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Abstract

We show that amenability, the Haagerup property, the Kazhdan’s prop-
erty (T) and exactness are preserved under taking second nilpotent product
of groups. We also define the restricted second nilpotent wreath product of
groups, this is a semi-direct product akin to the restricted wreath product
but constructed from the second nilpotent product. We then show that if two
discrete groups have the Haagerup property, the restricted second nilpotent
wreath product of them also has the Haagerup property. We finally show
that if a discrete group is abelian, then the restricted second nilpotent wreath
product constructed from it is unitarizable if and only if the acting group is
amenable.

1 Introduction

Given a family of groups, the direct sum and the free product provide ways of
constructing new groups out of them. Even though both operations are quite
different, they share the next common properties

1. associativity;

2. commutativity;

3. the product contains subgroups which generate the product;
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4. these subgroups are isomorphic to the original groups;

5. the intersection of a given one of these subgroups with the normal subgroup
generated by the rest of these subgroups is the identity.

In the first edition of his classic book “Theory of Groups”, Kurosh asked if
there were other operations on a family of groups that satisfy the above prop-
erties. This problem was solved in the affirmative by Golovin in [8], where he
defined countably many such operations. Among these operations, the second
nilpotent product stands out as the simplest to scrutinize. It is defined as follows

1.1 Definition. For a family of groups {Hi}i∈I indexed on a set I , the second nilpotent
product of the family is the group

2

∗
i∈I

Hi := ∗
i∈I

Hi/
〈

[∗
i∈I

Hi,[Hj,Hk]]j 6=k

〉

The importance of having such operation resides in that it provides a “new”
way of constructing groups. Unlike the direct sum, the second nilpotent product
of a family of abelian groups does not need to be abelian. On the other hand,
the second nilpotent product of finitely many finite groups is necessarily a finite
group.

Second nilpotent products of groups have had an interesting application in
Mathematical Logic. Indeed, they were used, albeit indirectly, by Mekler in [12]
to show that the isomorphism relation of countable groups is model complete for
countable structures. This was later framed in the context of Borel Reducibility
in the pioneering article of Friedman and Stanley [7]. Inspired by these results,
a variant of a construction of Mekler involving certain semi-direct product of
groups related to the restricted wreath product of groups was developed by Törn-
quist and the author in [15] to show non-classification results for von Neumann
algebras. The original motivation of the present article was to further analyze
that construction. Here we study permanence properties of the second nilpotent
product of groups that come from representation theory and dynamics of group
actions. Our first result is

1.2 Theorem (A). Amenability, the Haagerup’s approximation property, the Kazhdan’s
property (T) and exactness are preserved under taking second nilpotent product of two
countable groups.

This, together with the associativity of the second nilpotent product, will
allow us to prove the next corollary.

1.3 Corollary (B). If {Hi}i∈I is a countable family of discrete amenable (respectively

Haagerup, resp. exact) groups, the group
2

∗
i∈I

Hi is amenable (resp. Haagerup, resp.

exact).

In geometric and measurable group theory, restricted wreath products have
been playing a significant role in producing examples of groups that verify or
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disprove long standing conjectures. Since the second nilpotent product of groups
allows a construction similar to the wreath product, that we shall call restricted
second nilpotent wreath product, (see section 5), it is conceivable that this new con-
struction could be used in a similar manner. To illustrate this, we present the
following adaptation of a theorem of Cornulier, Stalder & Valette that appeared
in [4, 5].

1.4 Theorem (C). Let G and H be countable groups with the Haagerup property. Then
the restricted second nilpotent wreath product

( 2

∗
G

H
)

⋊ G

has the Haagerup property.

In order to explain our last result, first recall that a group G is unitarizable if
for every uniformly bounded representation π of G on a Hilbert space H, there
exists T ∈ B(H) such that TπT−1 is a unitary representation. Dixmier showed
that amenable groups are always unitarizable, [6]. The Dixmier problem asks
whether the converse holds true (see, for instance, [14]). In [13], Monod & Ozawa

showed that wreath products of the form
(

⊕
G

A
)

⋊ G with A abelian, are

unitarizable if and only if G is amenable. This provided the first examples of non
unitarizable groups not containing a copy of F2. Observe that a consequence of

Corollary 1.3 is that if a group A is abelian, the group
( 2

∗
G

A
)

⋊ G is amenable

if and only if G is amenable. The construction of the restricted second nilpotent
product combined with [13, Theorem 1] will yield the following result.

1.5 Theorem (D). Let A and G be countable groups, with A abelian. The restricted sec-

ond nilpotent wreath product
( 2

∗
G

A
)

⋊ G is unitarizable if and only if G is amenable.

