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Abstract

The set of periodic distributions, with usual addition and convolution,
forms a ring, which is isomorphic, via taking a Fourier series expansion, to
the ring S ′(Zd) of sequences of at most polynomial growth with termwise
operations. In this article, we establish several algebraic properties of these
rings.

1 Introduction

Purely algebraic properties for rings naturally considered in Analysis, Algebraic
Geometry or Operator Theory, have proven to be of significant motivational
importance behind theory-building in these areas. For example, the Noetherian
property for polynomial rings over a Noetherian ring is the celebrated Hilbert
Basis Theorem, which is a cornerstone result in Algebraic Geometry. As a
second example, Serre’s 1955 question of whether the ring k[x1, · · · , xn] (k a field)
is a projective-free ring spurred the development of algebraic K-theory. As a third
example, we mention the corona problem: given data a, b in the Hardy algebra
H∞(D) of bounded holomorphic functions in the unit disk D in C, Kakutani’s
1941 question of whether the pointwise corona condition |a(z)| + |b(z)| > δ
(z ∈ D) is sufficient for H∞(D) to be equal to the ideal 〈a, b〉 generated by a, b, led
to huge advances in Complex Analysis, Function-Theoretic Operator Theory, and
Harmonic Analysis through Carleson’s 1962 solution to the problem. Moreover,
specific algebraic properties possessed by rings arising in various subdomains in
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Mathematics can lead to further advances in the theory. For example, Kazhdan’s
Property (T) can be established for the special linear group over the ring O(X) of
holomorphic functions by investigating when the special linear group over O(X)
can be generated by elementary matrices.

The theme of this article is to consider a naturally arising ring in
Harmonic Analysis and Distribution Theory, namely the ring of periodic distri-
butions, and check which key algebraic properties are possessed by this ring,
and which ones aren’t. Via a Fourier series expansion, the ring D′

V(R
d) of peri-

odic distributions (with usual addition and convolution) is isomorphic to the ring
S ′(Zd) of sequences of at most polynomial growth with termwise operations, and
we recall this below. We will use this in all of our proofs.

1.1 The ring D′
V(R

d) of periodic distributions.

The ring S ′(Zd) of Fourier coefficients of elements of D′
V(R

d)

For background on periodic distributions and its Fourier series theory, we refer
the reader to the books [6, Chapter 16] and [20, p.527-529].

Consider the space S ′(Zd) of all complex valued maps on Zd of at most poly-
nomial growth, that is,

S ′(Zd) :=

{
a : Z

d → C

∣∣∣ ∃M > 0 ∃k ∈ N such that

∀n ∈ Z
d, |a(n)| ≤ M(1 + n )k

}
,

where n := |n1| + · · · + |nd| for all n = (n1, · · · , nd) ∈ Zd. Then S ′(Zd)
is a unital commutative ring with pointwise operations, and the multiplicative
unit element given by the constant function n 7→ 1, for all n ∈ Zd. Moreover,
(S ′(Zd),+, ·) is isomorphic as a ring, to the ring (D′

V(R
d),+, ∗), where D′

V(R
d)

is the set of all periodic distributions (see the definition below), with the usual
pointwise addition of distributions, and multiplication taken as convolution of
distributions.

For v ∈ Rd, the translation operator Sv : D′(Rd) → D′(Rd), is defined by

〈Sv(T), ϕ〉 = 〈T, ϕ(·+ v)〉 for all ϕ ∈ D(Rd).

A distribution T ∈ D′(Rd) is called periodic with a period v ∈ Rd \ {0} if

T = Sv(T).

Let V := {v1, · · · , vd} be a linearly independent set of d vectors in Rd. We define
D′

V(R
d) to be the set of all distributions T that satisfy

Svk
(T) = T, k = 1, · · · , d.

From [5, §34], T is a tempered distribution, and from the above it follows by

taking Fourier transforms that (1 − e2πivk·y)T̂ = 0, for k = 1, · · · , d. It can be seen
that

T̂ = ∑
v∈V−1Zd

αv(T)δv,
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for some scalars αv(T) ∈ C, and where V is the matrix with its rows equal to the
transposes of the column vectors v1, · · · , vd:

V :=




v1
⊤

...

vd
⊤


 .

Also, in the above, δv denotes the usual Dirac measure with support in v:

〈δv, ϕ〉 = ϕ(v), ϕ ∈ D(Rd).

Then the Fourier coefficients αv(T) give rise to an element in S ′(Zd), and vice
versa, every element in S ′(Zd) is the set of Fourier coefficients of some periodic
distribution. In this manner, the ring (D′

V(R
d),+, ∗) of periodic distributions on

Rd is isomorphic (as a ring) to (S ′(Zd),+, ·).
The outline of this article is as follows: in the subsequent sections, we will

show that the ring S ′(Zd) (and hence also the isomorphic ring D′
V(R

d)) has the
following algebraic properties:

1. S ′(Zd) is not Noetherian.

2. S ′(Zd) is a Bézout ring.

3. S ′(Zd) is coherent.

4. S ′(Zd) is a Hermite ring.

5. S ′(Zd) is not projective-free.

6. For all m ∈ N, SLm(S ′(Zd)) is generated by elementary matrices, that is,
SLm(S ′(Zd)) = Em(S ′(Zd)).

7. A generalized “corona-type pointwise condition” on the matricial data (A, b)
with entries from S ′(Zd) for the solvability of Ax = b with x also having
entries from S ′(Zd).

In each section, we will first give the background of the algebraic property, by
recalling key definitions/characterizations, and then prove the property, possibly
with additional commentary.

2 Noetherian property

Recall that a commutative ring is called Noetherian if every ascending chain of
ideals is stationary, that is, given any chain of ideals in the ring:

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,

there exists a K ∈ N such that IK = IK+1 = · · · .
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Proposition 2.1. S ′(Zd) is not Noetherian.

