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1. Let D be a domain and E be a compact sub-set, of D, of
linear measure zero in the sense of Carathéodory.

If w=f(z) is regular in D—FE and has E as its essential singu-
larities, then, near each point z,€ E, f(2) takes every finite value except
perhaps those belonging to a set of Newtonian capacity Zero. This
result, an extension of the one obtained by M. L. Cartwright® was
proved in our former Note with the same title as the present one,
Proc. 17 (1941).

Now, according to the result obtained recently by the present
author,? a set of Newtonian capacity zero may be the sum of enumerably
infinite sets of Carathéodory’s linear measure finite, so that the ex-
ceptional set stated above might be of linear measure positive.

In this note, we shall show that the intersection of the exceptional
set with any straight line is of linear measure zero.

2. We shall denote by m(E) Carathéodory’s lineare measure® or
the length of E, by E° the complementary set of E, and by {p; P}
the set of all the points p with the property P.

Lemma 1. Let F be a closed set on a rectifiable Jordan arc L and
of positive linear measure. Then there exists a point & € F' such that

[, dc+o

for every sufficiently small arc A(< L) containing .
Proof. Let L be represented by the equation :

(=L (055

with the arc length s as its parameter.
Then, at almost every point of s, £/(s) exists and | {'(s) |=1.

Writing {'(s)=¢e%®, (so(s); real), we have

j &K= S M.Ie‘“"‘)ds ’

F-A

1) M.L. Cartwright. The exceptional values of functions with a non-enumerable
set of essential singularities, Quart. J. Math., Vol. 8 (1937).

2) S. Kametani. On some properties of Hausdorff’s measure and the concept of
capacity in generalized potentials, Proc. 18 (1942).

3) S. Saks. Theory of the Integral (1937), p. 53.

4) We may suppose that the set F’ does not contain any of the end points of L.
Wa suppuse it hereafter, if necessary, without explicitly saying so.
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where M={s; {(s) e F'} and I={s; {(s) € A}.
By Lebesgue’s theory on the differentiation of the indefinite integral,
we have at almost every point s=s,e6 M

1 ¢POdg — g0

m(I) J a1

as m(I)— 0 where I'ss, whence we have also
l j o \ = ‘ L,,e"""ds , =mI(1-7) (0<7<1),

if I(3s) is sufficiently small. Since the are A corresponding to I
contains the point {,=¢(sy), our lemma is proved.

Lemma 2. Let F be a closed set on a rectifiable Jordan arc L
and of positive linear measure. Then the regular function defined by
the following integral :

H(w)= 1
rl—w

18 nom-constant in F°.
Proof. Supposing the contrary, let H(w) be a constant in F'°. Then,
we would have

SCH(w)dw=0

for any rectifiable closed Jordan curve C not meeting F.

We distinguish here two cases.

1°) If F contains continuums, then it contains an arc A< L
such that near both end points of A, we can find small ares (< L)
which do not meet F.

Therefore, we can find an arc A’ > A with both end points ¢ F,
as near to A as we may.

Since L/ch—»de when A’ — A, and L £ =8,—Ce0, where G,
and ; are both end points of A, we have, for some arc A’ with both
end points ¢ F,

[, a+o.
FA’

2°) If F does not contain any continuum, then near every point
of F, we may find.small ares (< L) which do not meet F. Now
choose a point ¢, stated in Lemma 1.

Then, for every small arec A4 3¢,

( gr+o.
F-A

Therefore we can find also an are A" < 4, A’ >¢, with both end-
points not belonging to F' such that

& =+0.

SF-A’
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In both cases, there exists a closed rectifiable Jordan curve C
which contains A’ in its interior, except both end points, and does mot
meet F.

Since F' and C are compact, the distance of them is positive and
the funétion ((—w)™! for £ eF and weC is bounded, which enables
us to invert the order of integration as follows :

o ot § 2 o {1, e

- .‘ F.A,( - 2;1;) de=- ~2—1ﬂ;~[ F.A’dC#—‘O ’

in which we notice j —C~1-— dw=0 for ¢ exterior to C.
ce—wW
Thus we arrive at a contradiction, and our lemma is proved.
Let L: £=¢(1) (0<21X1) be a rectifiable Jordan arc, and w any
point outside L. Dividing L into a finite number of sub-arcs

Lu : C'_"C(l) (lv—l g A —..g_ lv)

by a finite number of arbitrary points on L, {,={(,), 0=2 <2; < ---
<A1 < =1

We consider the angle ¢,_,#¢, made by the vector E,;; to the

vector {,,w, whose value is uniquely determined by the condition that
¢,—yw¢ should be a continuous function of ¢ along L, and &,_1#¢,-1=0.
Thus ¢,-1W¢, becomes a single-valued function of w outside L,. Next
we shall consider the sum of the angles thus determined :

%I Cv—l’ibc‘w l .

Let its upper bound, varying the mode of division of L, be
V(w, L). We shall write:

V(L)= sup V(w,L).