We will see that for an abelian group A 6= {1}, the group
2

∗
G

A is never

abelian (unless G = {1}), and that
2

∗
G

Z/pZ is a nil-2 p-group. Hence, our ex-

amples are apparently different from the ones that have already appeared in the
literature.

To the best of our knowledge, the papers of Golovin have not been studied
much in recent years. A partial indication of this is the scarce number of cita-
tions they received. Thus, another goal of this article is to bring back the second
nilpotent product as a useful construction of groups.
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2 The second nilpotent product of two groups

We record several properties of the second nilpotent product of two groups. Some
of the results of this section can be found (at least implicitly) in the papers of
Golovin, [8, 9]. Since that articles are not widely available and the proofs given
there are somewhat obscured by lack of modern terminology, we opted to pro-
vide short proofs of them.

2.1 Convention. In this article we adopt the convention

[a, b] = aba−1b−1.

2.2 Definition. Given two groups A and B, their second nilpotent product is the group

A
2
∗ B := A∗B/[A∗B,[A,B]]

In words, this means that we start from the free product and declare that all
the commutators [a, b] with a ∈ A and b ∈ B are central. Historically, the con-
struction of the second nilpotent product of exactly two groups first appeared in
a paper of Levi, [10]. Golovin, unaware of Levi’s work, treated the general case
in [8, 9] to solve the problem of Kurosh mentioned in the introduction.

2.3 Notation. We denote with [A, B](2) the subgroup of A
2
∗ B generated by the

commutators of the form [a, b], with a ∈ A and b ∈ B.

2.4 Proposition. An element x ∈ A
2
∗ B admits a unique representation abc where

a ∈ A, b ∈ B and c ∈ [A, B](2).

Proof. The element x can be represented as a word with letters in A and B

x = a1b1a2b2...anbn

The identity ba = [b, a]ab allows us to take all the ai to the left. Having in mind

that [bj, ai] are central in A
2
∗ B, we obtain x = a1...anb1...bnc with c ∈ [A, B](2).

Uniqueness follows easily by applying the projections A
2
∗ B

πA−→ A and

A
2
∗ B

πB−→ B.

2.5 Corollary. We have the following exact sequence

1 → [A, B](2) → A
2
∗ B → A ⊕ B → 1. (2.6)

2.7 Proposition. B
[a,−]
−−→ [A, B](2) is a group homomorphism for every element a ∈ A.

Proof. Let b, c ∈ B. The identity [a, bc] = [a, b]b[a, c]b−1 holds true in the free

product A∗B. It follows that [a, bc] = [a, b][a, c] in A
2
∗ B.

2.8 Corollary. Let a ∈ A and b, c ∈ B. Then [a, bc] = [a, cb].

Proof. By Proposition 2.7 we have that [a, bc] = [a, b][a, c] = [a, c][a, b] = [a, cb].
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2.9 Corollary. A commutes with [B, B] inside A
2
∗ B.

Proof. By Proposition 2.7 and Corollary 2.8 we have that

[a, [b, b′]] = [a, bb′][a, b−1b′−1] = [a, b′b][a, b−1b′−1] = [a, b′bb−1b′−1] = 1.

In order to better understand the second nilpotent product, it is convenient to
use the tensor product of groups (not necessarily abelian). This tensor product
and the corresponding results were already introduced by Whitney in [17].

2.10 Definition. Let A and B be two groups. The tensor product A⊗̃B is defined as

FA×B/(a1a2, b) ∼ (a1, b)(a2, b)
(a, b1b2) ∼ (a, b1)(a, b2)

where FA×B denotes the free group generated by the set A × B.

The natural application A × B → A⊗̃B is a group homomorphism in each
variable, and for every group G and every homomorphism in each variable
ϕ : A × B → G the following universal property holds true

A × B
ϕ

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

��

A⊗̃B
∃! // G

(2.11)

2.12 Remark. We use the provisory notation ⊗̃ because for abelian groups this
definition differs a priori from the usual tensor product construction, where one
takes the quotient from the free abelian group generated by A × B. However,
we will see that in the abelian case it coincides with the usual tensor product of
abelian groups.

The following proposition is due to Whitney, see [17, Theorem 11]. It was also
reproved by MacHenry in [11, Theorem 17] in the same context as ours. For the
sake of completeness, we provide a simple proof of it.

2.13 Proposition (Whitney). A⊗̃B is an abelian group and it is isomorphic to
A/[A,A] ⊗ B/[B,B]. Namely, the tensor product between two groups is the usual tensor
product between their abelianizations.

Proof. We have the following identities

(a1a2)⊗̃(b2b1) = (a1a2⊗̃b2)(a1a2⊗̃b1) = (a1⊗̃b2)(a2⊗̃b2)(a1⊗̃b1)(a2⊗̃b1);

and

(a1a2)⊗̃(b2b1) = (a1⊗̃b2b1)(a2⊗̃b2b1) = (a1⊗̃b2)(a1⊗̃b1)(a2⊗̃b2)(a2⊗̃b1).

