27. On a Characterisation of Order-preserving Mapping-lattice.

By Atuo KOMATU.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1943.)

1. Introduction. A mapping f of a lattice L_1 into a lattice L_2 is called order preserving, when for any two elements a > b of L_1 , there holds the relation f(a) > f(b) in the order of L_2^{10} . If we define $f_1 > f_2$, when for any element a of $L_1 f_1(a) > f_2(a)$ is satisfied, then the set of all order preserving mappings forms a lattice $\{f\}$. The join $f_1 \cup f_2$ and the meet $f_1 \cap f_2$ are respectively defined by the following mappings:

$$(f_1 \cup f_2)(a) = f_1(a) \cup f_2(a),$$

 $(f_1 \cap f_2)(a) = f_1(a) \cap f_2(a).$

In this paper we are concerned with the problem of a latticetheoretic characterisation of this order preserving transformation-lattice for the case, when L_2 is the two-element lattice $\{0, 1\}$.

The lattice L^* in the theorem of this paper is isomorphic with the ring of all *M*-closed subsets of the lattice *L* of its join-irreducible elements. Evidently we can generalise the theorem for the case, when *L* is only a partially ordered set in the order of L^* . In this case we can therefore omit the condition (iv) of the theorem²). When L_1 is a Boolean algebra, i. e. the lattice of all subsets of a set *R*, whose order relation is defined by the inclusion relation as usual, then the mappinglattice is the same as the covering lattice of all subsets of *R*.

2. Transformation-lattice.

Lemma 1. All order preserving mappings $\{f\}$ of a lattice L into the lattice $\{0, 1\}$ form a complete and complete distributive lattice.

Proof. For any subset $\{f_x | x \in X\}$ of $\{f\}$ and for any element a of L we have the relations;

$$(\bigcup_{x\mid X} f_x)(a) = \bigcup_{x\mid X} (f_x(a)),$$

 $(\bigcap_{x\mid X} f_x)(a) = \bigcap_{x\mid X} (f_x(a)).$

Furthermore for one element $f_0 \in \{f\}$ we can easily prove

$$ig(f_0 \cup ig(\bigwedge_{x \mid X} f_x ig) ig)(a) = f_0(a) \cup ig(\bigwedge_{x \mid X} f_x ig)(a) = f_0(a) \cup ig(\bigwedge_{x \mid X} f_x(a) ig) = ig(a) \cup ig(\bigwedge_{x \mid X} f_x(a) ig) = ig(f_0 \cup f_x(a) ig) = ig(f_0 \cup f_x)(a) ig),$$

1) We use the symbol > in the meaning of the usual symbol \geq .

2) See Birkhoff: Lattice Theory, p. 76.

A. KOMATU.

$$(f_0 \cap (\bigcup_{x \mid X} f_x))(a) = (\bigcup_{x \mid X} (f_0 \cap f_x))(a).$$

Lemma 2. Every element $f \in \{f\}$ has at least one expression as the join (meet) of some join-irreducible¹⁾ (meet-irreducible) elements.

Proof. The subset $\{a_x \mid X\}$ of L such that $f(a_x)=1$ holds, forms a J-closed subset²⁾ $f^{-1}(1)$ of L.

Let \mathfrak{A}_x be the dual principal ideal $a_x \cup L$. Now we consider for every x the order preserving transformation f_x such that

$$f_x(a) = 1, \qquad a \in \mathfrak{A}_x,$$

$$f_x(a) = 0, \qquad a \notin \mathfrak{A}_x,$$

then clearly f is the join: $\bigcup_{x \mid X} f_x$. For $f > f_x$ is clear by the inclusion relation $f^{-1}(1) > \mathfrak{A}_x = f_x^{-1}(1)$. And $f < \bigcup_X f_x$ is proved by the fact, that for any element a_x of $f^{-1}(1) f_x(a_x) = 1$,

i.e.
$$(\bigcup_x f_x)(a_x) = \bigcup_x (f_x(a_x)) > f_x(a_x) = 1$$
 holds.

Every element f_x is join-irreducible. For if f_x is a join $\bigcup_{y|Y} g_y$, then $f_x(a_x) = (\bigcup_Y g_y)(a_x) = \bigcup_Y (g_y(a_x)) = 1$, therefore for some $y \ g_y(a_x)$ must be 1. Consequently $g_y^{-1}(1) > \mathfrak{A}_x$, i.e. $g_y > f_x$. Since $f_x > g_y$, we conclude $f_x = g_y$.

Lemma 3. Every join-irreducible element f of $\{f\}$ has as the set $f^{-1}(1)$ a principal dual ideal $a \cup L$.

Proof. Let $f^{-1}(1) = \{a_x \mid X\}$, and let \mathfrak{A}_x and f_x be defined as in lemma 2. Then

$$f = \bigcup_{x} f_x$$
.

Since f is join-irreducible, for some $x f = f_x$. Whence $f^{-1}(1) = f_x^{-1}(1)$ is the principal dual ideal $a_x \cup L$.

3. Having established the above properties of $\{f\}$, we can now consider the inverse problem, that is the characterisation of mapping-lattice $\{f\}$.

