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1. Let E be a measurable set of points in zl <=1. We define

II rdrdOits hyperbolic measure a(E). by a(E)=
E(1--r)

(z=re). Similarly

the hyperbolic length 2(C) of a rectifiable curve C is defined by

2(C)=c l
gZ

]
Let G be a Fuchsian group of linear transformations, which make

z} < 1 invariant and D0 be its fundamental domain, which contains
zo=O and is unded by at most enumerably infinite number of ortho-
gonal circles to ]z[=l, z be equivalents of zo=O and n(r)be the
namer of z in zr. For any z in z]<l, we denote its
equivalent in D0 by (z). Let E(0) be the set of points (re) in D0,
which are equivalent to points on a radius z=re (0 r < 1). In my
former paper’, I have proved"

Theorem 1. (i) If (1-z [)= , then E(O) is everywhere dense

in Do for almost all e on [z[=l, (ii) If (1-]z) , then

lim (re) 1 for almost all e on z 1.
rl

Theorem 2. The necessary and sucient condition that there
exists a set e on ]z]= 1, which is invariant by G and 0 me 2, is

that (1- z [) < .
Theorem I (i) is an extension of Myrberg’s theorem), who assumed

that D0 lies with its boundary entirely in ]z] 1, in which case, it is

easily proved that (1-] z ])= .
2. Let y=e, y=e be two points on z= 1, w I= 1 respective-

ly. Then the pair (, y) can be considered as a point on a tos
9(0 2, 0 2). For any measurable set E on 9, we define

its measure mE by mE=i_Od, so that m9=4.
Let S be any substitution of G and T" y=S(y), y=S(y), then

the totality of T constitutes a group , which is isomorphic to G.
Hopf proved the theorem
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Theorem 3 (Hopf). If a(D0) o, then there does not exist a set
E on 12, which is invarian$ by ( and 0 mE 42.

From Hopf’s lemma 1, it is easily proved that if a(D0)< o, then

n(r) const. (0 r < 1). We will prove the following extension of

Hopf’s theorem.
Theorem (Main theorem). If lim n(r) (l-r) 0, then there does

r->

not exist a set E on 12, which is invarian$ by if5 and 0 mE 4r.
3. We will use some lemmas in the proof.
Lemma 1. Let E be a measurable se$ on X2 and f(O, ) be its

chracteristic function and

(O=<r<l, Op<l).

Then u(z, w) --f(O, ) almost everywhere on 12, when z --> e, w ---) e
non-tangentially to zl=l, wl =1 respectively.

Proof. By the strong density theorem,

’ Oo_,o_,]f(O, o) f(Oo, o) dOdo -- O, as -- O, ’ --* 0 (1)

almost everywhere on 12. It can be proved that if (1)holds at (00, Oo),
then u(z, w) ---f(Oo, f0), when z - e, w- e non-tangentially to z 1,
w 1 respectively.

Lemma 2. If Jim n(r)(1-r) ;> 0, then there does not exist a set
r-->l

e on zl 1, which is invariant by G and 0 < me < 2rr.

Proof. Under the hypothesis, it is easily proved that :n(r)dr--
or : (1-[ z I)= , so that the lemma follows from Theorem 2.

Lemma 3. Let Ko:] zl ro be a disc contained in Do and K, be
its equivalents and rL(r) be the measure of the part of z l=r contained

in K,. If lim n(r)(1-r) > 0, there exists -- 1, such that L(,)
,=0 r->

a>0 (,=1, 2, ...).

Lemma . Let Ko" z l=ro and K" -1,g- =r (l a < l) be two

circles in zl< 1. We transform K into Ko by S"

S" z’=e. z-a, such that S(K)=Ko, S(0)=0e".
1-dz

Then S(Ko)=/ is obtained from K by a.rotation about z=O.
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Let e be a set on z]=l contained in an arc C’r arg z-
argal > O. Then S(e) is contained in an arc C on zl--1, whose
center is at e, such that mC=uR (R=radius of K) and

l__me > mS(e_) > me,
2 mC

2= sin2 (1where x
r0 sin y 8

4. Proof of Theorem 4. Suppose that there exists a set E on $2,
which is invariant by ( and O<:mE<=4. Let f(O,) be its
characteristic function and we construct u(z, w) as Lemma 1. Then
u(z, w) -f(O, ) almost everywhere on 2, when z -- e, w- e non-
tangentially to zl= 1, wl= 1 respectively. For any substitution S
of G,

u(S(z), s(w)) u(z,

Let E(0o), (o) be the sub-sets of E, which lie on the line
const. 0o and const. o respectively, then

Now

(2)

l I F(’) (1-p)d’u(0, w) -- 1 2 cos (’- ) -t-

where F() O, =-m(). (3)
2=

Let E(O)= 0 on a set e of positive measure, then since such a set is
invariant by G, ve have me=27 by Lemma 2. Hence mE=O by (2),
which contradicts the hypothesis, so that mE(O)= 0 for almost all O.
Hence if y is small, then there exists a set e of measure me 2---
(z <: =), such that

mE(O) : 4 for any 0 e e.