Then (a1⊗̃b1)(a2⊗̃b2) = (a2⊗̃b2)(a1⊗̃b1). Hence A⊗̃B is abelian.
On the other hand, the natural arrow A × B → A/[A,A]⊗ B/[B,B] is a group ho-

momorphism in each variable and it is easy to check that it has universal property
(2.11) but only for G abelian. As the abelian group A⊗̃B has the same universal
property, they are isomorphic through the canonical morphism.
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From now on, ⊗̃ will be denoted by ⊗. We will need the next result about
commutator subgroups of the free product of two groups. Its proof is elementary
and can be found, for instance, in [16, Section 1.3, Proposition 4].

2.14 Lemma. [A, B] = 〈{[a, b]}a∈A,b∈B〉 is a free subgroup of A ∗ B in the generators
[a, b], a ∈ A, b ∈ B, a, b 6= 1. Moreover it is normal in A ∗ B.

The following proposition is the main result of the article of MacHenry, [11].
Arguably, the proof we exhibit here using universal properties is simpler than the
one given in [11].

2.15 Proposition. The group [A, B](2) is isomorphic to A ⊗ B.

Proof. Observe first that since [A, B] is a normal subgroup of A ∗ B, then
[A ∗ B, [A, B]] is a subgroup of [A, B]. The identity x[y, z]x−1 = [xyx−1, xzx−1]

shows that it is normal. It follows that [A, B](2) = [A,B]/[A∗B,[A,B]].

Let us give explicitly the isomorphisms [A, B](2)
u // A ⊗ B
v

oo . The application

A × B → [A, B](2) given by (a, b) 7→ [a, b] is an homomorphism in each variable
because of Proposition 2.7. This defines v.

On the other hand, the map [A, B]
ũ
−→ A ⊗ B given by [a, b] 7→ a ⊗ b extends to

a group homomorphism thanks to the previous lemma. Thus, in order to define
u, we just need to show that ũ vanishes on [A ∗ B, [A, B]]. To this end, take an
element [p, q] ∈ [A ∗ B, [A, B]] with p ∈ A ∗ B and q ∈ [A, B]. Then ũ([p, q]) =
ũ(pqp−1q−1) = ũ(pqp−1)ũ(q)−1. Thus, we must show that ũ(pqp−1) = ũ(q). If
x ∈ A then

ũ(x[a, b]x−1) = ũ([xa, b][b, x]) = (xa ⊗ b)(x ⊗ b)−1

= (x−1 ⊗ b)(xa ⊗ b) = a ⊗ b = ũ([a, b]).

A similar argument works for x ∈ B. Induction on the length of a word x ∈ A ∗ B
shows that ũ(x[a, b]x−1) = ũ([a, b]). Since {[a, b] : a ∈ A, b ∈ B} generates [A, B],

it follows that [A ∗ B, [A, B]] ⊂ ker(ũ). In particular [A, B](2)
u
−→ A ⊗ B is well

defined. It is clear now that uv = id and vu = id.

2.16 Remark. Combining Proposition 2.15 with the exact sequence (2.6) gives the
central extension

1 → A ⊗ B → A
2
∗ B → A ⊕ B → 1. (2.17)

2.18 Corollary. |A
2
∗ B| = |A||B||A ⊗ B|. In particular, if a group A is perfect, namely

if A = [A, A], then for any group B the second nilpotent product A
2
∗ B is isomorphic to

the direct product A ⊕ B.

Proof. The equality between the cardinals follows from the exact sequence (2.17).
Moreover, if A is perfect, then Proposition 2.13 entails that A ⊗ B = {1}. Hence,
the exact sequence (2.17) gives the required isomorphism.

The next proposition identifies the derived group in the second nilpotent prod-
uct of two groups.
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2.19 Proposition. Let G = A
2
∗ B. Its commutator subgroup [G, G] is isomorphic

to [A, A] ⊕ [B, B] ⊕ [A, B](2). In particular, G is abelian only when both A and B are
abelian and A ⊗ B is trivial.

Proof. By Proposition 2.4, a generic commutator element in G is of the form

[a1b1c1, a2b2c2] where ai ∈ A, bi ∈ B and ci ∈ [A, B](2). This element is equal

to [a1, a2][b1, b2]c for some c ∈ [A, B](2) ⊂ Z(G), (in fact c = [a1, b2][b1, a2]). The
product of two such elements is of the form

[a1, a2][b1, b2]c[a3, a4][b3, b4]d = [a1, a2][a3, a4][b1, b2][b3, b4]cd,

(here we used Corollary 2.9), and this is exactly the product in the direct product

[A, A]⊕ [B, B]⊕ [A, B](2). The subgroups [A, A], [B, B], [A, B](2) are contained in

[G, G], so we have an explicit surjective morphism [A, A] ⊕ [B, B] ⊕ [A, B](2) →
[G, G]. It is injective because of Proposition 2.4.

