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Abstract

The notion of two-numbers of connected Riemannian manifolds was in-
troduced about 35 years ago in [Un invariant geometrique riemannien, C. R.
Acad. Sci. Paris Math. 295 (1982), 389–391] by B.-Y. Chen and T. Nagano.
Later, two-numbers have been studied by a number of mathematicians and
it was then proved that two-numbers related closely with several important
areas in mathematics. The main purpose of this article is to survey on two-
numbers and their applications. At the end of this survey, we present several
open problems and conjectures on two-numbers.

1 Two-numbers and maximal antipodal sets

The notion of the two-numbers of connected Riemannian manifolds was intro-
duced about 35 years ago by B.-Y. Chen and T. Nagano in [22]. The primeval
concept of two-numbers is the notion of antipodal points on a circle.

For a circle S1 in the Euclidean plane R
2, the antipodal point q of a point p ∈ S1

is the point in S1 which is diametrically opposite to it.
A geodesic on a Riemannian manifold M is a smooth curve which yields

locally the shortest distance between any two nearby points. Because every closed
geodesic in a Riemannian manifold M is isometric to a circle S1, antipodal points
can be defined for closed geodesics in M. More precisely, a point q in a closed
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geodesic is called an antipodal point of another point p on the same closed geodesic
if the distance d(p, q) between p and q on the two arcs connecting p and q are
equal.

In this article, a closed geodesic in a Riemannian manifold is also called a circle.
A subset S of a Riemannian manifold M is called an antipodal set if any two points
in S are antipodal on some circle of M connecting them. An antipodal set A2M in
a connected Riemannian manifold M is called a maximal antipodal set if it doesn’t
lie in any antipodal set as a proper subset. The supremum of the cardinality of all
maximal antipodal set of M is called the two-number of M, simply denote by #2M.
When a Riemannian manifold M contains no closed geodesics, e.g., a Euclidean
space, we put #2M = 0.

Obviously, we have #2Sn = 2 for any n-sphere Sn. On the other hand, we also
have

#2M ≥ 2 (1.1)

for every compact connected Riemannian manifold M, because compact con-
nected Riemannian manifolds contain at least one close geodesic (cf. [54]).

Remark 1.1. A maximal antipodal set A2M of a Riemannian manifold M is also
later known as a 2-set or a great set for short in some literatures.

2 Antipodal points in algebraic topology

Besides in geometry, the notion of antipodal points plays some significant roles
in many areas of mathematics, physics, and applied sciences.

The following result from algebraic topology is well-known.

The Borsuk–Ulam Antipodal Theorem. Every continuous function from an n-sphere
Sn into the Euclidean k-space Ek with k ≤ n maps some pair of antipodal points to the
same point. In other word, if f : Sn → Ek is continuous, then there exists an x ∈ Sn

such that f (−x) = f (x).

Clearly, Borsuk-Ulam’s theorem fails for k > n, because Sn embedded in E
n+1.

The Borsuk-Ulam theorem has numerous applications; range from combinatorics
to differential equations and even economics.

For n = 1, Borsuk–Ulam’s theorem implies that that at any moment there always
exist a pair of opposite points on the earth’s equator with the same temperature. This
assumes the temperature varies continuously.

For n = 2, Borsuk–Ulam’s theorem implies that there is always a pair of antipodal
points on the Earth’s surface with equal temperatures and equal barometric pressures, at
any moment.

The Borsuk–Ulam theorem was conjectured by S. Ulam at the Scottish Café in
Lvov, Ukraine. Ulam’s conjecture was solved in 1933 by K. Borsuk [8]. It turned
out that the result had been proved three years before in [55] by L. Lusternik and
L. Schnirelmann (cf. [8, footnote, page 190]). Since then many alternative proofs
and also many extensions of Borsuk–Ulam’s theorem have been found as col-
lected by H. Steinlein in his survey article [74] including a list of 457 publications
involving various generalizations of Borsuk-Ulam’s theorem.
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Another important theorem from algebraic topology with the same flavor is
the following.

Brouwer’s Fixed-Point Theorem. Every continuous function f : B → B from the
unit n-ball B into itself has a fixed point.

