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1. Hausdorff’s measure and upper density.

Let 2 be any separable metric space with the distance p(p,q) for
D qe L.

A sphere in £ with radius 7, of centre a is the set of points p
such that p(p, a) <r.

Given any set EC 2. let 6(F) be the diameter of E, that is,
o(E) =sup p(p, q).

Now, let 2(r) be a positive, continuous, monotone-increasing func-
tion defined for » >0 near the origin such that

lim h(r)=0.
r>0
Taking any sequence of spheres {S;};-1z.. such that

0 3NS>E, @) oS)<e (=12..),

let us put mu(E,e)=inf gh[&(&-)] for fixed >0, and write
mp(E )=lig my(E, ¢) which is called Z-measure of E. In this definition,

we may assume, without loss of generality, that each S; has points
common with E. This measure, introduced first by F. Hausdorff® is
known to have the property of Carathéodory’s outer measure and
therefore the measurable class of sets with respect to the Z-measure
contains all the Borel sets.

Moreover, h-measure is a regular measure®, that is to say, for
any set E < 2, there exists a Borel set, He &g, such that H> E and
m(H) =mu(E).

If 2 is 2-dimensional Euclidean space, m,(E) for h(r) =i— 7%, h(r)=r*

(«>>0) and h(r)= (log —i—>—l are Lebesgue’s plane measure, a-dimensional

measure (if «=1, then called Carathéodory’s linear measure or length
of E) and logarithmic measure respectively.

Given a set E and a point p e £, we shall define the upper density
of E at p with respect to the h-measure by the following expression:

=":* mh(E.S)
W, B)=lim ey

1) F. Hausdorff. Dimension una dusseres Mass, Math. Annalen., 78 (1919).
2) F. Hausdorff. Loc. cit.
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where S is any sphere containing the point p.

II. Density theorem.

We shall prove in this section the following fundamental theorem.

Density theorem: Let E be any bounded set with finite h-measure,
Then the subset H of points p(e E) which satisfy the condition
dn(p, E)<<1 is of h-measure zero.

Proof. Denoting by H, the set of points peE which satisfy
d(p, E)<1—m™, (m=2,8,...), we have

H=H2+H3+ .
For any point p of H, for a fixed m, there exists a positive

integer » such that for all the spheres S containing the point p, with
diameters less than n~, we have

(1) ma(E- 8) < (1 —m Y A[3(S)].

Fixing again n for a moment, let us denote by H,. the set of all the
points p(e H,.) which satisfy the condition (1) for all S with 8(S) <<n™!
and Ssp. Then, varying » from 1 to o, we have evidently

Hm = il Hmn .
Hence we have
H=12_2 Hm =1§Hmn )
and accordingly
mh(H ) ég mh(Hmn) .

Suppose now that our theorem were false. Then we would have
mp(H) >0 and find two positive integers m=pg, m=p for which
'm/h(Hﬂv) > 0-

By the definition of H,, for any peH, and for any sphere S
containing p, with diameter <<»~!, we have

@) mi(S- E) <(L—p ) R[5(S)].

By the relation mu(H,)>0, we can choose a sequence of spheres
{S;} such that &(S;) <<»?, 33S;>H,, H, -S;>0 and

3) SRS < +p ) mu(H) -

Since each S; contains points of H,,, we have

M) < 33 m(Hy - ) S S malE- )
<A-AYDHES)]  (rom (2)
<Q—=gA+4)m(Hy) , (from (8))

from which we must have an absurd relation 1<<1—pg"% and this
completes the proof.

Besides the generality of our theorem, this result is rather unex-
pected, since if we use ““symmetric” upper density for 4(p, E), that
is, in the definition of 4,(p, E), we consider a little narrower class of
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spheres, of centre p, then our theorem does not hold as stated. Indeed,
in case of 2-dimensional Euclidean space and A(r)=r, A.S. Besicovitch
has shown that there exists a set of finite length at almost every

point? of which the upper symmetric density is —;—

III. Generalized potentials and capacity.
Let &(r) be a monotone-decreasing, continuous function defined for
0<<r<<+co such that ]ﬁ.‘f‘o O(r)=+, It is always possible to find a

positive number & such that for 0 <<r<<d we have always &(r)> 0.
Examples: &(r) =—}; («>0), P(r)=log —11.— ’

(e 2 i) -

Tll
Let B be the family of all the Borel sets in the metric space 2
considered.
Given a bounded Borel set E, we define a positive mass-distribution

# on E, of total mass m(>0), as the total additive, non-negative set
function u(A4)(A €B) such that

#(E)=m  and nLe—-FE)=0.