2.20 Examples.

1. If p, q ∈ N are coprime numbers, then Z/pZ
2
∗ Z/qZ ≃ Z/pZ ⊕ Z/qZ. This

is because whenever (p, q) = 1 the only ϕ that verifies the condition of the
diagram (2.11) is ϕ = 0. This means that Z/pZ ⊗ Z/qZ = 0. Propositions 2.4
and 2.15 yields the desired result.

2. More generally, if p, q ∈ N and d := gcd(p, q), it follows that Z/pZ ⊗Z/qZ =
Z/dZ. Thus the order of Z/pZ

2
∗ Z/qZ is pqd.

3. Z/nZ
2
∗ Z/nZ is isomorphic to the Heisenberg group:

Heis (Z/nZ) =











1 a c
0 1 b
0 0 1



 : a, b, c ∈ Z/nZ







A straightforward way to see this is to verify that the function

Ψ : Z/nZ
2
∗ Z/nZ → Heis (Z/nZ)

Ψ(abc) =





1 b c
0 1 a
0 0 1





is a group isomorphism (here we are using Proposition 2.4). Observe that in

particular Z/nZ
2
∗ Z/nZ is a non abelian group of order n3 and when n = 2

this is also isomorphic to the dihedral group D4. The same strategy shows

that Z
2
∗ Z is isomorphic to the Heisenberg group Heis (Z).

4. Denote with Dn the dihedral group of order 2n, namely the group with
presentation 〈a, b |an = 1, b2 = 1, bab = a−1〉. It is plain that [Dn, Dn] =
〈a−2〉. If n is even, [Dn, Dn] has order n/2 in which case Dn/[Dn ,Dn] = 〈ā, b̄〉 ∼=
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Z/2Z ⊕Z/2Z. Thus for n even, Dn
2
∗ Dn is a (non-abelian) group of order 26n2

and its derived subgroup is isomorphic to ⊕2
1(Z/n

2 Z) ⊕4
1 (Z/2Z). If n is odd,

a similar analysis shows that Dn
2
∗ Dn is a (non abelian) group of order 23n2

and its derived subgroup is isomorphic to ⊕2
1

Z/nZ ⊕ Z/2Z.

2.21 Remark. Example (2) and Proposition 2.7 can be used to prove that inside

Z/4Z
2
∗ Z/2Z, the subgroup generated by the element of order 2 in Z/4Z together

with Z/2Z is abelian and isomorphic to Z/2Z ⊕ Z/2Z. This shows that if Ã ⊳ A and

B̃ ⊳ B, the group 〈Ã, B̃〉 ⊳ A
2
∗ B is not isomorphic to Ã

2
∗ B̃.

3 Permanence properties of the second nilpotent product of

two groups

The purpose of this section is to prove Theorem (A) from the introduction. We
rephrase it here.

3.1 Proposition. Let A and B be countable groups. The second nilpotent product of

them, A
2
∗ B, has one of the following properties:

1. nilpotent;

2. amenable;

3. Haagerup approximation property;

4. exact (or boundary amenable, or satisfies property A of Yu);

5. Kazdhan property (T);

if and only if A and B have the same property.

3.2 Remark.

(i) We refer to [1, 2, 3] for the definitions and thorough treatments of the prop-
erties of groups stated above.

(ii) Golovin showed that the second nilpotent product preserves nilpotency.
For the sake of completeness, we include a short proof here.

(iii) Except for nilpotency, Proposition 3.1 is obvious and not interesting when
the groups at hand are finite.

Proof. Since A and B are subgroups of G := A
2
∗ B and the properties (1), (2),

(3) and (4) are inherited by subgroups, it follows that if G satisfies one of these
four properties then both A and B must also satisfy it. The fact that Property (T)
is inherited by quotients (see [1, Theorem 1.3.4 ]) tells that if G satisfies (5) then
A ≃ G/B and B ≃ G/A must also satisfy (5), where A denotes the normal closure
of A in G. We are now left to show the reverse implications.
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In order to prove (1), let h ∈ [G, G] and g ∈ G, g = abc as in Proposi-
tion 2.4. By Proposition 2.19, h is of the form h = a1b1c1, with a1 ∈ [A, A],

b1 ∈ [B, B], c1 ∈ [A, B](2). Then [g, h] = [abc, a1b1c1] = [ab, a1b1] = [a, a1][b, b1].
This means that the third term in the lower central series of G, G3 := [G, [G, G]] is
equal to [A, [A, A]]⊕ [B, [B, B]] = A3 ⊕ B3. It follows by induction that for n > 2
the nth term of the lower central series of G is equal to An ⊕ Bn. In particular, if A
and B are nilpotent groups of classes n and m, then G is either abelian or nilpotent
of class max{2, n, m}.