Proof. For k ∈ N, set Ik = {a ∈ S ′(Zd) : a(n) = 0 for all n > k}. Then Ik is
clearly an ideal in S ′(Zd). Also, by considering the sequence

ek :=

(
Z

d ∋ n 7→
{

1 if n = (k, 0, · · · , 0),
0 otherwise,

})
∈ S ′(Zd),

for k ∈ N, we see that ek ∈ Ik \ Ik−1. So we have the strict inclusions

I1 ( I2 ( I3 ( · · · ,

showing the existence of an infinite ascending non-stationary chain of ideals.
Hence S ′(Zd) is not Noetherian.

Remark 2.2. We remark that in the same manner, one can also show that

ℓ
∞(Zd) :=

{
a : Z

d → C

∣∣∣ ∃M > 0 such that

∀n ∈ Z
d, |a(n)| ≤ M

}
,

the ring of all bounded sequences with pointwise operations, is not Noetherian
either.

3 Bézout ring

A commutative ring is called Bézout if every finitely generated ideal is principal.

Theorem 3.1. Every finitely generated ideal in S ′(Zd) is principal, that is, S ′(Zd) is
Bézout ring.

Before we give the proof of the above result, we collect some useful observations
first. For a complex sequence a = (Zd ∋ n 7→ a(n)), let

|a|(n) := |a(n)|, n ∈ Z
d.

Then we can write a = |a| · ua, where

ua(n) =





a(n)

|a(n)| if a(n) 6= 0,

1 if a(n) = 0.

Then ua ∈ S ′(Zd). Also, a ∈ S ′(Zd) if and only if |a| ∈ S ′(Zd). For a complex
sequence a = (Zd ∋ n 7→ a(n)), let

(a∗)(n) = a(n)∗, n ∈ Z
d,

where a(n)∗ on the right hand side denotes the complex conjugate of the complex
number a(n). Then a ∈ S ′(Zd) if and only if a∗ ∈ S ′(Zd). Also, uaua∗ = 1 (the
constant sequence, taking value 1 everywhere on Zd) and |a| = a(ua)∗.
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Proof. It is enough to show that an ideal 〈a, b〉 generated by a, b ∈ S ′(Zd) is
principal. We’ll show that 〈a, b〉 = 〈|a|+ |b|〉.

Since (ua)∗, (ub)
∗ ∈ S ′(Zd), we have |a| + |b| = a(ua)∗ + b(ub)

∗ ∈ 〈a, b〉.
Thus 〈|a|+ |b|〉 ⊂ 〈a, b〉.
Define α by

α(n) =





a(n)

|a(n)|+ |b(n)| if |a(n)|+ |b(n)| 6= 0,

1 if |a(n)|+ |b(n)| = 0,

for all n ∈ Zd. Then |α(n)| ≤ 1 for all n, and so α ∈ S ′(Zd). Moreover,
a = α · (|a| + |b|), and so a ∈ 〈|a| + |b|〉. Similarly, b ∈ 〈|a| + |b|〉 too. Hence
〈a, b〉 ⊂ 〈|a|+ |b|〉.

Consequently, 〈a, b〉 = 〈|a|+ |b|〉. This completes the proof.

4 Coherence

A commutative unital ring R is called coherent if every finitely generated ideal I
is finitely presentable, that is, there exists an exact sequence

0 −→ K −→ F −→ I −→ 0,

where F is a finitely generated free R-module and K is a finitely generated
R-module.
We refer the reader to the monograph [8] for background on coherent rings and
for the relevance of the property of coherence in homological algebra. All Noethe-
rian rings are coherent, but not all coherent rings are Noetherian. For example,
the polynomial ring C[x1, x2, x3, · · · ] is not Noetherian (because the sequence of
ideals 〈x1〉 ⊂ 〈x1, x2〉 ⊂ 〈x1, x2, x3〉 ⊂ · · · is ascending and not stationary), but
C[x1, x2, x3, · · · ] is coherent [8, Corollary 2.3.4]. Some equivalent characteriza-
tions of coherent rings are listed below:

1. [3]; [7, Theorem 2.0A, p.404]: Let R be a unital commutative ring. Let
n ∈ N := {1, 2, 3, · · · } and F = ( f1, · · · , fn) ∈ Rn. A relation G on F, written
G ∈ F⊥, is an n-tuple G = (g1, · · · , gn) ∈ Rn such that g1 f1 + · · ·+ gn fn = 0.
The ring R is coherent if and only if for each n ∈ N and each F ∈ Rn, the
R-module F⊥ is finitely generated.

2. [8, Definition, p.41, p.44]: Let R be a commutative unital ring. An R-module
M is called a coherent R-module if it is finitely generated and every finitely
generated R-submodule N of M is finitely presented, that is, there exists an
exact sequence

F1 −→ F0 −→ N −→ 0

with F0, F1 both finitely generated, free R-modules. Recall that an R-module
is a free R-module if it is isomorphic to a direct sum of copies of R.
A commutative unital ring R is coherent if and only if R is a coherent
R-module.
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Although it is known that Bézout domains are automatically coherent, we can’t
use this fact and Theorem 3.1, since S ′(Zd) is not a domain: there exist nontrivial
zero divisors in S ′(Zd). For a ∈ S ′(Zd), let Z(a) denote the zero set of a, that is,

Z(a) := {n ∈ Z
d : a(n) = 0}.

Let 0 ∈ S ′(Zd) denote the constant map Zd ∋ n 7→ 0.

Theorem 4.1. S ′(Zd) is a coherent ring.