Brouwer’s fixed-point theorem has numerous applications to many fields as
well. For instance, Brouwer’s fixed-point theorem and its extension by S. Kaku-
tani in [47] (extending Brouwer’s fixed-point theorem to set-valued functions)
played a central role in the proof of existence of general equilibrium in Mar-
ket Economies as developed in the 1950s by economics Nobel prize winners
K. Arrow (1972) and G. Debreu (1983).

Remark 2.1. In fact, Borsuk-Ulam’s antipodal theorem implies Brouwer’s fixed
point theorem, see [75].

3 Symmetric spaces

The class of Riemannian manifolds with parallel Riemannian curvature tensor,
i.e., ∇R = 0, was first introduced independently by P. A. Shirokov in 1925 and
by H. Levy in 1926. This class is known today as the class of locally symmetric
Riemannian spaces (see, e.g., [16, page 292]).

It was É. Cartan who noticed in 1926 that irreducible spaces of this type are
separated into ten large classes each of which depends on one or two arbitrary
integers, and in addition there exist twelve special classes corresponding to the
exceptional simple groups. Based on this, É. Cartan created his theory of sym-
metric Riemannian spaces in his famous papers “Sur une classe remarquable
d’espaces de Riemann” in 1926 [12].

Symmetric spaces are the most beautiful and important Riemannian mani-
folds. Such spaces arise in a wide variety of situations in both mathematics and
physics. This class of spaces contains many prominent examples which are of
great importance for various branches of mathematics, like compact Lie groups,
Grassmannians and bounded symmetric domains. Symmetric spaces are also
important objects of study in representation theory, harmonic analysis as well as
in differential geometry.

An isometry s of a Riemannian manifold is called an involutive if s2 = id. A
Riemannian manifold M is called a symmetric space if for each point x ∈ M there is
an involutive isometry sx such that x is an isolated fixed point of sx; the involutive
isometry sx 6= id is called the symmetry at x. A Hermitian symmetric space is a
Hermitian manifold M such that every point of M admits a symmetry preserving
the Hermitian structure of M.

Let M be a symmetric space. Denote by G the closure of the group of isome-
tries on M generated by {sp : p ∈ M} in the compact-open topology. Then G
is a Lie group which acts transitively on the symmetric space; hence the typical
isotropy subgroup K, say at a point o ∈ M, is compact and M = G/K. Thus sym-
metric spaces are homogeneous spaces as well. From the point of view of Lie
theory, a symmetric space is the quotient G/K of Lie group G by a Lie subgroup
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K, where the Lie algebra k of K is also required to be the (+1)-eigenspace of an
involution of the Lie algebra g of G.

In this paper, we will use standard symbols as in Helgason’s book [39] to
denote symmetric spaces mostly. Here are a few minor exceptions. More specif-
ically than AI, AI(n) denote SU(n)/SO(n), AII(n) := SU(2n)/Sp(n), etc. Let
Gd(R

n), Gd(C
n) and Gd(H

n) denote the Grassmannians of d-dimensional sub-
spaces in the real, complex and quaternion vector spaces (or modules), respec-
tively. The standard notations for the exceptional spaces such as G2, F4, E6, ...,
GI, ..., EIX denote the simply-connected spaces where we write GI for G2/SO(4).
We will denote by M∗ the bottom space, i.e., the adjoint space in [39], of the space
M.

For a symmetric space M, the dimension of a maximal flat totally geodesic
submanifold of M is a well-defined natural number; called the rank of M and
denoted by rk(M). Clearly, the rank of a symmetric space is at least one. It
is well-known that the class of rank one compact symmetric spaces consists of
n-sphere Sn, a projective space FPn(F = R, C, H) and the 16-dimensional Cayley
plane FII = OP2 with O being the Cayley algebra.

Obviously, every complete totally geodesic submanifold of a symmetric space
is also a symmetric space. It follows from the equation of Gauss that

rk(B) ≤ rk(M) (3.1)

for every complete totally geodesic submanifold B of a symmetric space M
(cf. [13]).

4 (M+, M−)–theory

In this section, we provide a brief introduction of the (M+, M−)–theory for com-
pact symmetric spaces introduced by B.-Y. Chen and T. Nagano in [20, 21, 23, 62,
63]. Our approach to compact symmetric spaces based on antipodal points and
fixed point sets of compact symmetric spaces. Hence our approach to compact
symmetric spaces is quite different from other approaches done by É. Cartan and
others.