In order to prove (2), we consider the short exact sequence in (2.17). If A and B
are amenable, then A ⊕ B is amenable. Since A ⊗ B is abelian, by [1, Proposition
G.2.2] G is amenable.

In order to prove (3), recall that the Haagerup property is preserved by taking
subgroups and direct sums, thus by Proposition 2.19 the subgroup [G, G] has the
Haagerup property if both A and B have it. Since G/[G,G] is abelian, and extensions
with amenable quotients preserve the Haagerup property ([3, Example 6.1.6]),
then G has the Haagerup property.

In order to prove (4), we consider the short exact sequence in (2.17). Then
recall that abelian groups are exact, and that subgroups and extensions of exact
groups are exact [2, Proposition 5.1.11].

Finally, in order to show (5), assume that both A and B have the Property
(T). Their abelianizations are finite groups. Then by Proposition 2.13, A ⊗ B is a
finite group. In particular both ends of the short exact sequence (2.17) have the
Property (T). We apply then [1, Proposition 1.7.6] to obtain (5).

3.3 Remark. Proposition 2.4, Proposition 2.15 together with the proof of (1) shows
that the 2-nilpotent product of finite abelian p-groups is a finite p-group of nilpo-
tency class 2.
It might seem that (5) could be used to construct property (T) groups with large
center. Unfortunately this is not the case since we proved that if A and B have the

property (T) the group [A, B](2) is finite.

4 Second nilpotent product indexed by a set

In this section we consider an index set I and for each i ∈ I , a group Hi. Recall
from the introduction the next definition.

4.1 Definition. For a family of groups {Hi}i∈I indexed on a set I , the second nilpotent
product of the family is the group

2

∗
i∈I

Hi := ∗
i∈I

Hi/
〈

[∗
i∈I

Hi,[Hj,Hk]]j 6=k

〉

The remainder of this section presents several facts about the 2-nilpotent prod-
uct of arbitrarily many groups that will be needed to prove Corollary B and
Theorems C and D. This will also enable us to give a short proof of the asso-
ciativity of the second nilpotent product, the only one among the five properties
listed in the introduction and proved by Golovin that does not follow immedi-
ately from the definitions.
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4.2 Proposition. The second nilpotent product is functorial. Explicitly, a family of mor-

phisms Hi → Ki induce a natural morphism
2

∗
i∈I

Hi →
2

∗
i∈I

Ki.

Proof. This is a straightforward consequence of the functoriality of the free
product.

A universal property for the second nilpotent product is given by the the
following diagram

Hi

ri

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑

��

2

∗
i∈I

Hi
∃! // G

(4.3)

where G is a group and the morphisms ri verify [ri(g), rj(h)] ∈ Z(G) if i 6= j.

The group generated by the commutators [hi, hj] with hi ∈ Hi, hj ∈ Hj, i 6= j is

central in
2

∗
i∈I

Hi. Let fix a total order on I . We have that

〈[hi , hj]|hi ∈ Hi, hj ∈ Hj, i 6= j〉 = 〈[Hi, Hj]
(2)|i 6= j〉 =

⊕

i,j∈I
i<j

[Hi, Hj]
(2).

This, together with Proposition 2.15 immediately imply the next generalization
of Proposition 2.15.

4.4 Proposition. Let {Hi}i∈I be a family of groups indexed on an ordered set I . The

subgroup 〈[hi , hj]|hi ∈ Hi, hj ∈ Hj, i 6= j〉 of the group
2

∗
i∈I

Hi is central and it is

isomorphic to
⊕

i,j∈I
i<j

Hi ⊗ Hj.

Observe that because of functoriality, for any subset S ⊂ I the natural pro-

jection
2

∗
i∈I

Hi
πS−→

2

∗
i∈S

Hi is a well defined group homomorphism. Moreover the

projection πS(x) can be computed in any word x by erasing all letters belonging
to a group Hi whose index i /∈ S . Thus, for S ⊂ J ⊂ I the composition of the
two natural projections coincides with projecting directly to S .

For two elements i 6= j ∈ I we denote with π(i,j) the projection
2

∗
l∈I

Hl

π(i,j)
−−→ Hi

2
∗ Hj.
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4.5 Proposition. Fixing a total order in I , every element x ∈
2

∗
i∈I

Hi admits a unique

representation

x = ai1 ai2 ...ail
ω

where aik
∈ Hik

, i1 < i2 < ... < il ∈ I , and ω ∈ Z(
2

∗
i∈I

Hi) is of the form

ω = ∏
ik<ir
r≤l

cik,ir with cik,ir ∈ [Hik
, Hir ]

(2).