Lemma 4. Let L^* be a lattice with following properties: i) complete, ii) completely distributive, iii) every element a is a join of join-irreducible elements, iv) the set of all join-irreducible elements forms a lattice L by the order of L^* . Then $a \cap b$ of join-irreducible elements a, b is again join-irreducible.

Proof. Join and meet in L we denote by \lor , \land . Clearly $a \land b < a \cap b$ in the order of L^{*}. If $a \land b \neq a \cap b$, then $a \cap b$ must be join-reducible. Therefore

[Vol. 19,

126

¹⁾ An element f is called join-irreducible, when f is the join of any elements f_x , i.e. $f = \bigvee_{x \in \mathcal{X}} f_{x_x}$ then necessarily for some $x \ f_x = f$.

²⁾ Cf. Birkhoff: Lattice Theory, p. 14.

No. 3.]

$$a \cap b = \bigcup_{z} a_{z}$$
, a_{z} : join-irreducible.

Since $a \wedge b$ is the greatest lower bound of a, b in L,

$$a \wedge b > a_z$$
.

And then $a \cap b = \bigcup_{z} a_{z} > a \land b > \bigcup_{z} a_{z} = a \cap b$. i. e. $a \cap b$ must be join-irreducible.

Lemma 5. Let $a = \bigvee_X a_x = \bigvee_Y b_y$ be any two expensions by joinirreducible elements in L^* . Then for any a_x we can select suitably some b_y such that $b_y > a_x$ and for any b_y some a_x such that $a_x > b_y$.

Proof. From complete distributivity we can deduce

$$b_y = b_y \cap a = b_y \cap (\bigcup_X a_x) = \bigcup_X (b_y \cap a_x).$$

Since b_y is join-irreducible, for some $x \ b_y = b_y \cap a_x$, i.e.

 $a_x > b_y$.

Theorem. Let L^* be a lattice as in lemma 4. Let L' be the dual ideal of L. Then L^* is lattice isomorph to the order preserving transformation-lattice $\{f\}$ of L' in $\{0, 1\}$.

Proof. i) One to one correspondence. Let $a = \bigvee_X a_x$ be one expression of $a \in L^*$ by join-irreducible elements a_x , and \mathfrak{A}_x the principal ideal $a_x \wedge L$ in L (principal dual ideal in L'). Let f_x be the order preserving transformation of L' in $\{0,1\}$ such that $f_x^{-1}(1) = \mathfrak{A}_x$, then $f = \bigvee_X f_x$ is clearly an order preserving transformation and $f^{-1}(1) = \sum_X \mathfrak{A}_x$. We consider the correspondence $a \to f$. This correspondence is uniquely determined. For if $a = \bigvee_X a_x = \bigcup_Y b_y$, then from lemma 5 every \mathfrak{A}_x is included by some principal ideal $\mathfrak{B}_y \subset L$, therefore $\sum_X \mathfrak{A}_x \subset \sum_Y \mathfrak{A}_y$, and similary $\sum \mathfrak{B}_y \subset \sum \mathfrak{A}_x$. Hence the inverse set of 1 is equal for any expression of a. This correspondence is one to one, for if $a \pm b$, $a = \bigcup_X a_x$ and $b = \bigcup_Y b_y$, then for at least one element a_x (or b_y) there exists no element b_y (or a_x) such that $f_a^{-1}(1) \pm f_b^{-1}(1)$, whence $f_a \pm f_b$.

ii) Let f be any order preserving transformation of L' to $\{0, 1\}$, then the set $f^{-1}(1) = \{a_x \mid X\}$ is a *M*-closed subset of L. From completeness of L^* the element $a = \bigcup_X a_x$ exists and corresponds to the element f of $\{f\}$.

iii) Lattice-isomorphism. Let $a = \bigcup_X a_x$, $b = \bigcup_Y b_y$, then $a \cup b = (\bigcup_X a_x) \cup (\bigcup_Y b_y)$, $a \cap b = \bigcup_{X,Y} (a_x \cap b_y)$ and let $f_a, f_b, f_{a \cup b}, f_{a \cap b}$ be each the mappings of L' in $\{0, 1\}$.

Now for any element c of L' if $c \in \mathfrak{A}_x$ or $c \in \mathfrak{B}_y$ for some x or y, then $f_{a \cup b}(c) = 1 = f_a(c) \cup f_b(c)$. If $c \notin \mathfrak{A}_x$ and $c \notin \mathfrak{B}_y$ for any x and y, then $f_{a \cup b}(c) = 0 = f_a(c) \cup f_b(c)$. Therefore in all cases

$$f_{a\cup b}=f_a\cup f_b$$
.

127

Similarly

$$f_{a\cap b}=f_a\cap f_b.$$

From the above proof we can see easily that L^* is isomorphic with the ring of all *M*-closed subsets of the lattice *L* of the join-irreducible elements.

Corollary. Let L^* be a lattice as in this theorem. Then every element of L^* is meet of some meet-irreducible elements and the subset of all meet-irreducible elements forms a lattice, which is latticeisomorphic to the lattice L of all join-irreducible elements.