It is evident that if L is a straight line, then V(L) is finite and =,
and more generally, if L is a bounded convex are, then V(L) is also
finite.
Lemma 3. Let F be a closed set of positive length on a rectifiable
Jordan arc L with V(L) <+ oo.
Then, there exists a function G(w) with the followiny properties :
G(w) s
1) a uniform (single-valued), analytic function of w in F*,
(2) mon-constant
and  (3) bounded.
Proof. From the fact that F is a set €¢®; we may find a
descending sequence {O™} of sets which are open in L and satisfying

lim O®=1I O™ =F,
n n=1
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Since O™(> F') is open in L, it consists of a sequence {A{™} of
arcs which are open in L and any two of them do not meet, where
we may suppose, by Borel-Lebesgue’s theorem, that {A{™} consists of
a finite number of such ares.

The sum of such ares, depending on 7, will be denoted by a(n).
Then F < a(n) < O™, whence

(1) }.IE a(n)=F.

Fixing n for a moment, let the arcs of a(n) be ay, ..., a,, Where a,
=), AP <1<i®) and P <P P <IP L0 <A®,

At a point of the arc a,, the closure of a,, let us fix any element
of the analytic function log (w—C) of the variable { and continuate <t
walytically along a,. The function thus defined along a, will be denoted
also by log (w—{).

Then we have evidently

@) log(w—c‘,”)—-log(w—c9>)=_j .&dbém:_s _dc

where {P={(2") and {P={(zP).

From the right-hand side of the above relation, we find that (2)
represents a uniquely determined, single-valued function of w in a,
which is independent of the special chowce of log (w—C).

It is also evident that

J{log (w—{P) —log (w—CP)} =CPwCP .
Let us consider, depending on n now, the following function':
A(w)=3; {log (w—(P) ~log (L)} -

Then we have evidently

3) |34 w)|=| ;:13{103 (w—EP)—log (w—CP)} | S V(D).
It is also evident from (2) that
Aw)= _j' &

aln) w—C¢
We have from above and (1)

im{-| e}l
which will be denoted by H(w). By Lemma 2, H(w) is not a con-
stant and by (3) we have in the limit
(4) | IHw) | < V(L).
Let us consider next the following function :

G(.w) - e—dH (w)
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From W{—iHw)}=5H(w) and (4), we have for wc F°
l G(w) ‘=8311(w) S eV(L) ,

from which follows the boundedness of G(w).

Since H(w) is a non-canstant, single-valued, analytic function, so
is the function G(w) for w € F'°, which proves our lemma completely.

3. Theorem A. Let D be a domain and E be a compact sub-set
of linear measure 0 lying in D. If' w=f(2) is regular in D—E and
has E as its essential singularities, let us denote by S the set of all
the finite values which are not assumed by f(z) in D—E: S={w; o[ (2)
for ze D—E}.

Then the intersection of S with any rectifiable Jordan arc L such
that V(L) < « is of linear measure zero.

Proof. The proof is chiefly depends on Lemma 3.

Supposing the contrary, let L be an arc such that

m(L.S)>0 and V(L) < oo .

As L and S are closed sets, F'=L.S is a closed set. :
By Lemma 3, there exists a single-valued, bounded, and non-

constant analytic function G(w) defined for all values of F°.
Let us now consider the following function :

2(2)=G[f()].

Since G(w) is bounded and single-valued outside #' whose values
are not taken by f(z) in D—E, &(z) is a single-valued bounded analytic
function in D except for the set E of linear measure 0. Then, by
Besicovitch’s theorem? which we have also used already in our former
note, @(z) becomes regular analytic throughout D, if properly defined
on E.

G(w) being not a constant, we can find two values w’ and w” € F'°,
such that

(5 G(w') == Gw").

But, since the set of values taken by f(z) in every neighbourhood
of each z,e¢ E is everywhere dense by Besicovitch’s theorem?, we can
find two sequence of points {z,} and {2z} both tending to the point
2 and satisfying

JE)—w and fE)—>w’ as yv— .
Then, we would have
O(z)= }Hﬂ (z)= E)IB Glf@)]=Gw)
and also

() =lim o(2))=G(w"),

winch is impossible on account of (5), and our theorem is proved.

1) A.S. Besicovitch. On sufficient conditions for a function to be analytic, ete
Proc. London Math. Soc. (2) Vol. 32 (1931).



No. 8] The Exceptional Values of Funetions, 443

As a corollary of the above theorem, we have immediately :

Theorem B. Under the same assumption of Theorem A, the intersec-
tion of S with any straight line or any convex arc is of linear measure
zero.
Theorem A may be slightly generalized by the typical argument
as follows :
Theorem C. Under the same assumption of Theorem A, let S be the
set of all the finite values not assumed or assumed only a finite number
of times by f(2) mear zeFE, then the intersection of S with any
rectifiable Jordan arc L such that V(L) <+ 18 of linear measure
zero.

Proof. Noticing that E does not contain any continuum, there
exists for ze€ E a sequence of open domains {D,} with the following
properties :

lo D=D1>Dz>‘“929,
20 "(Du)—>0 as y— o, where J(D”)= sulez’;.z”l’
#,2’eD,

3° each E,=D,.E is a closed set.
For each », let us put
S,={w; wxf() for 2ze D,—E.}.
Then by 1° and 8°, ;< S < -+-
Writing S =g S,. we find the intersection of S with any rectifiable

arc L such that V(E) < e is of linear measure 0, since, by Theorem
A, we have

mS.L) < i} m(S,.L)=0.

Now it is evident by 2° that any finite value ¢ S is assumed by
Sf(2) infinitely many times near z, which proves our theorem completely.