Proof. Existence: Start from a word P that represents x. By rearranging the ele-
ments (adding the corresponding commutators) we can obtain such a represen-
tation. Uniqueness: by Proposition 2.4, the projection π(ik,ir)(x) determines aik

, air
and cik,ir .

This result, combined with Proposition 4.4, can be used to compute the order
of the second nilpotent product of finitely many finite groups.

4.6 Example.
2

∗
1≤i≤n

Z/pZ is the universal nil-2 exponent p group in n generators.

It has order p
n2+n

2 , and its derived subgroup has order p
n2−n

2 and it is isomorphic

to
⊕

n2−n
2

1
Z/pZ.

4.7 Proposition. Let J ⊂ I . For x ∈
2

∗
j∈J

Hj, the commutator [x,−] defines a group

homomorphism

2

∗
i∈I\J

Hi
[x,−]
−−→

⊕

i∈I\J , j∈J

[Hi, Hj]
(2) ⊂ Z(

2

∗
i∈I

Hi).

Proof. Since the identity [x, yz] = [x, y]y[x, z]y−1 is always valid, it is enough to

show that [x, z] ∈ Z(
2

∗
i∈I

Hi) whenever x ∈
2

∗
j∈J

Hj and z ∈
2

∗
i∈I\J

Hi. Assume first

that x ∈ Hj, j ∈ J . Any z ∈
2

∗
i∈I\J

Hi can be represented as a finite word zi1 zi2 ...zil
,

where for all 1 ≤ k ≤ l, zik
∈ Hik

and ik 6∈ J . Since for all k, [x, zik
] ∈ Z(

2

∗
i∈I

Hi),

induction on l shows that [x, z] = [x, zi1 zi2 ...zil
] = [x, zi1 zi2 ...zil−1

][x, zil
] ∈

Z(
2

∗
i∈I

Hi). Repeating the same induction argument but now for x ∈
2

∗
j∈J

Hj

finishes the proof.

We can now give a short proof of the associativity of the second nilpotent
product.
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4.8 Proposition. [8, Golovin] Let S = ∐
i∈I

Si be a disjoint union of index sets, and Hj a

group for each j ∈ S. Then
2

∗
j∈S

Hj ≃
2

∗
i∈I

( 2

∗
j∈Si

Hj

)

Proof. The isomorphism will be given by the identity on each Hj. As these gen-
erate both groups, the only nontrivial fact is that they are well defined. We will
induce them with the help of the universal property of the second nilpotent prod-
uct. Natural inclusions give the following diagram

Hk

rk
��

lk //

2

∗
j∈Si(k)

Hj

si(k)

xxqq
qq
qq
qq
qq
qq
qq
qq

ti(k)
��

2

∗
j∈S

Hj

u //
2

∗
i∈I

( 2

∗
j∈Si

Hj

)

v
oo

In order to see that u is well defined, we must check that for every
α ∈ Hk1

and every β ∈ Hk2
with k1 6= k2, the element [ti(k1)

lk1
(α), ti(k2)lk2

(β)]

belongs to the center of
2

∗
i∈I

( 2

∗
j∈Si

Hj

)

. In the case when i(k1) 6= i(k2), this fol-

lows from the definition of the second nilpotent product of the family of groups
{

2

∗
j∈Si

Hj

}

i∈I

. We are left to analyze the case when i(k1) = i(k2). In this case,

[ti(k1)
lk1
(α), ti(k1)

lk2
(β)] = ti(k1)

(

[lk1
(α), lk2

(β)]
)

. The definition of the second nilpo-

tent product of the family
{

Hj

}

j∈i(k1)
entails that our element is in the center of

2

∗
j∈Si(k1)

Hj. On the other hand, if in Proposition 4.7 we take J = I \ {i(k1)}, it

follows that for any x ∈
2

∗
i∈J

( 2

∗
j∈Si

Hj

)

we have that

[x, [ti(k1)
lk1
(α), ti(k1)

lk2
(β)]] =

= [x, ti(k1)
lk1
(α)][x, ti(k1)

lk2
(β)][x, (ti(k1)

lk1
(α))−1][x, (ti(k1)

lk2
(β))−1]

= [x, ti(k1)
lk1
(α)][x, (ti(k1)

lk1
(α))−1][x, ti(k1)

lk2
(β)][x, (ti(k1)

lk2
(β))−1]

= 1.