Proof. Let I be a finitely generated ideal in S ′(Zd). Then I is principal by Theo-
rem 3.1, and so there exists an a ∈ S ′(Zd) such that I = 〈a〉. Let K = 〈1Z(a)〉,
where 1Z(a) is the indicator function of the zero set of a, that is, for all n ∈ Zd,

(
1Z(a)

)
(n) :=

{
0 if a(n) 6= 0,
1 if a(n) = 0.

Then 1Z(a) ∈ S ′(Zd). Moreover, let ϕ : S ′(Zd) → I be the ring homomorphism

given by ϕ(b) = ab, for b ∈ S ′(Zd). Finally, let F := S ′(Zd) = 〈1〉. Then we will
check that the following sequence is exact:

0 −→ K −→ F
ϕ−→ I −→ 0.

= = =

〈1Z(a)〉 S ′(Zd) 〈a〉

The exactness at K and I is clear. So we only need to show that

(ker ϕ :=) {b ∈ S ′(Zd) : ab = 0} = 〈1Z(a)〉.

Since 1Z(a) ∈ ker ϕ, it is clear that 〈1Z(a)〉 ⊂ ker ϕ. It remains to show the reverse

inclusion. Suppose that b ∈ ker ϕ. Then a(n)b(n) = 0 for all n ∈ Z
d. Now if

a(n) 6= 0, then b(n) = 0. Hence

b = 1Z(a) · b ∈ 〈1Z(a)〉.

So ker ϕ ⊂ 〈1Z(a)〉 as well.

Remark on the coherence of ℓ∞(Zd): The above proof of Theorem 4.1 carries
over, mutatis mutandis, to the ring ℓ∞(Zd). Thus we obtain the result:

Theorem 4.2. ℓ∞(Zd) is a coherent ring.

This also follows from a classical result of Neville [14], which gives a topological
characterization of coherence for the ring C(X; R) of all real-valued continuous
functions on X.

Proposition 4.3 (Neville).
C(X; R) is coherent if and only if X is basically disconnected.



A potpourri of algebraic properties of the ring of periodic distributions 761

A topological space X is called basically disconnected if for each f ∈ C(X; R), the
cozero set of f , coz( f ) := {x ∈ X : f (x) 6= 0}, has an open closure.

We will need the complex-valued version of the above result, which can be
obtained from the following observation.

Lemma 4.4. C(X; C) is coherent if and only if C(X; R) is coherent.

Here C(X; C) denotes the ring of all complex-valued continuous functions on X.
We will use [8, Corollary 2.2.2 and 2.2.3, p.43], quoted below.

Proposition 4.5.

If (1) R is a commutative unital ring,
(2) M, N coherent R-modules, and
(3) ϕ : M → N a homomorphism,

then ker ϕ is a coherent R-module.

Proposition 4.6. Every finite direct sum of coherent modules is a coherent module.

Proof. (of Lemma 4.4):
(“If” part). Suppose that C(X; R) is a coherent ring. Let n ∈ N.
Let f1=a1+ib1, · · · , fn=an+ibn∈C(X; C), where each aj, bj∈C(X; R).

Set R := C(X; R), M := C(X; R)(2n)×1, and N := C(X; R)2×1.
Suppose that ϕ : M → N is the module homomorphism given by multiplication
by the matrix

[Φ] :=

[
a1 −b1 · · · an −bn

b1 a1 · · · bn an

]
.

By Proposition 4.6, M, N are coherent C(X; R)-modules, since C(X; R) is a coher-
ent ring. Next, by proposition 4.5, ker ϕ is a coherent C(X; R)-module, and in
particular, it is finitely generated, say by




c
(k)
1

d
(k)
1
...

c
(k)
n

d
(k)
n




, k = 1, · · · , m.

Let g1 = α1 + iβ1, · · · , gn = αn + iβn (where each αj, β j ∈ C(X; R)) be such that

f1g1 + · · ·+ fngn = 0.

Then

[Φ]




α1

β1
...

αn

βn



= 0,
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and so there exist γ1, · · · , γm such that




α1

β1
...

αn

βn



= γ1




c
(1)
1

d
(1)
1
...

c
(1)
n

d
(1)
n




+ · · ·+ γm




c
(m)
1

d
(m)
1
...

c
(m)
n

d
(m)
n




.

But then




g1
...

gn


 = γ(1)




c
(1)
1 + id

(1)
1

...

c
(1)
n + id

(1)
n


+ · · ·+ γ(m)




c
(m)
1 + id

(m)
1

...

c
(m)
n + id

(m)
n


 .

Hence we see that (f1, · · · , fn)⊥ is contained in the C(X; C)-module generated by




c
(1)
1 + id

(1)
1

...

c
(1)
n + id

(1)
n


 , · · · ,




c
(m)
1 + id

(m)
1

...

c
(m)
n + id

(m)
n


 .

It is also clear that each of the above columns belongs to (f1, · · · , fn)⊥. Hence
(f1, · · · , fn)⊥ also contains the C(X; C)-module generated by the above columns.
Consequently, C(X; C) is a coherent ring.

(“Only if” part). Now suppose that C(X; C) is a coherent ring. Let n ∈ N and

A := (a1, · · · , an) ∈ C(X; R)1×n.

Suppose that 


c
(k)
1 + id

(k)
1

...

c
(k)
n + id

(k)
n


 , k = 1, · · · , m,

generate the C(X; C)-module A⊥, where each c
(k)
j , d

(k)
j ∈ C(X; R). Consider a

B = (b1, · · · , bn) ∈ C(X; R)1×n such that

a1b1 + · · ·+ anbn = 0.

