
224 [Vol. 19,

Banach Limits and the Cech Compactification
of a Countable Discrete Set.
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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGi, .I.A., May 12, 1943.)

1. Let (m)be the Banach space of all bounded sequences of
real numbers {x n 1, 2,... } with sup x as its norm, and
let be the ech compactification (see 2) of a countable discrete
set /2. The purpose of this paper is to give further investigations
into the relations between Banach limits defined on (m)and countably
additive measures defined on /2, which were previously discussed by

one of the present authorsD. By means of this compactification /2,
we shall first obtain a general form of bounded linear functionals
defined on (m) (Theorem 2). This may be considered as a generaliza-
tion of a result due to L.W. Cohen and N. Dunford2; and a result
of G. Fichtenholz and L. Kantorovitch3) concerning the cardinal number
of the conjugate space of (m) may be obtained from this easily
(Theorem 3).

It will then be shown that a Banach limit corresponds to a count-
ably additive measure m(/7) defined for all Borel subsets
vanishing identically on /2. Thus the problems of Banach limits are
reduced to the problems of measures on the compact (--bicompact)
Hausdorff space /2’---/2-/2. We shall prove that there exists a family
of mutually disjoint non-empty open-and-closed subsets of ff with the
cardinal number (Theorem 6). As an application of this result we
shall finally show that, given a sequence {f(x) ln= 1, 2, ...} of bounded
linear functionals defined on a closed linear subspace, X0 of a Banach
space X, it is not always possible to extend each f(x) to a bounded
linear functional F(x) defined on X in such a way that the new
sequence {F(x) ln=l, 2, } is weakly convergent on the whole space
X In fact, if we take X=(m), X=(c)=the subspace of (m) consist-
ing of all convergent sequences = {xn n= 1, 2, }, and fn(x)
nl, 2, ..., then this is a required example (see 7). As was kindly
communicated to the authors by S. Izumi. this fact was already noticed
by R.S. Phillips4); but our method of proof is entirely different from
his and may be observed with some interest.

2. We begin with preliminary remarks. First we note that (m)

1) S. Kakutani, Concrete representation of an abstract (M)-space and the charac-
terization of the space of continuous functions, Annals of Math., 42 (1941).

2) L.W. Cohen and N. Dunford, Transformation in sequence spaces, Duke MattL
Journ., 3 (1939), 689-701.

3) G. Fichtenholz and L. Kantorovitch, Sur les operations dans l’espace des fonc-
tions bornes, Studia Math., 5 (1934), 69-98.

4) R.S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 44 (1939),
516-541.
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may be considered as the Banach space C(9) of all bounded .real-valued
continuous functions x(w) defined on a countable discrete set
{wln=l, 2,...} with IIll=sup,el(w)l=supl(w)l as its norm.
It is well known that (m) and C(9) may be considered as a real
normed ring or as an abstract (M)-spaceD (i. e. a Banach lattice in
which V y max (ll II, y il) for any pair of elements and y with.

0 and y 0). By a result of E. ech"), there exists a compact
Hausdorff space 9 containing 9 as a dense subset such that every
bounded real-valued continuous function z(w) defined on .0 can be
uniqueIy extended to a real-valued continuous function () on
This compact Hausdorff space . is called the ch compactification
of 9. The fact stated above shows that, denoting by C(-@) the Banach
space of all real-valued continuous functions () defined on 9 with
llll=supeiz()l as its norm, the spaces C()and C() are iso-
metric as Banach .spaces, ring isomorphic as real normed rings, and
lattice isomorphic as (M)-spaces, all these with respect to the same
correspondence x(w)*-x(). Further, it is known that we can obtain
the Cech compactification of } by considering C(9) as a real
normed ring and by taking its representation space in the sense of
M.H. Stonea), G. Silov), I. Gelfand and A. Kolmogoroff); or by
considering C() as an (M)-space and by taking its concrete
presentatione).

It is also not difficult to see that -@ may be considered as a
representation space (--Boolean space) in the sense of M. H. Stone7) of
the Boolean algebra (9) of all subsets of 9. From this follows that

is totally disconnected and that the Boolean algebra () of all
open-and-closed subsets of 9 is isomorphic with D() (see the proof
of Theorem 4). It is also knowns) that has the cardinal number 2c.

