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Abstract

Let us consider the following two norms in the vector space P of all
complex polynomials:

‖p‖Dr := sup{|p(z)| : |z| < r}, and ‖p‖1 :=
n

∑
i=0

|ai|,

where p(z) = ∑
n
i=0 aiz

i. In this note we show that, if 0 < ε < ε′ < 1 < r < r′,
then

‖ · ‖Dε
≺ ‖ · ‖Dε′

≺ ‖ · ‖D1
≺ ‖ · ‖1 ≺ ‖ · ‖Dr ≺ ‖ · ‖Dr′

,

where ≺ represents the natural (strict) partial order in their corresponding
induced topologies.

1 Introduction and preliminaries

Let us denote by P and Pn, respectively, the vector spaces of all complex poly-
nomials and all complex polynomials of degree at most n ∈ N. Since Pn is finite
dimensional, all norms defined on Pn are equivalent. In other words, if ‖ · ‖a
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and ‖ · ‖b are two norms defined on Pn, then there exist constants k(n), K(n) > 0
such that

k(n)‖p‖a ≤ ‖p‖b ≤ K(n)‖p‖a (1.1)

for all p ∈ Pn. Inequalities of this type have been studied in the past for several
polynomial norms. For instance, we can endow P with the following norms:

1. ‖p‖Dr := sup{|p(z)| : |z| < r}, and

2. ‖p‖1 := ∑
n
i=0 |ai |,

where p is given by p(z) = ∑
n
i=0 aiz

i, a0, . . . , an ∈ C, r > 0, and Dr = rD with
D being the open unit disk. The optimal constants k(n, r), K(n, r′) > 0 in (1.1),
where r, r′ > 0, ‖ · ‖a = ‖ · ‖Dr and ‖ · ‖b = ‖ · ‖Dr′

are known (see for instance
[6] and [13] for a complete account on polynomials and polynomial inequalities).
A natural question would be whether or not ‖ · ‖Dr and ‖ · ‖Dr′

are equivalent too
in P . The answer is no. However we can establish a relationship between the
topologies induced by ‖ · ‖Dr and ‖ · ‖Dr′

in P .

Given two norms ‖ · ‖ and ‖ · ‖′ on a vector space Z, we can define a relation
representing the natural partial order (�) in their respective induced topologies
T‖·‖ and T‖·‖′ as follows.

Definition 1.1. We say that ‖ · ‖ � ‖ · ‖′ if the following three equivalent statements
hold:

(a) There exists a constant K > 0 such that, for all p ∈ Z, we have ‖p‖ ≤ K‖p‖′ .

(b) The identity operator I : (Z, ‖ · ‖′) → (Z, ‖ · ‖) is continuous.

(c) T‖·‖′ is finer than T‖·‖, that is, T‖·‖ ⊂ T‖·‖′ .

Remark 1.2. The relation � is not really a partial order on the collection of all
norms on Z, since we can have two equivalent norms which are not equal. Then
we should always see � as the natural partial order on the collection of their induced
topologies, that is,

‖ · ‖ � ‖ · ‖′ if and only if T‖·‖ ⊂ T‖·‖′ .

We also consider the corresponding strict order relation, that is:

Definition 1.3. Given two norms ‖ · ‖ and ‖ · ‖′ on a vector space Z, we say that
‖ · ‖ ≺ ‖ · ‖′ if ‖ · ‖ � ‖ · ‖′ but ‖ · ‖′ � ‖ · ‖.

The content of the next proposition is well known.

Proposition 1.4. Let ‖ · ‖ and ‖ · ‖′ be two norms on a vector space Z. The following
are equivalent:

1. ‖ · ‖ ≺ ‖ · ‖′.

2. The identity operator I : (Z, ‖ · ‖′) → (Z, ‖ · ‖) is continuous but it is not a
topological isomorphism.
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A very simple way of proving that ‖ · ‖ ≺ ‖ · ‖′ is by means of compact
operators. By BX we will denote the closed unit ball of a normed space X.

