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133. On the Representation of Functions
by Fourier Integrals.

By Kbsaku YOSlDA.
Mathematical Institute, Nagoya, Imperial University.

(Comm. by T. TAKAGI, M.I.A., Nov. 13, 1944.)

1. Introduction and the theorems. The purpose of the present
note is to give the following representation theorems of complex-valued
bounded continuous functions f(t) on (-c, co). The theorems may be
applied in Fourier analysis as well as in probability theory. Since the
proofs are carried through by virtue of the Plancherel’s duality
theorem, our results may be extended to the case of separable, locally
compact abelian groups instead of the infinite line (-co, c).

Theorem 1. f(t) is positive definite if and only if

(1) n o
n

(n=l, 2, ...),

and if (1) is satisfied, we have the representationS>

[ f(t)= _,edv(,) with a monotone increasing, right-eon-

tinuous bounded function v(,).

Theorem . f(t) is positive definite if and nly if f(t) is expres-
sible as

[ f (t) lim I g,(t+Dg,()d uniformly in every finite inter-

val of t, where

(4) sup [oo g(t) 12dt <: f(0).
n>l J-

Theorem 3. f(O is representable in the form:

(g) { f(t)= _ddv().) with a eomplex-valued right-eontinuous

function v() of bounded variation,

if and only if

1) Cf. Proc. 20 (1944), 560-563.

2) f(-$i=f(0 and f($j--$k)$j$k 0 for any integer n and for arbitrary complex
numbers $.

3) S. Bochner: Vorlesungen fiber Fouriersche Integrale, Leipzig (1932), 76.
4) A. Khintchine" Bullt. de l’universit6 d’6tat . Moscou, Sect. A, vol. 1, fasc. 5,

1-3.
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(6)
nU.1 d

n

Theorem 4. f() is representable in the form (5) if and only if
f(t) is expressible as

(7) { f(t) lim,I_g.(t+ s)k(s)ds uniformly in every finite iter-

val of t, where

I-oo] g,(t)Idt I_]k.(t) ldt a constant <: independent of
(8) {

n).

Theorem 5. Let (6) be satisfied, then, if we put,

(9)

lira ..(2)=()exists. Concerning the representation (5) we have

the results" i) v() is absolutely eontinuous, vi. v()= _,v’()d if

and only if

(10) lim I
ii) v(2) is singular, viz. v’(D=O almost everywhere if and only if

(11) lim () 0 almost everywhere.

Theorem 6. i) Concerning the representation (5) we have the
result" v() is absolutely continuous if and only if

(12)

ii) Concerning the representation (2) we have the result" v() is
singular if

(13) lim ()=0 almost everywhere.

2. Proofs of the the theorems.
Theorem 1. f(t)d is positive definite with f(t) for any real s

5) The constant may be taken as the left hand side of (6).
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sin _t_

n_nI--and hence f(t)
t - ___f(t)dtds is positive definite.

manner we see that

In the same

(14) f,(t) f t) ---t-

is also positive definite and hence

(15)

Thus f(t) e L(- , ), e L( , ). The continuous function

1(16) () -__I_f(t)e-dt
is non-negative, since for any a <=/

(17) I:()d I_ 1

f,(t)h(t)gt= f,(t)h(t+s)h(s)gtgs 0

1 e_td2by the positive definite character of f(t). That h(t)=?-
[h(t+s)h(s)ds follows from the Plancherel’s theorem. Next we will

prove that the non-negative function () is e L(-, ). If we put

(s) v,() ()d,

then we have from (16)

e edv,,()=.}_ sin (-t)f(t)dt

and hence

(18)’ -- d edv’(2) -I 1-cos ’(s- t) f,(t)dt
’(s-t)

1 If(s+ -cos- ---/ -- d,

in particular (upon putting s=0), by (15).

.lr Ii{v(‘)- v:(- a)}da ___:< sup< If:(t) l=f(o).

Therefore the monotone increasing function v(2) satisfies
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(19) v,(c)-v(-)f(O)

and hence .() e L(- o, ).
Thus, by (16) and the Plancherel’s theorem, we have

(2)’ f,(t)= dv,()

By (19) and the Helly’s selection theorem, there exists a monotone
increasing right-continuous function v(2)with v(co)-.v(-o)f(O)and
a subsequence (v,(2)} such that

lira v (1)=v(2) at the continuity points 2 of v(2).

Therefore we have, by taking lira lim of (18)’,

f(t)= e"dv(a)

Theorem . Pu

(1. i. m. limit in he mean)

and aly the Parseval orm of the Planeherel’s Neorem go (2)’. ha
f(t) of Ne form (8) is ositive definite may easily be verified.

heorem 8 and 4 will be dear from the ave Wfs of heorem
1 and 2.

Theem g. We have, rom (g) and (9),

sin t

t
n dr},

(20)

ii) The condition (11) thus becomes

(11,’ ,lim -{v(2 +-1) -v(2 -n-)}01
hence ii) is proved

i) The condition (10) becomes

(10)’ li,.m v(2, n)-v(2, n’) d2=0.

almost everywhere, and

and hence, if v(2’)is continuous at 2+ 1 1
n n
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Since v() is of bounded variation, we have

lim v(2, n)=v’()- dv(2) almost everywhere,

and hence (10)’ is equivalent to

(10)" lim v(, n)-v’() d=O
’m--> d_

Let (10)" be satisfied, then or any a < t

(21) lim [v(, n)d v’()d
On the other hand,

Therefore, if a and are continuity points of v(), we have from (21)

v() -v(,) v’(Dd

Thus the condition (10) is sufficient.
The necessity of (10)" may be proved as follows From v(2)=

v’()d we have

v(, n)=[ v’(Z)d’

Since v’()eL(-, ), we must have

+
lim[ n [ v’(’)dX’-v’(a) d2=O

which is (10)".
Theorem 6.

(22)

We have, from (1) and (5),

2 n - n n
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ii) Since v(2) is monoton increasing we have, from (22) and
Fatou’s theorem

This proves ii).

i) Let v(1)= _v’(1)dl, then we have, from (22),

2t/ 2r +._ ___.
Hence, by v’(1’) e L(- o, ), we must have (12).

Next let (12) be satisfied, then the indefinite integrals

1 I ,(1)dl (n= 1, 2 ...)

converges at every measurable set M on (-o, ). Hence, by Vitali-

Hahn-Saks’ theorem, the limit v()=lim to()d must be abso-

lutely continuous.


