, taking the lower bound of the right hand-side, we have

M- z(Eo) m (Eo,

But since l*(E0) > 0 and m,(Eo, o) m(E) m(E), it follows
immediately

0 < m,(E).



624 S. KAMETANI. [Vol. 18,

Proof of Theorem A. Choose 30 so that (r) :> 0 for 0 <2 r 0.
We have only to prove that if m(A) <2 + , then, for any bounded

Borel set E A, C(E) O.
Now, if ma(E)=O, then by Lemma 2, we have C(E)=O, so that

we may suppose 0 <2 m(E) <2/ , by which we may consider m a
positive mass-distribution on E.

Let E, and E be the sets of the points (eE) which satisfy
o(p, E) 0 and h(p, E) <21 respectively.

Then E+E is of h-measure zero by Lemma 1, 2 and Density
Theorem. By the regularity of h-measure, there exists a bounded Borel
set HE/E. whose h-measure is also zero.

Then, for each point p e E0 E-H,

(6) 3,(p, E) 1

and
(7) o,(p, E)=O or lim qn(E. S(p, r))=0.
By (6), we can choose a sequence {S,:} of spheres which satisfy

the following conditions"

S p, 3(S) 0 (i-- o) and

(s) m (E. S,) > 1_ (i= 2, ...).
h[(S)J 2

Since S p and (S) --) 0, to each positive r(_<-: 9o), there exists a
positive integer N such that for i:> N, we have

c-_ S(p,

As (p (p, q)) > 0 for every q e S(p, ), we have for i :> N

E.S(p,r) E*S

[(S)]m(E. S)= m(E,. S) > 1__ (by (8)).
h[(S)J 2

We .shall now show u,,(p)--Iy(p(p, q))dm,(q)= +oo at p e Eo
if u(q)+ oo, then it would foilow

that is to say,

IF.S,, ((P’ q))dm,,(q)
o)

would exist and be finite, since

where the last term is evidently bounded.
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From the existence of the finite integral ’z.s. ((p,o))dm(q),
it follows that the indefinite integral

is, with respect to m, an absolutely continuous set-function of Borel
sets e contained in E.

But according to (7), limF(E.S(p, r))=O, which would contradict

(9).
Thus, we have seen that at every point p of Eo=E-H, the

potential u(p) takes the value +, from which follows by Theorem 2
that C(Eo)=O as Eo is, as well as E and H, a bounded Borel set,
while the set H is, as shown, of h-measure zero by Lemma 2.

The set E is, as the sum of two Borel sets of C-capacity zero,
also of P-capacity zero and our Theorem ist completely proved.

Noticing that h-measure is regular, we have by Theorem A and
1 the following:

Theorem B. IfA=A, m(A) / o (i= 1, 2, ...), then C(A)=O
where []-=h.

V. A Problem.
It would be interesting if one could make clear under what condi-

tions two special equivalent metrics keep sets of (P-capacity zero in-
variant with each other.