Lemma 1.5. Let (E, ‖ · ‖′), (F, ‖ · ‖) be normed spaces and Z ⊂ E, F be an infinite
dimensional vector space. Suppose that T : (E, ‖ · ‖′) → (F, ‖ · ‖) is a linear operator
with T|Z = I, the identity operator. If T is a compact operator then ‖ · ‖ ≺ ‖ · ‖′ on Z.

Proof. Since T is compact, T is continuous and, thus, the operator
I = T|Z : (Z, ‖ · ‖′) → (Z, ‖ · ‖) is also continuous. Moreover, by Riesz’s Theo-
rem (see, e.g., [9]) there exist ε0 > 0 and a sequence {pn}n∈N ⊂ B(Z,‖·‖′) with

‖pn − pm‖′ ≥ ε0 > 0. Since T is a compact operator, we can assume, passing
to a subsequence if necessary, that {T(pn) = pn}n∈N is a Cauchy sequence in
(Z, ‖ · ‖). Therefore the operator I : (Z, ‖ · ‖) → (Z, ‖ · ‖′) does not transform
Cauchy sequences into Cauchy sequences and it cannot be uniformly continuous
(nor continuous, by the linearity of I). Hence its inverse I : (Z, ‖ · ‖′) → (Z, ‖ · ‖)
is not a topological isomorphism. By the previous proposition, we conclude that
‖ · ‖ ≺ ‖ · ‖′ on Z.

On the one hand, it follows from the triangle inequality that ‖p‖D1
≤ ‖p‖1

for all p ∈ P (and, thus, ‖ · ‖D1
� ‖ · ‖1). On the other hand, we shall prove that,

for all r > 1, there exists a constant K(r) > 0 such that ‖p‖1 ≤ K(r)‖p‖Dr for
p ∈ P (and, thus, ‖ · ‖D1

� ‖ · ‖1 � ‖ · ‖Dr for all r > 1).

It might seem intuitive the fact that, if r → 1+, then

‖ · ‖D1
� ‖ · ‖1 � ‖ · ‖Dr −→ ‖ · ‖D1

and that, as a consequence, the norms ‖ · ‖D1
and ‖ · ‖1 are really equivalent.

However, and as we will also prove, this is not true. We shall prove that, although
none of these previous norms are actually equivalent in any sense, what we do
have is that

‖ · ‖Dε ≺ ‖ · ‖Dε′
≺ ‖ · ‖D1

≺ ‖ · ‖1 ≺ ‖ · ‖Dr ≺ ‖ · ‖Dr′

for every 0 < ε < ε′ < 1 < r < r′. Moreover, it is provided a rather general cri-
terion about topological largeness of sets arising naturally when comparing two
norms. The notation will be rather usual and the tools we employ are classical
ones from the fields of Topology and Complex Variables.

2 The results

First of all, we shall need some additional notation.

Definition 2.1. For every r > 0, we denote Hb(Dr) := { f ∈ H(Dr) : ‖ f‖Dr < +∞},
where H(Dr) stands for the space of all holomorphic functions on Dr.

Remark 2.2. We consider Hb(Dr) as the Banach space (Hb(Dr), ‖ · ‖Dr) and,
naturally, if 0 < r < r′ then, by the Identity Principle, we may consider Hb(Dr′)
as a subset of Hb(Dr).
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Definition 2.3. If r′ > r > 0, we define the linear operator Ir,r′ : Hb(Dr′) → Hb(Dr)
as Ir,r′( f ) = f .

Now, we can obtain the first of our main results.

Theorem 2.4. Assume that 0 < r < r′. Then the following holds:

1. The ball BHb(Dr′ )
is compact in Hb(Dr).

2. Ir,r′ is a compact operator.

3. ‖ · ‖Dr ≺ ‖ · ‖Dr′
on P .

Proof. Obviously (1) implies (2) and, by Lemma 1.5 (with E = Hb(Dr′),
F = Hb(Dr), Z = P , ‖ · ‖ = ‖ · ‖Dr , and ‖ · ‖′ = ‖ · ‖Dr′

), (2) implies (3). So
we only have to prove (1).