3. Let be the ech compactification of a countable discrete
set 9 as in 29), and let C() be the Banach space of all real-valued
continuous functions () defined on 9 with llll=sup]()l as its
norm. We denote by the Borel field of all Borel subsets /7 of
A ountably additive measure m() defined on is regular if them
exists for any e and for any :> 0, an open subset 0 of such

1) See s. Kakutani D of p. 224.
2) F ech, On bicompact spaces, Annals of Math, 38 (1987), 823-84&
3) M.H Stone, Boolean rings md general topology, Tran Amer. Math. Soc,, 42

(19a
4) G. ilov, Ideals and subrings of the ring of continuous unctions, C.R. URSS,

S (1939), 7-10.
5) L Gelfand and A. ILolmogoroff, On rings of continuous functions on topological

spaces, C. P URSS, 22 (1939), 11-15.
6) See S Kakutani 1) of p. 224.
7) See M.H. Stone 3).
8) B. Pospisil, Remarks on bicompact spaces, Annals of Math., 38 (1937), 845-846.
9) The results of this is valid for any compact Hausdortf space.
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that (3 and m(O)m()/. Further, a countably additive real-
valued (not-necessarily non-negative) set function () defined on
is re/r if it is the difference of two regular countably additive
measures defined on . This condition is clearly equivalent to saying
that there exist, for any Be and for any 0, a closed subset

of and an open subset 0 of such that0 and
m()-m(/’) <2 for any ’ e with (?/’ O.

Theorem 1). For any regular countably additive real-valued set
function m() defined on , the integral

(1) f(x) I_x()m(d)
is a bounded linear functional defined on C(2), satisfying

(2)

Conversdy, to any bounded linearfunctional f(x) defined on C(), there
corresponds a uniquely determined regular countably additive real-
valued set function m() defined on such that (1) /s satisfiexl for
any x() e C(12). This correspondence f(x) --, re(B) is one-to-one ad
the property of f(x)"

(3) x() O on 12 --) f(x) O

corresponds to the fact that

(4) m(/) 0 on

(i. e. to the fact that m() is a measure) in which case the condition

(5) x() 1 on . --, f(x)= 1

is equivalent to saying that m(.Q)=l.
4. A bounded linear functional f(x) defined on the Banach space

(m) is a Banach limit if it satisfies the following conditions.-’).

(6) x0, n=1,2,... --, f(x)O,

(7) x-- 1, n---1, 2, --, f(x) 1,

(8) x =O, n=k, k/l, k/2, f(x)=0 (k=l, 2,...).

Let us identify x= {x n= 1, 2, ...} e (m) with x(,o)= (x(,o,,) In--
l, 2, ...} e C(.) and also with its extention x() e C(2) by means of
the relation x-x(w.), n- 1, 2,

Theorem . For any regular countably additive real-valued set
function m() defined on , the formula

(9) f(z)=I()m(d)--"-’/’x+- I- x()m(d)
1) See S. Kakutani 1) of p. 224.
2) Sometimes it is also required that a=ya+l, n--I,2,.., implies f(x)::f(g). This

condition is stronger than (8). We do not discuss this condition in the prcscnt paper.
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is a bound linear funct defined on (m) satisfying

Convrsdy, for any bounded linear func$wnal f(x) defined on (m), wre
exists a regular countably additive real-valued setfunction m() defined
on such that (9)/s satisfied for any x()eC(9-) (i. e. for any xe (m)).
This corrponcten f(),-m() is one-w-one, and the property (6) of
f(z) corresmm to the property (4) of m() (i. e. to the fact that m()

is a meagre), in which case the condition (7) on f(x) is equivalent to

say/rig that m(-o)--L
Furth, the condition (8) corresponds to the fact that p,=m((w,))

0, n--1, 2, Thus a Banach limit f(x) corresponds to a regular
eountably additive measure m() defined on vtnishing identically

on such that m(-t2)= 1. Hence the representation formula (9)

(11) f(z)--I ax(lm(d).
Conversdy, the integral (11) tak with respect to a regular count-

ably additive measure m() dened on satiffying m(-.q)=l, gives
a Banach limit.

The proof of Theorem 2 is easy, and so omitted.
The formulae (9) and (10) may be considered as a generalization

of a result due to L.W. Cohen and N. Dunford) giving a general
form of bounded linear functionals on (m).

The results obtained in Theorem 2 show that there exists a one-
to-one correspondence between Banach limim f(x) and regular countably
additive meamrres m(/) defined for all Borel subsets B of a compact
Hausdorff space if--9- satisfying m()-- 1. Consequently, in order
m discuss general properties of Banach limits, it is natural to in-
vestigam topological properties of the compact Hausdorff spach ’.

5. From what we have seen in 2, it is clear that 9’ is totally
disconnected and has the cardinal number 2. Consequently, by con-
sidering a measure on 9’ which is concentrated in a single point of
if, we see that the family of all Banach limits on (m) has a cardinal
number not smaller than 2:. On the other hand, since the Banach
space (m) has the cardinal number , the cardinal number of the
conjugate space of (m) cannot exceed 2. Consequently,

Theorn 3. 2’he conjugate space of (m) (i.e. the family of all
finitely additive measures defined for all subsets of 12) and the family
of all Banach limits on (m) have both the same cardinal number 2.

This result was already obtained by G. Fichtenholz and L. Kanto-

1) L.W. Cohen and N. Dunford 2) of p. 224.
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rovitch1) by a rather complicated method. Our approach is different
rom theirs.