Let E be a sub-set of E consisting of points (0, ), such that

E Oee, ]-01 V. (4)

If E(O) is defined as E(O) with respect to E, then

mE(8) mE(O)-2y 4V-2y-- 2y, (5)

so that mE= mE(O)dO 2 me 2y (2-e) 2y.
J

By Egoroff’s theorem, there exists a closed sub-set E0 of E of
positive measure consisting of points (0, ), such that
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E0" (i) Oee0, I-OIY, where e0 is a closed sub-set of e,

such that me0:> 2-, (6)

(ii) nE0(O)>y, where E0(O) is defined as E(O) with respect
to E0, (7)

(iii) u(z, w) 1 uniformly, when z e, w e from the inside
of angular domains" (8)" arg (1-ze-)[ , ()"
[arg(1-we-), where o is so chosen that, if an
equivalent K of K0" z r0 intersects a radius z=re
(0 r 1), then its non-euclidean center z is contained in

Hence if [z-e < (D, w-e <(), w e(), then
1- u(z, w) 1, (8)

where 6() depends on e only and is independent of (, ) on E0.
Let L(r) defined as Lemma 3. Then there exists fl 1, such

that L(fl)a (=1,2, ...). Now the part of ]z]=p contained in

K. consists of a set of arcs. If we project these arcs from z=O

on z]=l, we have a set of arcs on z=l. We divide these arcs
into two classes" a(p)+fi(p), where a(p) contains at least one

point 8e e0 and fl(p) does not contain such points. If we denote the
arc length of an arc a on z]=l by ]], then

Let e be the complementary set of eo, then me < , so that if we

take =< --, then (p)]=< m4 < =’<a Hence

= =-2-’ (9)

where a;(/) is the projection of an arc on ]z= contained in K,
which intersects a radius z=re% (Or 1), such that 8ee0.

Let z=r;e; be its non-euclidean center and put U;(w)=u(z;, w).
Then U;(w)is a bounded harmonic function in ]w 1, so that by
Fatou’s theorem, lim U(w) exists almost everywhere on [w]= 1, when
w tends to w=l non-tangentially. We write this limiting value
by u(z;,e). Hence there exists a sub-set Eg(0;)of Eo(O;), such that
mEg(O)=mEo(O) and for any eE(O), the limiting value u(z,e)
exists.

Let 0 e e0, e E(O), then by (7),

mE(8) , (10)

and from (6), if o, Eg(O) is contained in an arc C on z=l,
such that

C" > ]arg z- > -- (11)
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Let S be the substitution of G, such that S(K)=Ko, S(z)=0
and put S(K0)=. Then by Lemma 4, - is obtained from K by
a rotation about z=O. Let z]=fl, intersect - in an arc, whose pro-
jection from z=O on zl=l be (#). We put

m-m()

-1
A lim A (A/A+ ...) (A.+A+ ...)...,

then, since ()I= a() I, mA L’()= . () > -, so that

mA :> a__. (12)
--2

By (10), (11) and Lemma 4, S(E[(t?)) is contained in an arc -on zl=l, concentric with () and mC’=R (R=radius of K),
such that

(<0>) > 2mE(O) , (13)

where , 2 depend on y anly. Since x 2=, contains (fl).
We put- z(z(,)+z(z()+... +z((z(),
M(=M+M+,+ ..., M=lim M=(M,+M+...)(Mz+Ma+...)
Let e A, then e A= (n 1, 2, ...), so that

()<c( ()).
Hence if v r=, then by (13),

(M’’ C (M a (S(Z(O)). C)
((()ac.