With this aim, let { fn}n∈N ⊂ BHb(Dr′ )
. By Montel’s Theorem (see, e.g., [10])

there exist a subsequence { fnk
}k∈N and an f ∈ H(Dr′) such that fnk

−→ f
uniformly on compact sets in Dr′ . We conclude that f ∈ BHb(Dr′)

and fnk
−→ f

in Hb(Dr). So BHb(Dr′)
is compact in Hb(Dr).

On the other hand, if we now consider r > 1, we have that, for all
f (z) = ∑

∞
n=0 anzn ∈ Hb(Dr), its radius of convergence is not less than r > 1,

so ∑
∞
n=0 |an| < +∞. This allows us to consider the linear operator given in the

next definition, where ℓ1 denotes the set of all absolutely summable sequences of
complex numbers, which becomes a Banach space when endowed with the norm
‖(an)n≥0‖ = ∑

∞
n=0 |an|.

Definition 2.5. For all r > 1 we define the operator Ir : Hb(Dr) → ℓ1 as
Ir( f ) := (an)n≥0, where f is as above.

In order to prove that Ir is continuous, it will be useful to recall some basic
concepts and results related to the compact-open topology.

Definition 2.6. Let r > 0, f ∈ H(Dr), K ⊂ Dr be a compact subset and ε > 0.
We define B f (K, ε) := {g ∈ H(Dr) : sup{|g(z) − f (z)| : z ∈ K} ≤ ε}.

Theorem 2.7. Let Tc be the compact-open topology in H(Dr). Then we have:

1. The family {B f (K, ε) : f ∈ H(Dr), ε > 0, K compact ⊂ Dr} is a neighborhood
base for (H(Dr), Tc).

2. fn −→ f in (H(Dr), Tc) if and only if fn −→ f uniformly on compact subsets
of Dr.

3. (H(Dr), Tc) is a completely metrizable space, hence a Baire space.

Definition 2.8. Let r > 1. For every N ∈ N, we denote
FN :=

{

f ∈ H(Dr) : ∑
∞
n=0 |an| ≤ N with f (z) = ∑

∞
n=0 anzn

}

.

Remark 2.9. Notice that H(Dr) =
⋃

N∈N FN .
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The easy proof of the following result is left to the reader. If α is a scalar and
S is a subset of a vector space, then α S stands for {α x : x ∈ S}.

Lemma 2.10. Assume that r > 1 and R > 0. Let {(ai,n)i≥0}n∈N ⊂ RBℓ1
be a

sequence such that
lim

n→∞
ai,n = ai

for all i ∈ N. Then ∑
∞
i=0 |ai| ≤ R.

In the following theorem, we collect a number of properties of the sets FN

given in Definition 2.8.

Theorem 2.11. Let r > 1. We have:

(a) The set FN is a closed subset of (H(Dr), Tc) for all N ∈ N.

(b) There exists an N ∈ N such that:

(1) FN has non-empty interior in (H(Dr), Tc).

(2) 0 ∈ int(H(Dr),Tc)FN .

(3) There exists ε > 0 such that εBHb(Dr) ⊂ FN .

(c) The operator Ir given in Definition 2.5 is continuous.

Proof. (a) Let { fn}n∈N be a sequence in FN such that limn→∞ fn = f in
(H(Dr), Tc), where fn(z) = ∑

∞
i=0 ai,nzi and f (z) = ∑

∞
i=0 aiz

i. Since fn −→ f
uniformly on compact sets in Dr, by Weierstrass’ Convergence Theorem

(see [1, pp. 176–177]) we get limi→∞ f
(i)
n (0) = f (i)(0) for all i ∈ N ∪ {0}, and

hence limi→∞ ai,n = ai. By Lemma 2.10, ∑
∞
i=0 |ai| ≤ N and so f ∈ FN .

(b) Part (1) follows from (a), Theorem 2.7(3) and Remark 2.9.