The function @(p(p, q)), regarded as a function of p and ¢

(p3¢), being continuous and bounded from below for each fixed p,
the integral

O(r)=

(a, By 7y eee _Z_ 0)-

up)= (o0, 9)dta)= | 2(p (0, 0) a1

always exists and has the value <+ and >— o,

We call this integral, regarded as a function of p(e 2) the potential
by the distribution g, of the function @.

Let # be any positive mass-distribution on E, of total mass 1, and
let us put

sup f 2(r0, 0)dua)=VHE).
Varying #, let us consider the lower bound il:f V4E)=V4E).
We define @-capacity of E, CHE), as follows:
if V4E)<+w, then CHE)=0YV4E)},
and if V%E)=+o, then C%E)=0.

It is evident that @-capacity is non-negative and if E) < E),, then
V4E) = V4(E,) and C*(Ey) < CHE,).

1) This means “with a possible exception of a set of h-measure zero”. A.S.
Besicovitch’s example is given in his paper entitled “ On the fundamental geometrical
properties of linearly measurable plane set of points”. Math. Annalen, 98 (1928).
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Given an arbitrary set A in 2, let us define C%(4) as sup CYE)

for any bounded E << A, Ee®B.
Then, we have again

C¥A4,) < C% A4,
whenever A; < A,.
If C*(4) >0, we can find a bounded Borel set E, contained in 4,
satisfying the condition (D(C uE )) =V 4E) <+ o, from which we have
for some positive mass-distribution # on E, of total mass 1,

wp)= | 0 (e (v, 0)dele) < VIE) +e,

where ¢ is a given positive number. This shows that the potential
u(p) is bounded from above.

Conversely, if there exist a bounded Borel set E, contained in A4,
and a positive mass-distribution # on E such that the potential u(p)
by # is bounded from above, then we have C*%(4)> 0.

For, v=u/(E) being a positive mass-distribution on E of total
mass 1, we have

M >u(p)=uE) | 0(o @, 0) @),

which shows V%E)< M/«(E) and consequently VE)< M/«(E).
Hence

CY%4) = CUE) = 07 (MIu(E)) >0.

Theorem 1. If E;e® and CHE,)=0 (¢=1,2,...), then C*(X] E;)=0.

Proof. First we prove this theorem under the condition that the
set E=3>1E; is bounded and consequently each E; is also bounded.

?
Suppose that C#E) > 0.
Then we can find a positive mass-distribution # on E, of total
mass 1, by which the potential u(p) is bounded from above <<M.
Since 1=uF) <3 u(E;), there exists an integer ¢ for which
#E;)>0.
Now we distinguish here two cases.

1) If o (P(p, Q)) =0 for every pair of p and ge £, then
S 2 (p (0, 0))duta) < jE@ (p(p, @) de(@) < M.

This shows C*%(E;) >0, which is a contradiction.

2°) If ¢(P (», q)) << 0 for some p and ¢, then there exists a posi-
tive number &, such that @(r)=¢ for 0<r< 34 and &(r)<<0 for
r> 30.

Let S be a sphere which contains E and S, a sphere concentric
with S with radius 7+, where 7, is the radius of S.

We have then for p¢ S, and E' < E, eB
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@) [ 2w 0)ana<0.
It is obvious that
®) PL3(S))] < 0.
From M> SE?) (p(0, 9))dp(a)= sE-i- SF_F ,
we have M- L_E_> SE(P(p(p, 0)du(q) .

If pe S, on the one hand, we see by (5)
J .2 (p 2, ) uta) = 01 | dpt) 2 0L [, i)

from which follows

M—0[3(S)]> §ch(p(p, 0)dla) .
If p¢S, on the other hand, we see from (4)
02 [ 2(o5,0)dua.
Then we have for every pe £
Max (M—00(S)),0) 2 | (¢ (2, 0)duta),

which shows that C*(E;) >0, hence a contradiction.