Then there exist p(k), q(k) ∈ C(X; R), k = 1, · · · , m such that




b1
...

bn


 = (p(1) + iq(1))




c
(1)
1 + id

(1)
1

...

c
(1)
n + id

(1)
n


+ · · ·+ (p(m) + iq(m))




c
(m)
1 + id

(m)
1

...

c
(m)
n + id

(m)
n


.
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Equating real parts, we obtain in particular that




b1
...

bn


= p(1)




c
(1)
1
...

c
(1)
n


− q(1)




d
(1)
1
...

d
(1)
n


+ · · ·+ p(m)




c
(m)
1
...

c
(m)
n


− q(m)




d
(m)
1
...

d
(m)
n


.

Thus the C(X; R)-module A⊥ is contained in the C(X; R)-module generated by
the 2m vectors 



c
(1)
1
...

c
(1)
n


 ,




d
(1)
1
...

d
(1)
n


 , · · · ,




c
(m)
1
...

c
(m)
n


 ,




d
(m)
1
...

d
(m)
n


.

On the other hand each of these vectors also lie in the C(X; R)-module A⊥, which
can be seen immediately by equating the real and imaginary parts in

a1(c
(k)
1 + id

(k)
1 ) + · · ·+ an(c

(k)
n + id

(k)
n ) = 0, k = 1, · · · , m.

Hence the C(X; R)-module A⊥ is finitely generated. Consequently, C(X; R) is
coherent too.

In light of Neville’s result, Proposition 4.3, the above gives:

Corollary 4.7. C(X; C) is coherent if and only if X is basically disconnected.

If X is a topological space, then let Cb(X; C) denote the algebra of bounded con-
tinuous complex valued functions on X, endowed with pointwise operations and
the supremum norm:

‖f‖∞ := sup
x∈X

|f(x)|, f ∈ Cb(X; C).

Then Cb(X; C) is a C∗-algebra, and its maximal ideal space is βX, the Stone-Čech
compactification of X.

Let Zd be endowed with the usual Euclidean topology inherited from Rd.
Then the C∗-algebra ℓ∞(Zd) = Cb(Z

d; C) is isomorphic to C(βZd ; C). But the
Stone-Čech compactification βZd of the discrete space Zd is extremally discon-
nected (that is, the closure of every open set in it is open), see for example [15,
§6.3, p.450], and in particular, also basically disconnected. Using Corollary 4.7,
Theorem 4.2 follows: ℓ∞(Zd) = Cb(Z

d; C) = C(βZd ; C) is a coherent ring. This
completes the alternative proof of the coherence of ℓ∞(Zd).

Remark on the coherence of c(Zd): Let c(Zd) be the subring of ℓ∞(Zd) consisting
of all convergent complex sequences, that is,

c(Zd) =

{
a ∈ ℓ

∞(Zd)
∣∣∣ ∃L ∈ C such that ∀ǫ > 0 ∃N ∈ N such that

∀n ∈ Zd such that n > N, |a(n)− L| < ǫ

}
.

The C∗-algebra c(Zd) is isomorphic to C(αZd; C), where αZd denotes the Alexan-
droff one-point compactification of Zd (where Zd has the usual Euclidean topol-
ogy on Z

d inherited from R
d). So in light of Corollary 4.7, the question of coher-

ence of c(Zd) boils down to investigating whether or not αZd is basically discon-
nected.
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Theorem 4.8.

(1) αZd is not basically disconnected.

(2) c(Zd) is not a coherent ring.

Proof.

(1) Firstly, the closed sets F of αZd are of the form

• F is a finite set of integer tuples, or

• F = S ∪ {∞}, where S is an arbitrary subset of the integer tuples.

From here it follows that the function f : αZd → C given by

f(n) =





0 if n is even or n = ∞,

1

n
if n is odd,

is continuous. Indeed, if K is any closed subset of C not containing 0, then f−1(K)
cannot contain ∞ and it can only contain finitely many integer tuples, making it
closed in αZ

d. On the other hand, if K is a closed subset of C containing 0, then
f−1(K) contains ∞, making it closed. Hence the inverse images of closed sets
under K stay closed. So f ∈ C(αZd; C). However, the cozero set of f is

coz(f) = {n ∈ αZ
d : f(n) 6= 0} = {n ∈ Z

d : n is odd},

whose closure is {n ∈ Zd : n is odd} ∪ {∞}, which is clearly not open in αZd.
Hence αZ

d is not basically connected.

(2) It follows from Corollary 4.7 that c(Zd) is not coherent.

We remark that c(Zd) is not Noetherian since it is not even coherent.

5 S ′(Zd) is Hermite

A notion related to coherence is that of a Hermite ring; see for example [19,
p.1026]. The study of Hermite rings arose naturally in the development of al-
gebraic K-theory associated with Serre’s conjecture [11].

In the language of modules, a ring R is Hermite if every finitely generated
stably free R-module is free.

It is known that a commutative unital Bézout ring having Bass stable rank 1
is Hermite [22]. It was shown in [16] that the Bass stable rank of S ′(Zd) is 1. As
S ′(Zd) is a Bézout ring (Proposition 3.1), we have the following:

Theorem 5.1. S ′(Zd) is a Hermite ring.
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6 S ′(Zd) is not a projective free ring

A related stricter notion than that of being Hermite, is the notion of a projective
free ring.

A commutative unital ring R is projective free if every finitely generated pro-
jective R-module is free.

Clearly every projective free ring is Hermite, but the converse may not hold.
In fact S ′(Zd) is such an example: we will show below that S ′(Zd) is not projec-
tive free. We will do this using the following characterization of projective free
rings; see [2].

Proposition 6.1. Let R be a commutative unital ring. Then R is projective free if and
only if for every n ∈ N and every P ∈ Rn×n such that P2 = P, there exists an integer
r ≥ 0, an S ∈ Rn×n, and an S−1 ∈ Rn×n such that SS−1 = In and

P = S−1

[
Ir 0
0 0

]
S.