Since C-, for n , the lower density of M at is 2, so

that mM( > mA>. Hence
=2

raM=lim mM() a

Let e M, then e M. (n 1, 2, ...), so that

Let ., be the disc, such that S(K,)=Ko intersecting a radius

z= re*. (0 g r 1, e ), whose non-euclidean center is z.
Then

By making w-->e in (8), we have by (1),
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i- <= u(z, e) u(O, d) <= 1,

if Iz.-ea (). Since Iz,-ei, - 0 for n - c, we have

u(O, e)=l. Hence u(0, e)= 1 at every point on M. Since the set
on w I=1, such that u(0, w)=l is invariant by G and mM O, we
have by Lemma 2, mM=2r, so that u(0, w)=l almost everywhere

on wl=l. Since by (3), u(0, e)=l---m() almost everywhere on
2=

w =1, we have m()=2z almost everywhere on ]w]=l, so that
by (2), mE=4, which contradicts the hypothesis, which proves the
Theorem.

Theorem 5. If (1-[ z. ]) o, then there exists a set E on 2,

which is invariant by ( and 0 mE 4r.
Proof. By theorem 2, there exists a set e on zl=l, which is

invariant by G and 0 me <: 2. Then the product set E= e x e is
invariant by ( and 0 mE=(me) 4=. We can also prove directly
as follows.

LetQ" 0

__
<, I-]<s 6- be a square contained in

2 and a, , fl, be arcs on zl= 1, such that

r <e a" argz - --8
a arg z--

and be the complementary set of -t- on z]=l. Let K0" zl r0
be a disc contained in the fundamental domain of G and K, z=re.
be equivalents of K0, zo=O by G respectively, such that S(K,)=Ko,
S,(z)=O, z, e K, and be its radius.

(i) If 8 e , then, since e <, for any z on a, fl,

arg z-8 -. Hencc by Lemma 4,
16

mS() <,o. m,=, mS()

so that
$2%2 2

(ii) If 8,e, then for any z on /, ]argz-0,1> so that
16’

m&(fl) < p. Since m&(a) 2, we have

We have the same inequality, if , e ft.
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Since as easily be proved, t,_
r0(1-Iz. 12) . 2ro (1-Iz I),

1 -r -r
we have . If we take so small, that

mS (Q) <
n=O n=O

then E= S(Q) is invariant by ( and 0 < mE mS(Q) <: 4,
,0 n---O

q.e.d.

Remark. The condition : (1-[z {) oo is equivalent to
n--0

.I-in(r)dr c. Hence we have three cases"

[n(r)dr= o (a) limn(r)(1-r) O, (b) limn(r)(1-r)=0,(I)
30 r-->l r->l

 in(r)dr <oo.
In case (I)(a), by Theorem 4, there does not exist a set E on 9,

which is invariant by (R) and 0 < mE < 4. In case (II), by Theorem 5,
there exists such invariant sets. In case (I) (b) we have no informations
about the existence of such invariant sets. It seems that there exist
groups of class (I)(b), for which such invariant sets exist and groups,
for which such invariant sets do not exist, but I have no examples
for it.

5. Consider n points" =e, ..., r]=e on z ]=l, ..., z, {=1
respectively. Then the pair (,, ..., y.) can be considered as a point on an
n-dimensional torus 2 (0 t 2, j 1, 2, ..., n) and the measure of

a set E on is defined by mE=.l- .._l-d d, so that m2=(2).E"
Let S be any substitution of G and T" =S(y), ..., y’=S(y). Then
the totality of T constitues a group , which is isomorphic to G. We
will prove"

Theorem 6. If n 3, then there exists always a set E on ,
which is invariant by (R) and 0 mE (2=).

Proof. We assume n=3, the other case can be proved similarly.

"lLet Q 0- e be a cube

on .0: in (tY, , )-space and a, ,/, , r, ? be arcs on z}= 1, such that

a" argz--___ ----8
t" largz-=] e,

--8

and be the complementary set of ++? on zl= 1.
Let Ko’lZ{ r0 be a disc contained in the fundamental domain
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of G and K, z=re be equivalents of Ko, zo=O by G respectively
such that S,(K)=Ko, S(z)=O, z, eK and be its radius, then

since K, are non-overlapping, [ 1.
=0

for any z on a,,, ]argz-O(i) If . e , then, since
16’

so that by Lemma 4 mS(a) x-me=--, mSn(fl)16’ 2

____x ,, m&(r)=. Hence m&(Q)=," /
< 2.

(ii) If 0e, then for any z on fl, r, argz-0 so that
16’

m&() =---, m&(r) Since m&(a) < 2, we have

22x2

We have the same inequality, if 8 e or 8 e ?.
If we take e so small, that mS,(Q) < e2x2=ex < 8=s,

n-0

then E= S(Q) is invariant by and 0 < mE m&(Q) < 8,
n-0

q.e.d.