(2) By (1) and Theorem 2.7(1), there exist f ∈ H(Dr), a compact set K ⊂ Dr

and ε > 0 such that f + B0(K, ε) = B f (K, ε) ⊂ FN . In particular, f ∈ FN . Now,
observe that FN is absolutely convex, that is, αg + βh ∈ FN for all g, h ∈ FN

and all α, β ∈ C with |α| + |β| ≤ 1. Consequently, − 1
2 f + 1

2 B f (K, ε) ⊂ FN . But

− 1
2 f + 1

2 B f (K, ε) = B0(K, ε
2), which proves that 0 is in the interior of FN .

(3) Obviously εBHb(Dr) ⊂ B0(K, ε) ⊂ FN .

(c) From (3) above as applied to N = 1 we obtain the existence of an ε > 0 such
that εBHb(Dr) ⊂ F1. But this together with the homogeneity of norms tells us that

‖Ir f‖ ≤ 1
ε‖ f‖r for all f ∈ Hb(Dr), which yields the desired continuity.

Now, one of our main results can be easily derived:

Theorem 2.12. Assume that r > 1. Then the following holds:

(a) The linear operator Ir : Hb(Dr) → ℓ1 is compact.

(b) ‖ · ‖1 ≺ ‖ · ‖Dr on P .

Proof. By Theorem 2.11(b)(3), Ir is a bounded operator. Fix any d ∈ (1, r). We can
see Ir as the composition Ir = Id Id,r. Since Id is continuous and Id,r is compact,
Ir is compact. This proves (a). Finally, (b) follows from (a) and Lemma 1.5.
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Given a normed space E, we shall denote by E its completion.

Remark 2.13. Let us recall that:

1. (P , ‖ · ‖1) = ℓ1.

2. (P , ‖ · ‖D1
) = H(D1) ∩ C(D1) =: A(D1), the disk algebra.

The content of the following auxiliary assertion is well known.

Lemma 2.14. Let E and F be normed spaces and let T : E → F be a linear and
continuous operator. Then the following holds:

1. There exists a unique linear continuous operator T : E → F such that T|E = T.

2. If T is a topological isomorphism then T is also a topological isomorphism.

We denote by I : P → P the identity mapping I(P) = P, where the space P
on the left should be thought as identified with c00, the space of eventually zero
complex sequences.

Corollary 2.15. The linear operator I : (an)n∈N ∈ ℓ1 7→ f (z) = ∑
∞
n=0 anzn ∈ A(D1)

is continuous and injective.

Proof. By using the Weierstrass M-test, the series ∑
∞
n=0 anzn converges uniformly

on D1. Since each term anzn is continuous on D1, so is the sum f . Moreover,
the Weierstrass convergence theorem guarantees that f is holomorphic in D1, so
that f ∈ A(D1) and the mapping (an)n∈N ∈ ℓ1 7→ f ∈ A(D1) is well defined
and, obviously, linear. That this mapping equals I is clear because its restriction
to P equals I (via the identification P = c00), and P is dense both in ℓ1 and
A(D1). The continuity of I is derived from Lemma 2.14(1), while its injectivity
follows from the uniqueness of the Taylor coefficients around 0.

However, is I also a topological isomorphism? In order to answer this ques-
tion, let us focus on the following four conjectures.

Conjectures 2.16.
(CI) ‖ · ‖1 and ‖ · ‖D1

are equivalent norms in P .

(CII) The linear operator I : ℓ1 → A(D1) is a topological isomorphism.

(CIII) For every f ∈ A(D1) there exists (ai)i∈N ∈ ℓ1 such that
f (z) = ∑

∞
i=0 aiz

i for all z ∈ D1.

(CIV) The set

A :=
{

f ∈ A(D1) :
∞

∑
i=0

|ai | < +∞ where f (z) =
∞

∑
i=0

aiz
i ∀z ∈ D1

}

(2.1)

is of second category in A(D1).
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Proposition 2.17. The previous four conjectures (CI), (CII), (CIII) and (CIV) are
equivalent.

Proof. To start with, the facts (CII) =⇒ (CIII) and (CIII) =⇒ (CIV) are straight-
forward.

