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§0. It is well known that a vector v*(s) defined on each point of
the curve 2’(s) in a Riemannian space V, is said to be parallel along
the curve, if it satisfies the differential equations of the form

o _ dv? da’
0.1 — =4 { W ==0,
(0.1) 0 = ds +{it s
{4} being the Christoffel symbols of the second kind. Following E.
Cartan, the Euclidean connection without torsion of the Riemannian
space being defined by

dM: dw‘e/l ’ de#= {.uﬁ}dxyez ’

if we develop the curve on the tangent space at a point of the curve,
the directions v'(s) defined as above along the curve will be found to
be parallel along the curve developed on the tangent space, for, the
equations (0.1) just show that the geometrical variation of the vector
v’e; along the curve vanishes. This will be the most natural inter-
pretation of Levi-Civita’s parallelism.

On the other hand, we have studied, in a previous paper”, the
concurrency of the directions defined along a curve in Riemannian
spaces. A vector v*(s) defined on each point of the curve x(s) in a
Riemannian space is said to be concurrent along the curve, if it
satisfies the differential equations of the form

da? | dav* _
(0.2) s s 0,

where « is a suitable function of s. In fact, these equations show
that the geometrical variation of the point M-+av'e; vanishes along
the curve, and hence, if we develop the curve x’(s) on the tangent
space at a point of the curve, all the directions v*(s) defined on each
point of the curve pass through the fixed point M+ avle,.

Generalizing these concepts of parallelism and concurrency, we
shall study in the present Note the torse-forming directions in Rieman-
nian spaces. The torse-forming directions may be considered in affinely
or projectively connected spaces. We have already indicated an ap-
plication of torse-forming directions to the geometrical interpretation
of the projective transformations of asymmetric affine connections®.

1) K. Yano: Sur le parallélisme et la concourance dans l’espace de Riemann.
Proc. 19 (1943), 189-197.

2) K. Yano: Uber eine geometrische Deutung der projektiven Transformationen
nicht-symmetrischer affiner Ubertragungen. Proc. 20 (1944), 284-287.
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§1. Consider a vector v*(s) defined along a curve «*(s) in a
Riemannian space and develop the curve 2*(s) on the tangent space at
a point of the curve. If, after the development, the directions defined
by v*(s) form a developable surface or torse, the directions defined by
v%(s) are said to be torse-forming along the curve in the Riemannian
space.

In order that the directions v*(s) defined along the curve x*(s) be
torse-forming, it is necessary and sufficient that the geometrical varia-
tion of the point M+av'e; be in the direction v'e; for a suitable func-
tion a of s; say

%—(M +ave;)=pve;,

from which we obtain
do? | dav?
1.1 =4+ T =3,

B being another suitable function of s.
If a=0, the vector v* is tangent to the curve. If a0, we have
from (1.1)

A A
where
1 1 da
1.3 =— =(g-9%%).
(1.3) p=-—, a(ﬁ ds)

Conversely, suppose that we have a vector v*(s) defined along a
curve 2'(s), and satisfying the differential equations of the form (1.2).

If p=0, the vector v* is parallel along the curve. If p=0,
putting

a p’ B Fds p’

we have the equations of the form (1.1). Hence, we have the
Theorem : In order that the directions v'(s) defined alomg the curve
2%(s), and not tangent to the curve be torse-forming along the curve, it
18 mecessary and sufficient that the covariant derivative of vX(s) along
the curve be a linear combination of the v' and the tangent vector
da?
ds’

§2. We shall consider, in this paragraph, a torse-forming vector
field, that is, a vector field which is always torse-forming along any
curve traced in the Riémannian space V,. In this case, we have,
from (1.2),

dx’ _ da?
2.1 v, = =p 4,
(A )] e =P +q

the semi-colon denoting the covariant derivatives with respect to {1}.
A
As these equations must be satisfied for any directions ﬁ-, we

ds
have
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(2.2) v}, =pd+ 0,0

for a suitable scalar o and a suitable vector o,.