(Here Ir denotes the r × r identity matrix in Rr×r.)

Theorem 6.2. S ′(Zd) is not a projective free ring.

Proof. Let R = S ′(Zd) be projective free. Let P = p ∈ R1×1 be given by

p(n) =

{
1 if n is even,
0 if n is odd.

Then P2 = P. Since R is projective free, it follows that there are an integer r ≥ 0,
an S ∈ R1×1, and an S−1 ∈ R1×1 such that

P = S−1DS,

where, since r can only be 0 or 1, we have respectively that D = 0 or 1. But then
P = 0 or P = 1, and either case is not possible. This contradiction shows that
S ′(Zd) is not projective free.

7 SLm(R) = Em(R) for R = S ′(Zd)

Let R be a commutative unital ring and m ∈ N. Then we introduce the following
terminology and notation:

(1) Im denotes the m × m identity matrix in Rm×m, that is the square matrix
with all diagonal entries equal to 1 ∈ R and off-diagonal entries equal to
0 ∈ R.

(2) SLm(R) denotes the group of all m × m matrices M whose entries are
elements of R and determinant det M = 1.
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(3) An elementary matrix Eij(α) over R has the form Eij = In + αeij, where

1. i 6= j,

2. α ∈ R, and

3. eij is the m × m matrix whose entry in the ith row and jth column is 1, and
all the other entries of eij are zeros.

(4) Em(R) is the subgroup of SLm(R) generated by the elementary matrices.

A classical question in commutative algebra is the following:

Question 7.1. For all m ∈ N, is SLm(R) = Em(R)?

The answer to this question depends on the ring R. For example, if the ring
R = C, then the answer is “Yes”, and this is an exercise in linear algebra; see
for example [1, Exercise 18.(c), page 71]. On the other hand, if R is the polyno-
mial ring C[z1, · · · , zd] in the indeterminates z1, · · · , zd with complex coefficients,
then if d = 1, then the answer is “Yes” (this follows from the Euclidean Division
Algorithm in C[z]), but if d = 2, then the answer is “No”, and [4] contains the
following example:

[
1 + z1z2 z2

1
−z2

2 1 − z1z2

]
∈ SL2(C[z1, z2]) \ E2(C[z1, z2]).

For d ≥ 3, the answer is “Yes”, and this is the K1-analogue of Serre’s Conjec-
ture, which is the Suslin Stability Theorem [18]. The case of R being a ring of
real/complex valued continuous functions was considered in [21]. For the ring
R = O(X) of holomorphic functions on Stein spaces in Cd, Question 7.1 was
posed as an explicit open problem by Gromov in [9], and was solved in [10]. It is
known that SLm(ℓ∞(N)) = Em(ℓ∞(N)); see [12].

We adapt the proof from [12] for answering Question 7.1 for R = ℓ∞(N), to
answer this question for R = S ′(Zd). We’ll prove below Theorem 7.3, saying that
SLm(S ′(Zd)) = Em(S ′(Zd)). For a matrix M = [mij] ∈ Cm×m, we set

‖M‖∞ := max
1≤i,j≤m

|mij|.

Then ‖M1M2‖∞ ≤ m‖M1‖∞‖M2‖∞ for M1, M2 ∈ Cm×m. Let Sm denote the
symmetry group for a set with m elements. For p ∈ Sm, let sign(p) denote the
sign of p.

Lemma 7.2. There exist maps

m 7→ ν(m) : N → N,

m 7→ C(m) : N → (0, ∞),

m 7→ k(m) : N → N,

such that for every m ∈ N and every A ∈ SLm(C), there exist elementary matrices
E1(A), · · · , Eν(m)(A) such that

A = E1(A) · · · Eν(m)(A),

and ‖En(A)‖∞ ≤ C(m)(1 + ‖A‖∞)k(m) for all n = 1, · · · , ν(m).
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Proof. First we note that if A = [aij] is a square matrix with determinant ±1, then
‖A‖∞ cannot be too small. Indeed, as

±1 = det A = ∑
p∈Sm

(sign p) · a1p(1) · · · amp(m),

we have ‖A‖∞ ≥ 1
m√m!

.

Now let A ∈ SLm(C). Consider first the case that |a11| = ‖A‖∞. So with
a = a11, we have

A =

[
a ∗
∗ ∗

]
.

Now we premultiply the above by

Ea =




a−1 0
0 a

0

0 I


 .

As [
a−1 0
0 a

]
=

[
1 0
a 1

] [
1 1 − a−1

0 1

] [
1 0

−1 1

] [
1 1 − a
0 1

]
,

we see that Ea is a product of four elementary matrices. We have now

Ea A =

[
1 ∗
∗ ∗

]
.

Using the entry 1 as a pivot, we can use it to make all other entries in the first
row and first column equal to 0. In other words, there exist elementary matrices

E
(r)
1 , · · · , E

(r)
m−1, E

(c)
1 , · · · , E

(c)
m−1 such that

E
(r)
m−1 · · · E

(r)
1 Ea AE

(c)
1 · · · E

(c)
m−1 =

[
1 0
0 Am−1

]
. (1)

So we have used m − 1 + 4 + m − 1 = 2(m + 1) elementary matrices to obtain
this reduction for A. Moreover, we have control on the size of the elementary
matrices we have used in terms of the size of A: indeed,

‖each factor of Ea‖∞ ≤ 1 + max{|a−1|, |a|}
≤ 1 + max{‖A‖∞,

m
√

m!},

‖E
(r)
i ‖∞, ‖E

(c)
i ‖∞ ≤ ‖A‖∞m4(1 + max{‖A‖∞,

m
√

m!})4,

for all i = 1, · · · , m − 1. All this we’ve done assuming |a11| = ‖A‖∞. If this was
not the case, then by working in the same manner as above with the entry (i∗, j∗)
such that |ai∗ ,j∗ | = ‖A‖∞, we obtain

E
(r)
m−1 · · · E

(r)
1 Ea AE

(c)
1 · · · E

(c)
m−1 =




P

0
...
0

Q

0 · · · 0 1 0 · · · 0

R

0
...
0

S




=: A′,
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where

Am−1 =

[
P Q
R S

]
.