Next we shall show that the theorem holds true even if 3} E;=F
is not bounded.

Let E’ be any bounded Borel set contained in E. We have only
to prove that C*(E’)=0.

Put E'-E;=E(< E;) and we find that these are Borel sets, whose
sum is a bounded Borel set E’.

But C*(E;)=0, hence C*E;)=0 and this shows, from what is
proved above, that E'=31E} is of &-capacity zero, which establishes

our proof completely.

Theorem 2. Given any positive mass-distribution ¢ on o bounded
Borel set E, then the set Ey of points at which the potential u(p) by p
has the value -+ o s of P-capacity zero.

Proof. As is easily seen, u(p) is a semi-continuous funection and
the set F; is a Borel set. Morever, since every point of E; is a limit-
ing point of F, E) is also bounded.

If C%E)) >0, there would exist a positive mass-distribution » on
E, for which

[ (e, 0)dstr) = 0 (e (w,0)dstp) < M(<+0).
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But SE%L(p)du(p) = S.@(sz (p(p, 9))dn (Q))du(p)

=§ QG ,,"’(P(P» 2))dv(p))dulq)

by Tonelli’s theorem® and from this we have
[ wrate) < M du)=2-pB) <+eo,

which shows that at least at one point of Ei, u(p) must not take the
value + o, and this disagrees with the definition of E,.

IV. Relations between capacity and s-measure.

The object of this section is to prove the following important
result.

Theorem A. If C%(4A) >0, then mu(A)=+ o, where h(r)=[P(r)]"
That s to say, if mu(A) <+ o, then C*(4)=0.

This theorem, in case of 2-dimensional Euclidean plane and the

apecial function @(r)=Ilog l, had been cenjectured by R. Nevanlinna
r

and was proved by P. Erdés and J. Gillis after complicated calculations,
and, in case of Euclidean plane and d)('r)=—1—, has been proved by

r
T. Ugaheri®.

The proof of our theorem depends essentially upon our Density
Theorem given in section II.

Let us begm with some definitions.

Denoting by S(p,r) the sphere of centre p with radius », we see

at once that mh(E'~S(p, 'r)) can not increase as r decreases and put
ou(p, B)=lim mu(E- S(p, 7).

Lemma 1. If mu(E)<<+o, then the set H of all the points
v(e E) for which on(p, E)>0 is enumerable and consequently, of h-
measure zero.

Proof. Let H, be the set of points p(e E') for which

nr<oyp, E).
Then H.—.}'jl H,.

We see that each H, is a finite set. For, supposing the contrary,
there would exist m different points py, v, ..., m of H,, m being an
integer >n-m(E).

1) S. Saks. Théorie de L’integrale. (1938) p. 75, but in a restricted form, which
can be modified easily in the general form. We remark here that the function
0(p(p,q)) for peE, and ge E is bounded from below since E and E, are bounded, so
that Tonelli’s theorem can be applicable.

2) T. Ugaheri. Proc. 18 (1942), 602.

P. Erdés and J. Gillis. Note on the Transfinite Diameter, Journ. of Lond. Math.
Soc. Vol. 12 (1937).
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Then there exist m spheres S(p;, 7;)(t=1,2, ..., m) each of which
lies outside the others. Hence

mi(E) 2 mh(E ’ ﬁ:l S(ps, 7'@)) =:Z_n1 my, (E - S(p;, "'i))

>me-nt>m(E),
which is absurd.
Lemma 2. If E is a bounded Borel set and C*E)>0, then
mu(E) >0, where @=[h]? near the origin.
Proof. Take & such that &(r) >0 for 0 <<r<<d. Let {S;} be
any sequence of spheres satisfying the following conditions

8(S) <3 and E«:gs,-.

Then we have 0 < CHE)=C* S E-S). Hence there is an integer
1=1y for which C*ES;)> 0, for, otherwise, we would have C*(E)=0
by Theorem 1. Hence there exists a positive mass-distribution 4 on
Ey=E-S;, such that

utp)={ 2(o(0, 0)dul) <M,

where M is a positive constant.