6. We shall now show that there exists a family of mutually
disjoint non-empty open-and-closed subsets of 12 with the cardinal
number c. This fact is rather surprising since in a larger space 12,
every amily of mutually disjoint non-empty open-and-closed subsets
of 9 is countable. An analogous phenomenon was previously observed
by E. Szpilrajn-). It is, in fact, to be. noticed that every compact
Hausdorff space is homomorphic with a closed subset of a compact
topological group, and that there exists, for any cardinal number m,
a compact Hausdorff space in which there exists a family of mutually
disjoint non-empty open-and-closed subsets with the cardinal number m
(for example, the ch compactiication o2 a discrete set with the
cardinal number m), while, on the other band, in any compact topo-
logical group every amily o mutually disjoint non-empty open sets
is countable, this last fact being an immediate consequence of the
existence of Haar measure.

In order to prove our proposition, let us denote by (’) the
Boolean algebra of all open-and-closeci subsets of 9’. (The Boolean
algebras (9)and (12-) were defined at the end of 2). Let us
further denote by ff(12) the family of all finite subsets of 9. Then
(12) is an ideal in (9) and

.Theorem . The factor ring (9)/(12) is isomorphic with (9’).
Proof. Let E be an arbitrary subset of 9, and let x(o) be the

characteristic function of E defined on 12. Then x(w) is continuous
on the discrete set 12, and consequently there exists a unique continuous
extension x()e C(9). Since x(w) takes only 0 and 1 on 9, so does
XF() on 12. Consequently, x(/) is a characteristic function of a
certain subset of which is clearly open-and-closed. It is easy to
see that E* gives the isomorphism between (9) and (-) stated
at the end of 2, and that we have E=( 12. Further, for any

’e !(), let us put E’=( 9’. Then the mapping E-*-E’ is
clearly a homomorphism of D(12) into D(12’). It is now not difficult
to see that this is even an onto-homomorphism and that the family
of all Ee !(12) which are mapped by this homomorphism into the zero
element of !D(ff) is exactly the ideal (9) in question. Our theorem
follows from this immediately.

Theorem 5. There exists a family [ {A r e F} of subsets of a
countable set 12 with the following praperties"

(12) F has the cardinal number c,
(13) Ar is infinite for any r eF,
(14) A Ar is finite for any fieF, r e F with = r.

Proof. We may assume that /2 (m, In 1, 2, ...} is expressed by

1) See G. Fichtenholz and L. Kantorovitch 3) of p. 224.
2) E. Szpilrajn, Remarque sur l.s produits cartiens d’espaces topologiques,

C. R. URSS, 31 (1941), 525-527.
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means of the set of all finite diadic systems"
or 1; -1, ..., n, n--l, 2, ...} and that F--7.} is the set of all diadic

infinite sequences r-- {r {e,, ca ..., , ...}l e,--0 or 1; i= 1, 2,...}. Then

{At-- {,,, ,,.,.,-.., ,,.,. "e ""} 17" e F} gives a required family. It is

clear that the conditions (12), (13) and (14) are all satisfied.
From Theorems 4 and 5 follows immediately
Theorem 6. There ests a family ={E T" e F} of mutually

dis2"aint non-empty open.and-dosed subsets of 9" with the cardinal
number c.

7. Let now {f(x) ln=l, 2, ...} be a sequence of bounded linear
functionals on the Banach space (c) of all convergent sequences
{xIn=l, 2,...} with Ilxll=supnlxl defined by f(x)=xn-X+l, n=
1, 2, It is clear that this sequence converges weakly to 0 on (c).
We shall show that it is impossible to extend each f(x) to a bounded
linear functional F(x) defined on (m) in such a way that the sequence
{F(x) ln= 1, 2, ...} is weakly convergent on (m).

Assume that each f(x) had an extension F(x) defined on (m).
By Theorem 2, each F(x) is of the form (9), and from the fact that
F(x) is an extension of f() we see"

(5) F.(x)=-.,+

where m,(/) is a regular cuntably additive real-valued set function
defined on . Let ,(E) be the total variation of m() on E.
Then (E)>0 at most for a countable number of r eF. Since
has the cardinal number c. there exists a 7.0e/" such that (Eo)--0,
n=l, 2,

Let now ro be an open-and-closed subset of 9 which satisfies

Eo=Ero c if, and let us put) Ero=roc 9. Let ro() e C(9) be

the characteristic function of Er Then the integral on the right
hand side of (15) vanishes identically for x(,)=..(). Further, since

both Ero and 9-Ero are clearly infinite sets, there are infinitely many
1 and -1 in the sequence {x-z+ln= 1, 2, ...}. Consequently, the
right hand side of (15) cannot converge for z()=.(), showing the

impossibility of extension with the required property.
8. Finally, let us add some words concerning the case when

is a discrete set with a cardinal number greater than tO, All argu-
ments in this paper are valid in our case, except those which are
concerned with the notion of cardinal numbers and which require
suitable modifications. We may also discuss the relations between
finitely additive measures defined for all subsets of a discrete set 9
and countably additive measures defined for all Borel subsets of the
ech compactification . of 9. These problems will be discussed on
another occasion.

1) Ero and Er are determined up to a finite set.