The vector »* satisfying the equations of the form (2.2), the unit
vector v*/v, where v denotes the length of v, satisfies also the equa-
tions of the same form, hence we can assume that the v* in (2.2) is
a unit vector. Then multiplying (2.2) by v;=¢,4* and summing up
for the index 2, we find

0=pv,+0, from which o,=—pv,.
Substituting this in (2.2) we have
(2.3) vi,=p(3} —v.v),
or in covariant form
(2.4) Vui = PG —Vu0)) -

These equations show that the covariant derivative v,,, of the
vector v, is symmetric with respect to lower indices # and », hence
we have

v, v, _ ,
oz  ox"

which shows that v, is a gradient vector of a scalar F'(x), that is to
say,

Thus, there exists, in our Riemannian space V,, a family of
hypersurfaces F(z*, a? ..., x*)=constants to which the vector field »*
is normal.

On the other hand, we know that a hypersurface whose normals
are always torse-forming along any curve traced on it is totally um-
bilical. Hence the hypersurfaces F'=constants are all totally umbilical.
Moreover the equations (2.3) show that v?,2” vanishes, hence the curves
generated by v’ are all geodesics. Thus we have the
Theorem : If a Riemannian space V, admits a torse-forming vector
Sfield v, it contains a family of oo totally umbilical hypersurfaces whose
orthogonal trajectories are geodesics.

§3. Suppose that our Riemannian space V,, contains a family of
ool totally umbilical hypersurfaces whose orthogonal trajectories are
geodesics. We shall then choose a coordinate system with respect to
which the totally umbilical hypersurfaces are represented by the
equations 2"=constants, and their orthogonal trajectories by «‘=con-
stants. (4,4,% ...=1,2,...,n—1)

Thus the fundamental quadratic differential form of the space
may be written as

(3.1) de? = g (") da? do® + g ()™ dc™
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The curves defined by «f=constants being geodesics, we must
have®
% 1 2q, agtm agzm agnn)_
3.2 '1=0 = <—+ e LV
( ) {n } or 2 g ax»n amn 0xa
from which we have
gwn:gn‘n(xn) .

The hypersurfaces defined by x™=-constants being totally umbilical,
we must have

nY — 1 nn, agn agnk 39 ik )
3.3 2y =g H = ( ni_ oy ZIne . P9k ) = .H’
3.3)  AR}=gaH or Sgm( Nt )=

from which we have
gi=f (ﬁa)gﬁ(wi) .
Thus, the (8.1) becomes
(3.4) ds?=f (2" g} (@)daida’* + gnla™)damda™ ,

or, writing «* instead of j1/ G A,

(3.5) ds?=f(a") g (at)dxda® + dardx™ .

Conversely, if the fundamental quadratic differential form of a
Riemannian space can be reduced to the form (8.5) by a suitable choice
of the coordinate system, it is easily seen that the hypersurfaces defined
by the equations x™”=constants are totally umbilical and the curves
defined by a*=constants are geodesics. Hence, we have the
Theorem : In order that a Riemannian space V, contains a family of
ool totally wmbilical hypersurfaces whose orthogonal trajectories are
geodesics, it is mecessary and sufficient that the fundamental quadratic
differential form of the space V, be reduced to the form (3.5) by a
suttable choice of the coordinate system.

§4. Suppose that our Riemannian space V., admits a torse-form-
ing vector field v*(x), then the space V, contains a family of <! totally
umbilical hypersurfaces whose orthogonal trajectories are geodesics.

Conversely, if V,, contains such figures as above, there exists a
coordinate system with respect to which the fundamental quadratic
differential form is (8.5). In such a coordinate system, the Christoffel
symbols are given by

{#Y={EY" +@ifetoifi—r03)
(4.1) { {;}e} = ""ffng;k ’ {J:t} = {nz:} =fn‘?.'7‘ ’
(i} ={n}={z}={m}=0,
where {;i}* are Christoffel symbols formed with g}, and

=1 0logf  i_ wia =1 dlogf
fk 2 690" ’ f g fa: fn 2 ax” .

