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16. On Group Rings of Topological Groups.

By Kenkichi IwAsAwA.
‘Mathematical Institute, Tokyo Imperial University.
(Comm. by T. TAKAGI, M.IA,, Feb. 12, 1944.)

§1. Let G be a locally compact topological group, satisfying the
second axiom of countability and # a left invariant Haar measure on
G. We denote as usual by L?(G) (p =1) the set of all x-measurable
functions x(g) of G with finite

1
12(0)lb={ | | o) " d)} 7 .
For arbitrary x(g9) e L@), y(9) e L°(G) and

1) 2(g)=xx ylg)= gcx(h)y(h"‘g)#(dh)‘,
we have
2 lzlo=lexyl, Zlellyl,.

Defining the multiplication by (1) and putting
(3) loll=Max. (lzl;, lxl,),

the intersection L*?(G) of LXG) and L»G) thus becomes a non-
commutative normed ring”. But, generally speaking, L**(®) has not
a unit element. Adjoining therefore formally the unit ¢, I.E. Segal
congidered the set of all

3=2e+x(g9); A=complex number, xz(g)e L*?(G),

and called it the group ring R*?(G) of G?®. But we would rather
prefer to call L*?(@G) itself the group ring of G. We shall give in this
paper certain close relations between G and L®?(G), some of which
are generalizations of the results of I. E. Segal.

§2. We consider representations of G and L®?(G), i.e. homo-
morphic mappings of G and L®?(G) into matrices, whose components
are complex numbers®.

Our main theorem is then :

Theorem 1. There is a one-to-one correspondence between con-
tinuous® representations of L®?(G) and bounded continuous representa-
tions of G in the following sense :

i) For a given continuous representation x(g) — T(x) of L:?(G),
there corresponds uniquely a bounded continuous representation a — D(a)
of G, so that it holds

1) For normed rings cf. I. Gelfand: Normierte Ringe, Rec. Math., 51 (1941), 37-58.

2) I.E. Segal: The group ring of a locally compact group, I, Proc. Nat. Acad.
Sei,, U.S. A. 27 (1940).

3) For the representation of G, we do not require that the unit of G corresponds
to the unit matrix.

4) The topology in L1 »(G) is of course given by the norm |z| in (3).
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@ T)= | s(g)Dlg)u(dg)®

for all x(g) in LY?(G). We denote this representation of G by D{(a).

ii) Conversely, if a— D(a) is an arbitrary bounded continuous re-
presentation of G and if we define T'(x) by (4), the mapping x(g)— T(x)
gives a continuous representation for a(g) in L>?(G). We denote this
representation by Tn(x).

iif) i) and ii) give mutually inverse correspondences: if Dy=Dr,
then T1=Tp, and if T,=Tp, then D,=Dg,

iv) Equivalent representations correspond to each other: if
ATy(x)A'=Tyx), then ADr(a)A'=Drfa) and if BD,(a)B'=Dya),
then BTp,(x)B'=Tp,(x).

From Theorem 1 follow immediately some corollaries: Let
a—D(a) be a bounded measurable representation of G. If we put

T(0)= s(0)D(@n(do)

x(g) — T(x) gives, as before, a continuous representation of L% ?(G).
By Theorem 1 we have thus T(x)=Tp,(x) with some bounded con-
tinuous representation Dy(a) of G and hence D(a)=Dya). Thus

Theorem 2. Any bounded measurable representation of G is
continuous.

In a similar way we obtain by a simple calculation the following

Theorem 8. If G is locally compact, but not compact, then there
is no representation of G belonging to L?(G) (p = 1) except the zero
representation, which maps every element of G to the zero matrix.
On the other hand if G is compact, any representation belonging to
L?(G) (p=1) is bounded and continuous.

Now, as a bounded representation of G is always completely
reducible, it follows from Theorem 1, iv) that a continuous representa-
tion of LY ?(G) is completely reducible. But the converse is also true.
It holds namely

Theorem 4. A representation T(x) of L*?(@) is continuous if
and only if it is completely reducible. Especially a irreducible repre-
sentation of LY ™(G) is always continuous.

This theorem is equivalent to the following

Theorem 5. Let M be a two-sided ideal of L™ ?(G), such that
the rest class ring L*?/M is of finite dimension. L®?/M 1is then
semi-simple if and only if M is closed in L®?(G). Especially a
maximal ideal M is always closed in L®?(G).

These theorems can be regarded as a generalization of the com-
plete reducibility of the group ring of a finite group.

The above mentioned relation between ideals and representations
of L&?(@) is explicitly given by

Theorem 6. Let {D} be a class of equivalent bounded continuous

5) The right-hand side means a matrix with (¢,j)-component SGx(g)di,(g)u(dg),
where D(a)={d:j(@)}.
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irreducible representations of G and D(a) be a representant of it.
Then all functions x(g) of L*?(G) satisfying

| soD@man=o,

constitute a maximal two-sided ideal M(py in L*?(G). {D}— My
thus gives a one-to-one correspondence between all classes of equivalent
bounded continuous irreducible representations of G and all maximal
two-sided ideals M of L*?(G), for which L®“?/M is of finite
dimension.