• (CI) is equivalent to (CII): ‖ · ‖1 and ‖ · ‖D1
are equivalent norms in P if

and only if I : (P , ‖ · ‖1) → (P , ‖ · ‖D1
) is a topological isomorphism and, by

Remark 2.13 and Lemma 2.14, the last property is equivalent to the fact that
I : ℓ1 → A(D1) is a topological isomorphism.

• (CIV) =⇒ (CII): The set I(ℓ1) = A is a second category set. Now, since I is
linear, continuous and injective, the Banach–Schauder Theorem (Open Mapping
Theorem) implies that I is a topological isomorphism.

Proposition 2.18. (CIII) is false, and so are (CI), (CII) and (CIV) by Proposition 2.17.

Proof. The following result can be found in [8, p. 77]: There exists f ∈ A(D1)
such that ∑

∞
i=0 |ai | = +∞, where f (z) = ∑

∞
i=0 aiz

i for all z ∈ D1. This disproves
(CIII).

Since (CI) is false but we have ‖ · ‖D1
� ‖ · ‖1, we obtain another promised

result:

Theorem 2.19. ‖ · ‖D1
≺ ‖ · ‖1 on P .

We also obtain the following consequence.

Corollary 2.20. Consider the operators Ir (r > 1) given in Definition 2.5. Then
‖Ir‖ −→ +∞ as r → 1+.

Proof. By way of contradiction, suppose that there exist K > 0 and a sequence
{rn}n∈N with rn → 1+ such that ‖Irn‖ ≤ K for all n ∈ N. We have that, for
every n ∈ N and for all p ∈ P ,

‖p‖1 = ‖Irn(p)‖1 ≤ K‖p‖Drn
−→ K‖p‖D1

as n → ∞.

Thus, ‖p‖1 ≤ K‖p‖D1
and so ‖ · ‖1 � ‖ · ‖D1

, which is absurd.

Let A be the set defined in (2.1). Since (CIV) is false, A is a first category set.
We will show that A enjoys, actually, a nice topological structure; namely, A is
an Fσ set. Note that, in addition, A is dense since it contains the class P .

Let f ∈ A(D1) with f (z) = ∑
∞
i=0 aiz

i for all z ∈ D1. We know that its radius
of convergence is at least 1. Then, for all ε ∈ (0, 1), we obtain ∑

∞
i=0 |ai |ε

i < +∞.
Thus, we can define the following operator.

Definition 2.21. For every ε ∈ (0, 1) we define the linear operator

iε : A(D1) −→ ℓ1

as
iε( f ) = (aiε

i)i≥0,

where f (z) = ∑
∞
i=0 aiz

i for every z ∈ D1.
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Proposition 2.22. For every ε ∈ (0, 1), we have that iε is a compact operator.

Proof. We are going to define a linear operator

Tε : A(D1) → Hb(D1/ε).

For this, making the substitution z = ε ω we set Tε( f )(ω) := f (ε ω). Now, since

‖Tε( f )‖D1/ε
= ‖ f‖D1

for every f ∈ A(D1), we have that Tε is continuous. Moreover, we can see iε as
the composition iε = I1/εTε, where I1/ε is a compact operator. To sum up, iε is
the composition of a compact operator and of a continuous operator, from which
we conclude that it is compact.

Corollary 2.23. For every ε ∈ (0, 1) and every M > 0, we have that

CM,ε :=
{

f ∈ A(D1) :
∞

∑
i=0

|ai |ε
i ≤ M where f (z) =

∞

∑
i=0

aiz
i ∀z ∈ D1

}

is a closed subset of A(D1).

Proof. It suffices to notice that CM,ε = i−1
ε (MBℓ1

).

Corollary 2.24. The set

CM :=
{

f ∈ A(D1) :
∞

∑
i=0

|ai| ≤ M where f (z) =
∞

∑
i=0

aiz
i ∀z ∈ D1

}

(2.2)

is closed for every M > 0.