All this combined implies that [ti(k1)
lk1
(α), ti(k1)

lk2
(β)] is central in the group

2

∗
i∈I

( 2

∗
j∈Si

Hj

)

.

In order to see that v is well defined, we must check that [si1(γ), si2(δ)] ∈

Z
( 2

∗
j∈S

Hj

)

, where γ ∈
2

∗
j∈Si1

Hj, δ ∈
2

∗
j∈Si2

Hj, i1 6= i2. To that end, consider
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γ = γj1 . . . γjn with j1, · · · , jn ∈ Si1 and δ = δj′1
. . . , δj′m

with j′1, · · · , j′m ∈ Si2 .

Once again, by Proposition 4.7, we have

[si1(γ), si2(δ)] = ∏
1≤k≤n
1≤l≤m

[γjk , δj′l
]

and this product clearly belongs to the center.

We are now in position to prove Corollary 1.3 from the introduction.

Proof of Corollary B. If I is finite, the result follows from associativity together
with Proposition 3.1. If I = N, then

2

∗
i∈N

Hi =
⋃

n∈N

2

∗
i∈{1,2,...,n}

Hi

and amenability, the Haagerup property and exactness are preserved under count-
able increasing unions of discrete groups (see [1, Proposition G.2.2], [3, Proposi-
tion 6.1.1] and [2, Exercise 5.1.1]).

4.9 Remark. Property (T) is not stable under taking the second nilpotent product
of infinitely many discrete groups. This is because such a group is not finitely
generated.

5 Second nilpotent wreath products

Let H and G be two countable groups. We consider the second nilpotent product

of |G|-many copies of H indexed by G, namely, we consider the group
2

∗
g∈G

Hg,

where for each g, Hg = H.

Since the shift action of G on the free product ∗
G

Hg leaves the set
{

[ ∗
g∈G

Hg, [Hh, Hk]]h 6=k

}

invariant, it follows that this action passes to the factor

group ∗
g∈G

Hg/
〈

[∗
g∈G

Hg,[Hh,Hk]]h 6=k

〉

. In other words G acts on
2

∗
g∈G

Hg.

5.1 Definition. The semi-direct product

( 2

∗
G

H
)

⋊ G

will be called the restricted second nilpotent wreath product of H and G.

A variant of this construction that motivated this article appeared in
[15, Section 5]. The goal of this section is to show Theorem (C) and Theorem
(D) from the introduction.
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5.2 Definition. The support of an element x ∈
2

∗
i∈I

Hi is the subset of I whose elements

are all the indices i such that one of the elements ai, cij, j 6= i in the representation of x as
in Proposition 4.5, is nontrivial. Equivalently, for every x 6= e,

supp(x) =
{

i ∈ I : there exists j 6= i such that π(i,j)(x) /∈ Hj

}

.

The support of the identity element is the empty set.

5.3 Remark. Some obvious properties of the support are:

1. supp(x) is a finite set;

2. supp(x) = supp(x−1);

3. supp(xy) ⊂ supp(x) ∪ supp(y);

4. when the index set is a group G, it follows that

supp(g.x) = g.supp(x), for all g ∈ G and for all x ∈
2

∗
G

H.

The proof of Theorem (C) that we will exhibit here follows the general strat-
egy developed by Cornulier et.al. in [5]. In fact, the result will follow after setting
up the premisses that allow us to apply [5, Theorem 5.1]. For the sake of com-
pleteness, we will include its statement. Let us first recall the next definition.

5.4 Definition. [5, Definition 3.3] Let W be a group, and X be a set. A = 2(X) denotes
the set of finite subsets of X. A W-invariant A-gauge on W is a function ψ : W → A
such that

ψ(w) = ψ(w−1) ∀w ∈ W;

ψ(ww′) ⊂ ψ(w) ∪ ψ(w′) ∀w, w ∈ W.

5.5 Example. The first three items of Remark 5.3 say that the support function is

a
2

∗
i∈I

Hi-invariant 2(I)-gauge on
2

∗
i∈I

Hi. While condition (4) of Remark 5.3 says

that when the index set is a group G, the support function is G-equivariant.

5.6 Theorem. [5, Theorem 5.1]. Let W, G be groups, with G acting on W by automor-

phisms. Set A = 2(G). Let ψ be a left W-invariant, G-equivariant A-gauge on W.
Assume that there exists a G-invariant conditionally negative definite function u on W
such that, for every finite subset F ⊂ G, the restriction of u to every subset of the form
WF := {w ∈ W : ψ(w) ⊂ F} is proper. Then W ⋊ G is a Haagerup group if and only if
G is Haagerup.

So, in order to prove Theorem C from the introduction, it is enough to show
the next proposition.
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5.7 Proposition. Let G and H be discrete countable groups. Assume H Haagerup.