Clearly det Am−1 = ±1, and so we can continue this process by using the largest
entry of Am−1 and using that as a pivot in the matrix A′, till we obtain that

E f AEb = P,

where P is a permutation matrix, and E f is a product of

(m − 1 + 4) + (m − 2 + 4) + · · ·+ (1 + 4)

elementary matrices, and Eb is a product of (m − 1) + (m − 2) + · · ·+ 1 elemen-
tary matrices. Also det P = (det E f )(det A)(det Eb) = 1 · 1 · 1 = 1. But since
each of the m!/2 even permutation matrices, which belong to SLm(C) can be
expressed as a finite product of elementary matrices with entries that are bounded
by constants that depend only on m, we see that our claim is true.

Theorem 7.3. For all m ∈ N, SLm(S ′(Zd)) = Em(S ′(Zd)).

Proof. Suppose A ∈ SLm(S ′(Zd)). For every n ∈ Z
d,

A(n) = E[1](n) · · · E[ν(m)](n), (2)

where E[1](n), · · · , E[ν(m)](n) are elementary matrices over C, with

‖E[j](n)‖∞ ≤ C(m)(1 + ‖A(n)‖∞)k(m). (3)

An elementary matrix Im + αeij is said to be of “type” (i, j). We know that there

are m2 −m different “types” of elementary matrices. We’d like to see A expressed

as a product E[1] · · ·E[N] of elements E[1], · · · , E[N] from Em(S ′(Zd)). In light of

(2), it seems tempting to define E[1](n) = E[1](n) etc, but we note that this is not

guaranteed to give an element E[1] in Em(S ′(Zd)) because E[1](n1) = E[1](n1)

may not be of the same type as E[1](n2) = E[1](n2) for distinct n1, n2. To remedy
this, the idea now is as follows. We think of the labels of the types of elementary
matrices, say a1, · · · , am2−m, as an alphabet, and consider the long word

(a1 · · · am2−m)(a1 · · · am2−m) · · · (a1 · · · am2−m)︸ ︷︷ ︸
ν(m) groups

.

And we create a longer, partly redundant, factorization of A(n) than the one
given in (2) using this long word as explained below. Then the same sequence of
row operations on each A(n) will produce Im. So we’ll be able to factorize A into
elementary matrices over S ′(Zd), “uniformly” instead of “termwise”. We now
give the technical details below.

We factor

A(n) =
(

E
[1]
1 (n) · · · E

[1]
m2−m

(n)
)
· · ·

(
E
[ν(m)]
1 (n) · · · E

[ν(m)]
m2−m

(n)
)

︸ ︷︷ ︸
ν(m) groups

,
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where in each of the ν(m) groupings, all the matrices are identity, except possibly

for one: so if we look at the ith grouping, if E[i](n) is of type αk, then

E
[i]
k (n) = E[i](n),

E
[i]
ℓ
(n) = Im for all ℓ 6= k.

(If it happens that E[i](n) is itself identity, then we put all of the E
[i]
ℓ
(n) = Im for

all ℓ = 1, · · · , m2 − m.) Now define E
[i]
j ∈ Em(S ′(Zd)) by

E
[i]
j (n) = E

[i]
j (n), i = 1, · · · , ν(m), j = 1, · · · , m2 − m, n ∈ Z

d.

(The fact that we have entries in S ′(Zd) follows from the estimate given in (3).)
Then

A =
(

E
[1]
1 · · ·E

[1]
m2−m

)
· · ·

(
E
[ν(m)]
1 · · ·E

[ν(m)]
m2−m

)

︸ ︷︷ ︸
ν(m) groups

.

This completes the proof.

Remark on SLm(R) = Em(R) for all m ∈ N when R = c(Zd):

Using a result given below in Lemma 7.4, which follows from [21, Lemma 9], we
will show Theorem 7.5.

Lemma 7.4 ([21]). Let R be a commutative topological unital ring such that the set of
invertible elements of R is open in R. Let m ∈ N. If C ∈ SLm(R) is sufficiently close to
Im, then C belongs to Em(R).

Theorem 7.5. For all m ∈ N, SLm(c(Zd)) = Em(c(Zd)).

Proof. Let m ∈ N and A ∈ SLm(c(Zd)). Suppose that Lij is the limit of the matrix

entry Aij ∈ c(Zd), and L be the complex m × m matrix with the entry Lij in ith
row and jth column.

Since det : Cm×m → C is continuous, we have

det L = det
(

lim A(n)
)
= lim det A(n) = lim 1 = 1.

Let ǫ > 0. Then there exists an N ∈ N such that for all n ∈ Zd such that n > N,
we have

‖A(n)− L‖∞ < ǫ.