Proof. Let us show that CM =
⋂

ε∈(0,1)

CM,ε. It is clear that CM ⊂
⋂

ε∈(0,1)

CM,ε. Let

us see that CM ⊃
⋂

ε∈(0,1)

CM,ε. If f ∈
⋂

ε∈(0,1)

CM,ε (where f (z) = ∑
∞
i=0 aiz

i for all

z ∈ D1) then (taking a sequence {εn}n∈N with εn → 1−) we have that, for every
n ∈ N, ∑

∞
i=0 |ai|ε

i
n ≤ M. Finally, by Lemma 2.10, ∑

∞
i=0 |ai| ≤ M and f ∈ CM,

which concludes the proof.

Theorem 2.25. The set A defined in (2.1) is an Fσ set of first category in A(D1).
Hence the set

{

f ∈ A(D1) :
∞

∑
i=0

|ai| = +∞ where f (z) =
∞

∑
i=0

aiz
i ∀z ∈ D1

}

is a dense Gδ set, so residual in A(D1).

Proof. It suffices to notice that A is of first category due to Proposition 2.18 and
to the fact that we can write A =

⋃

N∈N CN, where the CN’s are given in (2.2).
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3 Topological and algebraic genericity

To finish this paper, and inspired by the last theorem and its proof, we can
furnish a rather general criterion of topological largeness inside normed spaces,
see Theorem 3.3 below. Actually, the criterion also contains assertions about
algebraic largeness.

Let us denote by [−∞,+∞] the extended real line, endowed with the order
topology. Recall that, if X is a topological space, a mapping Φ : X → [−∞,+∞]
is called lower semicontinuous (see, e.g., [7] for concepts and properties) whenever,
given any α ∈ R, the set {x ∈ X : Φ(x) > α} is open. If X is a metric space, this
is equivalent to Φ(x0) ≤ lim infx→x0 Φ(x) for all x0 ∈ X.

In the next definition, we are considering on [0,+∞] the natural extension of
the usual order in [0,+∞).

Definition 3.1. Let X be a vector space and Φ : X → [0,+∞] be a lower semicontin-
uous mapping. We say that Φ is an extended norm on X provided that the following
properties are satisfied:

(i) Φ(x) = 0 if and only if x = 0.

(ii) If {Φ(x), Φ(y)} ⊂ [0,+∞) then Φ(x + y) ≤ Φ(x) + Φ(y).

(iii) If Φ(x) < +∞ and α is a scalar then Φ(α x) = |α|Φ(x).

It is easy to see that, under the notation of the last definition, the set

XΦ := {x ∈ X : Φ(x) < +∞}

is a vector subspace of X and that the restriction of Φ to XΦ is a norm on XΦ.

The following concepts, which are taken from the theory of lineability
(see [2, 3, 5, 12, 14] for the necessary background and early results within this
theory) are also needed.

Definition 3.2. Assume that X is a vector space and that A ⊂ X. We say that A
is lineable if it contains, except for zero, an infinite dimensional vector space. If X is,
in addition, a topological vector space, then A is said to be dense-lineable (spaceable,
resp.) in X provided that it contains, except for zero, a dense (a closed infinite dimen-
sional, resp.) vector subspace.

Theorem 3.3. Assume that (X, ‖ · ‖) is a Banach space and that Φ is an extended norm
on X. Let us denote

A∞ := X \ XΦ = {x ∈ X : Φ(x) = +∞}.

Then the following holds:

(a) If Φ 6� ‖ · ‖ on XΦ, then the set A∞ is residual in X.

(b) If XΦ is dense in X, ‖ · ‖ ≺ Φ on XΦ and (XΦ, Φ) is a Banach space, then A∞

is spaceable in X. If, in addition, (X, ‖ · ‖) is separable, then A∞ is dense-lineable
too.
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Proof. (a) We have to prove that XΦ is of first category in X. For this, note
that Xφ =

⋃∞
n=1 Fn, where we have set Fα := {x ∈ X : Φ(x) ≤ α} for every

,α ∈ (0,+∞). Therefore it suffices to show that each set Fα is closed and has
empty interior in X. That Fα is closed is derived from the openness of
X \ Fα = {x ∈ X : Φ(x) > α}, which in turn comes from the assumption of
lower semicontinuity for Φ.