Let {S§}:-12.. be any sequence of spheres satisfying the following
conditions :

%sz;:an, Si-E20 and &(S) <.

Since each S§-E, is not empty, let p; be any one of the points
beloning to Si-E, Now, as w(ﬂ(p, q)) >0 for every p,qceE, we
have evidently

j 0(p(p;,9))duq) §S 0 (p (0 0))dple) <M
SiF B

and

| . _ W(Si By
f 2ot )duta) = j LlaSdra)= Tt

or combining both,
M- w(Ey-SH<h[aSHl  (=1,2,..),
and summing up,
M7 (B < M7 30 (B S§) <23 h[(SH)],
in which, taking the lower bound of the right hand-side, we have
M(Eo) < mu(Eo, o)

But since #(E)>0 and mu(Ep, &) < mu(Ey) < mu(E), it follows
immediately
0 < mh(E ) .
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Proof of Theorem A. Choose 6y so that ¢(r) >0 for 0 <<r < 4.

We have only to prove that if m(A4) <+ oo, then, for any bounded
Borel set E << 4, C4E)=0.

Now, if m,(E)=0, then by Lemma 2, we have C*(E)=0, so that
we may suppose 0 <<mu(E) <<+, by which we may consider m; a
positive mass-distribution on FE.

Let E, and E, be the sets of the points (¢ ) which satisfy
on(p, E) >0 and 4(p, E) <<1 respectively.

Then E\+E, is of h-measure zero by Lemma 1, 2 and Density
Theorem. By the regularity of A-measure, there exists a bounded Borel
set H >E,+E, whose h-measure is also zero.

Then, for each point pe Ey=E—H,

(6) a4(p, E) =1
and
) on(p, E)=0 or lit)r(} my, (E’ - S(p, 'r)) =0.

By (6), we can choose a sequence {S;} of spheres which satisfy
the following conditions:

S;op, 68S;)—0(i—> ) and

m(E-S) 1 -
(8) H5(S)] >2 (1=1,2,...).

Since S;2p and &(S;) —>0, to each positive (< 6,), there exists a
positive integer N such that for ¢> N, we have

S; < S(p, 9) .
As w(p(p, q)) >0 for every qe S(p, ), we have for i >N

© [ 0ea)imez | 0w o)dmo

5 . gy= "B 8) 1
= o[a(S)Imn(E - S;:) }:‘[5(&)] > 5 (by (8)).

We shall now show uh(p)=Lf0(P(p, q))dmi(q)=+ at pe Ey
If wu(q) <+ oo, then it would follow

D, dmL ,
SE‘-S(p. 6“)(/0( Q)) w(Q) <<+
that is to say,

@ (P (p’ Q)) dmll.(q)

SE'S(??. do)

would exist and be finite, since

=(-{ o ,
SE-S(p,b‘o)sE sz«z—sm,ao)(P , q))d'm;(q)

where the last term is evidently bounded.
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From the existence of the finite integral JE s (?(D)(p(p, o))dmh (9),
(D, 0o
it follows that the indefinite integral

Fle)= Ld’ (p (0, 0))dmunlq)

is, with respeet to ms, an absolutely continuous set-function of Borel
sets e contained in E - S(p, d).

But according to (7), lig} F(E’-S(p, r))=0, which would contradict

9).

Thus, we have seen that at every point p of Ey,=FE—H, the
potential uz(p) takes the value + oo, from which follows by Theorem 2
that C%(Ep))=0 as E, is, as well as £ and H, a bounded Borel set,
while the set H is, as shown, of h-measure zero by Lemma 2.

The set E is, as the sum of two Borel sets of @-capacity zero,
also of @-capacity zero and our Theorem ist completely proved.

Noticing that h-measure is regular, we have by Theorem A and
1 the following:

Theorem B. IfA=%A,~, ma(4;) <<+ (2=1,2,...), then C*(A)=0
where [@]'=h.

V. A Problem.

It would be interesting if one could make clear under what condi-

tions two special equivalent metrics keep sets of @-capacity zero in-
variant with each other.