Let B ∈ SLm(c(Zd)) be defined by

B(n) =





A(n) if n ≤ N,

L if n > N.
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Since SLm(C) = Em(C), it is clear that L, as well as the finite number of matrices
A(n) with n ≤ N, can all be written as a product of elementary matrices. Hence
it follows that B ∈ Em(c(Zd)). But

B = A + B − A = A(I + A−1(B − A)),

where I(n) := Im and A−1(n) = (A(n))−1 for all n ∈ Zd. To complete the proof,
it suffices to show that C := I + A−1(B − A) ∈ Em(c(Zd)). First note that as
A, B ∈ SLm(c(Zd)), we have 1 = det A(n) and 1 = det B(n) for all n.
As AC = B, it follows that also det C(n) = 1, and so C ∈ SLm(c(Zd)). To
show C ∈ Em(c(Z

d)), we will use Lemma 7.4 above, with R = c(Zd). As
R = c(Zd) = C(Zd; C) is a Banach algebra, the set of invertible elements in R
is an open subset of R. We have

C − I = A−1(A − B),

and since B could have been made as close to A as we liked (‖B − A‖∞ < ǫ, and
ǫ > 0 was arbitrary), it follows that C can be made as close as we like to I. Hence
C ∈ Em(c(Zd)) by Lemma 7.4.

8 Solvability of Ax = b

We will show the following:

Theorem 8.1. Let A ∈ (S ′(Zd))m×n, b ∈ (S ′(Zd))m×1.
Then the following two statements are equivalent:

1. There exists an x ∈ (S ′(Zd))n×1 such that Ax = b.

2. There exists a δ > 0 and k > 0 such that

∀n ∈ Z
d, ∀y ∈ C

m, ‖(A(n))∗y‖2 ≥ δ(1 + n )−k|〈y, b(n)〉2|.

Here 〈·, ·〉2 denotes the usual Euclidean inner product on Ck, and ‖ · ‖2 is the
corresponding induced norm.

Lemma 8.2. Let

(1) A ∈ Cm×n and b ∈ Cm,

(2) there exist a δ > 0 such that ∀y ∈ Cm, ‖A∗y‖2 ≥ δ|〈y, b〉2|.

Then there exists an x ∈ Cn such that Ax = b with ‖x‖2 ≤ 1/δ.

Proof. If y ∈ ker A∗, then (2) yields 〈y, b〉2 = 0. Thus b ∈ (ker A∗)⊥ = ran A.
If y ∈ ker AA∗, then ‖A∗y‖2

2 = 〈A∗y, A∗y〉 = 〈AA∗y, y〉 = 〈0, y〉 = 0. Thus

A∗y = 0, and so y ∈ ker A∗ = (ran A)⊥. Since we had shown above that
b ∈ ran A, we have 〈b, y〉 = 0. But the choice of y ∈ ker AA∗ was arbitrary,
and so b ∈ (ker AA∗)⊥ = ran(AA∗)∗ = ran(AA∗). Hence there exists a y0 ∈ Cm

such that AA∗y0 = b. Taking x := A∗y0 ∈ Cn, we have Ax = b.
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If b = 0, then we can take x = 0, and the estimate on ‖x‖2 is obvious. So we
assume that b 6= 0 and so A∗y0 6= 0. We have

‖A∗y0‖2 = 〈A∗y0, A∗y0〉 = 〈y0, AA∗y0〉 = 〈y0, b〉 = |〈y0, b〉| ≤ 1

δ
‖A∗y0‖2.

Since A∗y0 6= 0, we obtain ‖x‖2 = ‖A∗y0‖2 ≤ 1/δ.

Proof. (Of Theorem 8.1:)
(1) ⇒ (2): As x ∈ (S ′(Zd))n×1), there exist M, k > 0 such that for all n ∈ Zd,
‖x(n)‖2 ≤ M(1 + n )k. Thus for all y ∈ Cm and all n ∈ Zd,

|〈y, b(n)〉2| = |〈y, A(n)x(n)〉2 | = |〈(A(n))∗y, x(n)〉2|
≤ ‖(A(n))∗y‖2‖x(n)‖2 (Cauchy-Schwarz)

≤ ‖(A(n))∗y‖2M(1 + n )k.

Setting δ := 1/M > 0 and rearranging gives (2).

(2) ⇒ (1): Fix n ∈ Zd. Then (2) gives

∀y ∈ C
m, ‖(A(n))∗y‖2 ≥ δ(1 + n )−k|〈y, b(n)〉2|.

Lemma 8.2 immediately gives an x ∈ Cn such that A(n)x = b(n), with

‖x‖2 ≤ 1

δ(1 + n )−k
. (4)

Now set x(n) := x. By changing n at the outset, we obtain in this manner a map
x : Zd → Cn. Setting M = 1/δ > 0, we have that x ∈ (S ′(Zd))n×1 since we
obtain from (4) that

∀n ∈ Z
d, ‖x(n)‖2 ≤ M(1 + n )k.

Moreover, Ax = b. This completes the proof.

For ℓ∞(Zd), one has the following analogous result, and the same proof goes
through, mutatis mutandis:

Theorem 8.3. Let A ∈ (ℓ∞(Zd))m×n, b ∈ (ℓ∞(Zd))m×1.
Then the following two statements are equivalent:

1. There exists an x ∈ (ℓ∞(Zd))n×1 such that Ax = b.

2. There exists a δ > 0 and k > 0 such that

∀n ∈ Z
d, ∀y ∈ C

m, ‖(A(n))∗y‖2 ≥ δ|〈y, b(n)〉2|.

We have
ℓ

∞(Zd) = Cb(Z
d; C) = C(βZ

d ; C)

is a Banach algebra. Moreover, the natural point evaluation complex homomor-
phisms

ℓ
∞(Zd) ∋ a 7→ a(n) ∈ C,

constitute a dense set in its maximal ideal space βZd. Based on this, one may
naturally pose the following question:
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Question 8.4.
Let R be a commutative, unital, complex Banach algebra.
Suppose that D is a dense set in the maximal ideal space of R with the usual
Gelfand topology, and let ·̂ denote the Gelfand transform.
Let A ∈ Rm×n, b ∈ Rm×1.
Are the following two statements are equivalent?