In order to prove that Fα has empty interior in X, assume, by way of contra-
diction, that there are x0 ∈ X and R > 0 such that {x ∈ X : ‖x − x0‖ ≤ R} ⊂ Fα

or, equivalently, Φ(x) ≤ α for every x ∈ X satisfying ‖x − x0‖ ≤ R. Since Φ 6�
‖ · ‖ on XΦ, we can find a sequence {xn}n≥1 ⊂ XΦ such that Φ(xn) > n‖xn‖
for all n ∈ N. Note that xn 6= 0, and so ‖xn‖ > 0 (n = 1, 2, . . . ). Select an
N ∈ N with N > 2 α/R and define x := x0 +

R
‖xN‖

xN . Note, on the one hand,

that ‖x − x0‖ = R, which implies Φ(x) ≤ α. But, on the other hand, since Φ is a
norm on XΦ, by the triangle inequality we obtain

Φ(x) ≥ Φ
( R

‖xN‖
xN

)

− Φ(x0) > R N − α > 2 α − α = α,

which is absurd. This proves the residuality of A∞.

(b) Here we shall make use of the following facts. The first of them is a special
case of Theorem 3.3 in [11], while the second one can be found in [4, Theorem
2.5]:

(1) Let Y be a Banach space and X be a Fréchet space. If T : Y → X is a continuous
linear mapping and T(Y) is not closed in X then the complement X \ T(Y) is
spaceable in X.

(2) Let X be a metrizable separable topological vector space and Y be a vector subspace
of X. If X \ Y is lineable then X \Y is dense-lineable in X.

Let us apply (1) with Y := (XΦ, Φ) and T := I : x ∈ XΦ 7→ x ∈ X, the
inclusion mapping, which is linear, but also continuous because ‖ · ‖ � Φ on XΦ.
Observe that, under this notation, A∞ = X \ T(Y). Assume, via contradiction,
that T(Y) = XΦ is closed in X. Since ‖ · ‖ ≺ Φ, we have in particular that
Φ 6� ‖ · ‖ on XΦ. Hence, by part (a), A∞ is residual in X, so nonempty. But
XΦ = X because XΦ is dense and closed, which entails A∞ = ∅, that is absurd.
Consequently, T(Y) is not closed in X and (1) tells us that A∞ is spaceable.

Finally, if we assume that (X, ‖ · ‖) is separable, the dense-lineability of A∞

follows from the above result (2) (with Y := XΦ) and the fact that spaceability
implies lineability.

Remark 3.4. Theorem 2.25 follows from Theorem 3.3(a) just by taking
X := A(D1), ‖ f‖ := supz∈D1

| f (z)| and Φ( f ) := ∑
∞
n=0 |an|, where f ∈ A(D1)

and f (z) = ∑
∞
n=0 anzn for all z ∈ D1. Since ‖ · ‖ ≺ Φ on the space

A :=
{

f ∈ A(D1) : ∑
∞
n=0 |an| < +∞

}

, we obtain in particular that Φ 6�
‖ · ‖. Then the unique property to be checked is the lower semicontinuity of Φ.
For this, observe that each mapping

Sn : f ∈ A(D1) 7−→
n

∑
k=0

|ak| =
n

∑
k=0

∣

∣

f (k)(0)

k!

∣

∣ ∈ R (n ∈ N)
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is continuous, due to the Weierstrass convergence theorem for derivatives and
the fact that convergence in A(D1) implies uniform convergence on compacta
(hence convergence at 0). In particular, each Sn is lower semicontinuous. But,
evidently, Φ = sup{Sn : n ∈ N}, and the supremum of a family of lower
semicontinuous functions is known to be lower semicontinuous (see [7]). The
spaceability (already proved in [11]) and the dense lineability of

{

f ∈ A(D1) :

∑
∞
n=0 |an| = +∞

}

follow from Theorem 3.3(b) since the set A is dense in the
(separable) space A(D1) and (A, Φ) is a Banach space.
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Facultad de Ciencias Matemáticas, Plaza de Ciencias 3
Universidad Complutense de Madrid, Madrid, 28040 (Spain).
email: hercaban@ucm.es
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