Then there exists a G-invariant and conditionally negative definite function
2

∗
g∈G

H
u
−→ R

such that for every finite subset F ⊂ G the restriction of u to any subset of the form

{x ∈
2

∗
g∈G

H : supp(x) ⊂ F} is proper.

Proof. Since H is Haagerup, by item (3) of Proposition 3.1, H
2
∗ H is Haagerup.

By definition, this means that there exists a proper conditionally negative definite

function ϕ : H
2
∗ H → R≥0. For h, k ∈ G, h 6= k, we have

2

∗
G

H
π(h,k)
−−−→ Hh

2
∗ Hk

∼=
−→ H

2
∗ H

ϕ
−→ R.

Denote v(h,k) := ϕ ◦ π(h,k). Let Ψ : G → N be an enumeration of G.
Claim: The function

u = ∑
h,k∈G

h 6=k

1

2Ψ(h−1k)
v(h,k)

satisfies the required conditions.

(i) u is G-invariant: Since π(h,k)(g.x) = π(g−1h,g−1k)(x) it follows that

u(g.x) = ∑
h,k∈G

h 6=k

1

2Ψ(h−1k)
v(h,k)(g.x) =

∑
h,k∈G

h 6=k

1

2Ψ((g−1h)−1(g−1k))
v(g−1h,g−1k)(x) = u(x).

(ii) For every fixed x, u(x) is finite: First notice that for all h, k /∈ supp(x),
v(h,k)(x) = ϕ(e) = 0. Then

u(x) = ∑
h,k∈supp(x)

h 6=k

1

2Ψ(h−1k)
v(h,k)(x) + ∑

h∈supp(x)
k/∈supp(x)

1

2Ψ(h−1k)
v(h,k)(x)+ (5.8)

∑
h/∈supp(x)
k∈supp(x)

1

2Ψ(h−1k)
v(h,k)(x).

Since supp(x) is finite, the first summand in (5.8) is finite.
Take h ∈ supp(x) fixed. Then for all k, k′ /∈ supp(x), π(h,k)(x) ∈ Hh and

π(h,k′)(x) ∈ Hh. Hence, π(h,k)(x) = π(h,k′)(x), and then v(h,k)(x) = v(h,k′)(x).
It follows that the sum

∑
k/∈supp(x)

1

2Ψ(h−1k)
v(h,k)(x)
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is convergent for all h ∈ supp(x). Hence, the second summand in (5.8) is
finite. The same method shows that the third summand in (5.8) is finite.

(iii) Restrictions are proper: Fix a finite subset F ⊂ G. Let N = max
h,k∈F

Ψ(h−1k).

Let a, b ∈ F, a 6= b. Then for any x ∈
2

∗
G

H we have the inequalities

v(a,b)(x) ≤ ∑
h,k∈F

h 6=k

v(h,k)(x) ≤ 2Nu(x).

This means that the set

{x ∈
2

∗
G

H : supp(x) ⊂ F, u(x) ≤ M}

is contained in

{x ∈
2

∗
G

H : supp(x) ⊂ F, v(a,b)(x) ≤ 2N M for all a, b ∈ F}.

This set is finite since ϕ is proper and for all x 6= x′ whose supports are
contained in F there exists a, b ∈ F such that π(a,b)(x) 6= π(a,b)(x

′).

(iv) u is a conditionally negative definite function (c.n.d.f.): This is obvious since
the set of c.n.d.f. is a convex cone, and pointwise limit of c.n.d.f. is a c.n.d.f.
(see, for instance, [1, Proposition C.2.4].)

5.9 Remark. The case when H is finite and G = F2 could be shown by mimicking
the proof given in [4] for the lamplighter group. This alternative approach has
the advantage of being self contained since it only requires to transfer the space

with walls structure from F2 to (
2

∗
F2

H)⋊ F2.

Proof of Theorem D. If A is abelian and G is amenable, Corollary 1.3 implies that
the restricted second nilpotent wreath product of A and G is amenable and thus
unitarizable. To show the converse let {gi : gi ∈ G}i∈N be an enumeration of

G. Since C =
⊕

i<j[Agi
, Agj

](2) is a G-invariant central subgroup of
2

∗
G

A, then

C̃ = (C, eG) is a normal subgroup of
( 2

∗
G

A
)

⋊ G. Their quotient is:

( 2

∗
G

A
)

⋊ G
/

C̃ ≃
( 2

∗
G

A
/

C
)

⋊ G ≃
(

⊕

G

A
)

⋊ G.

When G is non-amenable, [13, Theorem 1] says that
(

⊕

G A
)

⋊ G is non unita-

rizable. Since a quotient of a unitarizable group must be unitarizable, it follows

that
( 2

∗
G

A
)

⋊ G is non unitarizable.
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