If we define the classes of (not necessarily irreducible) representa-
tions of G suitably, then the result of Theorem 6 can be extended to
those classes of representations of G and all closed two-sided ideals
M of L*?(G), for which L®?/M is of finite dimension. It follows
then also, that for L&?(G), p=1,2,... the ideals of that kind corre-
spond one-to-one to each other.

§3. In order to establish corresponding theorems for Segal’s
group ring R*? (G), we have only to prove the following

Lemma. Let M be a two-sided ideal in L®?(G) such that the
rest class ring L“®/M is of finite dimension and has a unit element.
Then a two-sided ideal M’ of R™?(G) can be uniquely determined, so
that it holds

M= M/ P L(l, ﬂ)(G) s R(I. p)(G) — M/ U L(l' p)(G) .

From this lemma it follows that closed ideals in R®?(G) which
are not contained in L»?(G) and closed ideals in L®?(@G) correspond
one-to-one to each other. Making use of this fact and Theorem 1
we obtain

Theorem 7. For a continuous representation® 3 — T(3) of B®?(G)
there is a continuous bounded representation a— D{(a) of G, so that
for any 3=2e+a(g) in R*?(G) it holds

(5) T(3)=T (1e+a(0)) =2D(D)+ | a(g)Dlg)u(dg)”.

Conversely, for any continuous bounded representation a — D(a) of G,
T(3) in (5) gives a continuous representation 3— T'(3) of R*“?(G) and
thus continuous representations of R™?(G) and continuous bounded
representations of G correspond one-to-one to each other.

We can also prove similar theorems to Theorems 4, 5, 6. Espe-
cially a one-to-one correspondence is to be established between all
classes of irreducible bounded continuous representations of G and all
maximal ideals M’ 3 L*?(G) of R®?(G), for which R*?/M’ is of
finite dimensions®.

§4. We now extend our Theorem 1 to representations of G and
L%?»(G) by bounded operators in a Hilbert space . Let B be the

6) We define the norm in R®L2X(G) by l3ll=ile+x(g)l=|2|+lzl and say “con-
tinuous” in the sense of this norm.

7) D(1) is the matrix corresponding to the unit of G.

8) Cf. Segal, l.c. 2).
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ring of all bounded operators in §. A representation a—>D(a)(D(a)eB)

of G in B is called a “ proper” representation, when it holds D(1)=E,
where 1 means the unit in G and E is the unit operator in B. It is
called bounden, if there exists a constant C so that

nolsc, for all aeG?.

On the other hand we call a representation x(g)— T(w)( T(w)eB) of
L&"(@) in B “proper”, if T(x)f=0(fe9) for all x(g9)e L¥?(G)
implies f=0, and we call it “continuous”, if there is a constant C’
so that

NTENZSC ), for all x(g)e L&?(G)™.

We can now prove the following

Theorem 8. There is a one-to-one correspondence between con-
tinuous proper representations of L»?X(G) in B and bounded measur-
able!® proper representations of G in B in the following sense:

i) For such a representation «(g9) — T'(x) of L“?(G) in B, there
is a bounded measurable proper representation ¢ — D(a) of G, so that

(6) T(@)= | sD(@(dg)™

for all #(¢g) in L*?(G). Such D(a) is uniquely determined by T'(x).

il) Conversely, if a-— D(a) is such a representation of G, T(x)
in (6) gives a continuous proper representation of L?(G) in B.

iii) Above correspondences are mutually inverse.

iv) Equivalent representations correspond to each other'.

If the measure u# is not only left invariant, but also right in-
variant, then we can obtain some more precise results. We can thus
prove for example the following theorem.

Theorem 9. If G has an invariant Haar measure, then measurable
unitary representations of G in B are all strongly continuous'.

Detailed proofs of above theorems will appear elsewhere. They
need some considerations on non-commutative normed rings'™ and rings
of operators in a Hilbert space, as will be also discussed there
precisely™®.

9) WAl means the bound of the operator A.
10) Thus we consider in B the uniform topology.
11) That is to say, that (D(9)f,f’) is u-measurable for any f,f/ in 9.

12) (6) means (T()f,f ’)=SGx(g) (D(g)f, f)u(dg) for any f,f/ in $.

13) Cf. Theorem 1, iii), iv).

14) Cf. K. Kodaira: Uber die Gruppen der messbaren Abbildungen, Proc. 17
(1941), 18-23.

15) Some of the theorems, obtained by I. Gelfand, concerning commutative normed
rings can be transferred to our non-commutative case.

16) Cf. also author’s note in Zenkoku Sijo Sugaku Danwakai, 246 (1942), 1522-
1565, 251 (1943), 167-186.