1. There exists an x ∈ Rn×1 such that Ax = b.

2. There exists a δ > 0 such that

∀ϕ ∈ D, ∀y ∈ C
m, ‖(Â(ϕ))∗y‖2 ≥ δ|〈y, b̂(ϕ)〉2|.

(Here Â, b̂ denote the matrices comprising the entry-wise Gelfand transforms of
A, b respectively.)

It can be seen easily that (1) ⇒ (2) is true. However, we now show that (2) ⇒ (1)
may not hold, by considering the case of c(Zd) = C(αZd; C).

Example 8.5. Let d = 1, so that Zd = Z, and

A(n) =

[
1 1

a1(n) a2(n)

]
∈ R

2×2, b(n) =

[
1
0

]
∈ R

2×1, n ∈ Z,

where the (real) sequences a1, a2 ∈ c(Z) will be suitably constructed later. Taking
the dense set D = Z in the maximal ideal space αZ of c(Z), the condition (2)
above becomes:

∀n ∈ Z, ∀y =

[
η
ζ

]
∈ C

2×1, |η + ζa1(n)|2 + |η + ζa2(n)|2 ≥ δ2|η|2.

If η = 0, then this condition is trivially satisfied for all δ > 0.
If η 6= 0, but ζ = 0, then the condition reads 2|η|2 ≥ δ2|η|2, which is satisfied for
example with δ := 1.
We continue in the rest of this example with δ := 1.
If η 6= 0 and ζ 6= 0, then dividing throughout by |η|2, and by setting ζ/η = reiθ ,
where r > 0 and θ ∈ R, we obtain

∀n ∈ Z, ∀r > 0, ∀θ ∈ R, |1 + reiθa1(n)|2 + |1 + reiθa2(n)|2 ≥ δ2 = 1,

that is,

∀n ∈ Z, ∀r > 0, ∀θ ∈ R,

(a1(n)
2 + a2(n)

2)r2 + 2(a1(n) + a2(n))(cos θ)r + 1 ≥ 0.

This will be satisfied for all r, θ, n if, viewed as a (quadratic) polynomial in r (with
n, θ fixed arbitrarily), it has no real roots or has coincident real roots, that is, if

∆ := 4
(
(a1(n) + a2(n))

2(cos θ)2 − (a1(n)
2 + a2(n)

2)
)
≤ 0.
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First of all, to ensure that we have a quadratic polynomial, we demand that

∀n ∈ Z, a1(n)
2 + a2(n)

2 6= 0. (5)

Then

∆/4

= (a1(n) + a2(n))
2(cos θ)2 − (a1(n)

2 + a2(n)
2)

= (a1(n) + a2(n))
2 − (a1(n)

2 + a2(n)
2) +

(
(cos θ)2 − 1

)
(a1(n) + a2(n))

2

= 2a1(n)a2(n) +
(
(cos θ)2 − 1︸ ︷︷ ︸

≤0

)
(a1(n) + a2(n))

2 ≤ 2a1(n)a2(n).

So we can ensure that ∆ ≤ 0 by demanding that

∀n ∈ Z, a1(n) · a2(n) ≤ 0. (6)

With a1, a2 satisfying (5) and (6), we have that condition (2) holds with δ = 1.
We will now stipulate additional conditions on a1, a2 so that Ax = b does not

possess a solution x ∈ (c(Z))2×1 . To this end, we demand that det A(n) 6= 0 for
all n, that is,

∀n ∈ Z, a2(n)− a1(n) 6= 0. (7)

Then the unique solution x(n) to A(n)x(n) = b(n) is given by

x(n) =

[
1 1

a1(n) a2(n)

]−1 [
1
0

]
=




a2(n)

a2(n)− a1(n)
a1(n)

a1(n)− a2(n)


 .

We want to ensure that x := (n 7→ x(n)) does not belong to (c(Z))2×1 . This will
be guaranteed if one of its entries is not a convergent sequence. So we demand,
say, that the sequence

(
a1(n)

a1(n)− a2(n)

)

n∈N

does not converge. (8)

It remains to construct sequences a1, a2 in c(Z) possessing the properties (5), (6),
(7), and (8). We may take, for example,

a1(n) =
1

1 + n2
, n ∈ Z, and

a2(n) = −nmod2

1 + n2
=





0 if (Z ∋)n is even,

− 1

1 + n2
if (Z ∋)n is odd.

Then a1, a2 ∈ c(Z) because

lim
|n|→∞

a1(n) = 0 = lim
|n|→∞

a2(n).
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Condition (5) is satisfied since ∀n ∈ Z, a1(n)
2 + a2(n)

2 ≥ a1(n)
2 > 0.

(6) is fulfilled as

∀n ∈ Z, a1(n) · a2(n) = − nmod2

(1 + n2)2
≤ 0.

Condition (7) holds because ∀n ∈ Z, a1(n)− a2(n) =
1 + (nmod2)

1 + n2
> 0.

Finally, we check that (8) is satisfied too. We have

a1(n)

a1(n)− a2(n)
=

1

1 − a2(n)/a1(n)
=

1

1 + (nmod2)
.

But now we have

lim
n→∞

a1(2n)

a1(2n)− a2(2n)
=

1

1 + 0
= 1

6=1

2
=

1

1 + 1
= lim

n→∞

a1(2n + 1)

a1(2n + 1)− a2(2n + 1)
,

contradicting the convergence of

(
a1(n)

a1(n)− a2(n)

)

n∈N

.
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Matematichniı̆ Zhurnal, 55:550-554, no. 4, 2003. Translation in Ukrainian Math.
J., 55:665-670, no. 4, 2003.

Department of Mathematics
London School of Economics
Houghton Street
London WC2A 2AE
United Kingdom
email: sasane@lse.ac.uk