1) K. Yano: Concircular geometry II. Proc. 16 (1940), 354-360.
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Thus, in such a coordinate system, the vector field v*=42 is torse-
forming, for

A = 03}» Ui M= A nﬁl
’v;u"‘@._"'{/w} n"'fnsv’_fnau n

=fu8}—v0?) .

Thus, we have the

Theorem : In order that a Riemannian space V, admit a torse-form-
ing vector field, it is necessary and sufficient that the space V., contain
a family of ! totally wmbilical hypersurfaces whose orthogonal trajec-
tories are geodesics.
Theorem : In order that a Riemannian space V, admit a torse-form-
ing vector field, it is necessary and sufficient that there exists a co-
ordinate system with respect to which the fundamental quadratic dif-
ferential form may be written in the form (8.5).

§5. It is interesting to observe that the form of the function
f(x*) in (8.5) gives us various special cases which have already been
studied by the present author.

The Riemannian space V, admitting always a torse-forming vector
field v*, we have seen that the space V, contains a family of totally
umbilical hypersurfaces whose orthogonal trajectories are geodesics.
Suppose especially that the normals to these hypersurfaces are con-
current along these hypersurfaces. Then the mean curvatures of these
hypersurfaces must be constant and the space must admit concircular
transformations®. Thus f(z*) in (8.5) becomes a function of & only
and the ds? of our space takes the form

(5.1) ds?=f (g5 (x*)dx’dx* + dx"da™ .

Conversely, if the fundamental quadratic differential form of the
space may be reduced to the form (5.1) by a suitable choice of the
coordinate system, the Riemannian space admits concircular trans-
formations and hence it contains a family of o' totally umbilical
hypersurfaces with constant mean curvatures whose orthogonal trajec-
tories are geodesics, and we can conclude that the vector field defined
as the normals to these hypersurfaces is torse-forming and concurrent
especially along the hypersurfaces.

If the torse-forming vector field is especially a concurrent one?,
the space contains a family of ! totally umbilical hypersurfaces with
constant mean curvature whose orthogonal trajectories are geodesics,
and the length of the geodesics between two of these totally umbilical
hypersurfaces must be constants®. Then the function f(x") in (5.1)
takes the special form (¢")%, and the ds® of our space becomes

(5.2) ds?= (" g (o) daida® + dada™ .

1) K. Yano: Concircular geometry I. Proc. 16 (1940), 195-200; II, 854-360; III,
442-448 ; IV, 6506-511; V, Proc. 18 (1942), 446451,

2) K. Yano: Sur le parallélisme et la concourance dans l'espace de Riemann.
loc, cit.

8) K. Yano and T. Adati: Parallel tangent deformation, concircular transforma-
tion and concurrent vector field. Proc. 20 (1944), 123-127.
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Conversely, if the fundamental quadratic differential form of the
space may be reduced to the form (5.2), the space contains a family
of ! totally umbilical hypersurfaces with constant mean curvatures
whose orthogonal trajectories are geodesics and the length of the
geodesics between two of these totally umbilical hypersurfaces are
constant, thus the vector field defined as the normals to these hyper-
surfaces is concurrent not only along the hypersurfaces but also along
their orthogonal trajectories, and the vector field is concurrent in all
the space.

Finally if the torse-forming vector field is especially a parallel
one, the space contains a family of oo! totally geodesic hypersurfaces
whose orthogonal trajectories are geodesics, thus the function f(x*) in
(8.5) must be equal to a constant, and the ds® of our space becomes

(5.3) ds?= g (x*)dwidx’ + dxmde™ .

Conversely, if the fundamental quadratic differential form of our
space may be reduced to the form (5.8), the space contains a family
of oo! totally geodesic hypersurfaces whose orthogonal trajectories are
geodesics. Thus the vector field defined as the normals to these hyper-
surfaces is parallel not only along these totally geodesic hypersurfaces
but also along their orthogonal trajectories and the vector field is
parallel in all the space.