In fact, our approach to compact symmetric spaces plays the Key Roles in
the determination of two-numbers of compact symmetric spaces; including the
determination of 2-ranks of compact Lie groups (see [14, 17]).

Let o be a point of a compact symmetric space M = G/K. A connected com-
ponent of the fixed point set F(so , M)r {o} of the symmetry so is called a polar of
o. We denote it by M+ or M+(p) if M+ contains a point p.

We have the following useful propositions from [21] (also [14, page 15]).

Proposition 4.1. Let M = G/K be a compact symmetric space. Then for each antipodal
point p of o ∈ M, the isotropy subgroup K at o acts transitively on the polar M+(p).
Moreover, we have K(p) = M+(p) and K(p) is connected. Consequently, we have
M+(p) = K/Kp , where Kp is given by {k ∈ K : k(p) = p}.

When a polar consists of a single point, we call it a pole.
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Proposition 4.2. Under the hypothesis of Proposition 4.1, the normal space to M+(p) at
p in M is the tangent space of a connected complete totally geodesic submanifold M−(p).
Thus we have

dim M+(p) + dim M−(p) = dim M. (4.1)

Proposition 4.3. For each antipodal point p of o in a compact symmetric space M, we
have (1) rk(M−(p)) = rk(M) and (2) M−(p) is a connected component of the fixed
point set F(sp ◦ so, M) of sp ◦ so through p.

Polars and meridians of a compact symmetric space are totally geodesic sub-
manifolds; they are thus compact symmetric spaces as well. Both polars and
meridians have been determined for every compact connected irreducible
Riemannian symmetric space (see [14, 23, 62, 63]). One of the most important
properties of polars and meridians is that M is determined (globally) by any pair
of (M+(p), M−(p)).

Let o be a point of a compact connected Riemannian symmetric space M. If
there exists a pole p of o in M, then the set consisting of the midpoints of all
geodesics joining o and p is called the centrosome of {o, p}; denoted by C(o, p). Ev-
ery connected component of C(o, p) is again a totally geodesic submanifold of M.
Centrosomes play important roles in topology as well. For instance,
centrosomes have been used by J. M. Burns in [11] to compute homotopy in many
compact symmetric spaces (see subsection 6.4).

The following result from [23, page 277] characterizes poles in compact sym-
metric spaces (see also [15]).

Proposition 4.4. The following six conditions are equivalent to each other for two
distinct points o, p of a connected compact symmetric space M = GM/KG.

(i) p is a pole of o ∈ M;

(ii) sp = so;

(iii) {p} is a polar of o ∈ M;

(iv) there is a double covering totally geodesic immersion π = π{o,p} : M → M′′ with

π(p) = π(o);

(v) p is a point in the orbit F(σ, GM)(o) of the group F(σ, GM) through o, where
σ = ad(so);

(vi) the isotropy subgroup of SGM at p is that, SKG (of SGM at o), where SGM is the
group generated by GM and the symmetries; SGM/GM is a group of order ≤ 2.

For a compact symmetric space M, the Cartan quadratic morphism

Q = Qo : M → GM

carries a point x ∈ M into sxso ∈ GM. The Cartan quadratic morphism is a
GM-equivariant morphism which is an immersion.

We have the following result for centrosomes from [23, pages 279-280].
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Proposition 4.5. The following five conditions are equivalent to each other for two
distinct points o, q of a connected compact symmetric space M.

(i) sosq = sqso;

(ii) Q(q)2 = 1GM
, where Q = Qo is Cartan quadratic morphism;

(iii) either so fixes q or q is a point in the centrosome C(o, p) for some pole p of o;

(iv) either so(q) = q or so(q) = γ(q) for the covering transformation γ for some pole
p = γ(o) of o;

(v) either so(q) = q or there is a double covering morphism π : M → M′′ such that
so′′ fixes q′′, where o′′ = π(o) and q′′ = π(q).

The polars, meridians and centrosomes play very important roles in the study
of compact connected symmetric spaces as well as of compact connected Lie
groups. In particular, Propositions 4.4 and 4.5 play important roles for the study
of maximal antipodal sets and two-numbers of compact symmetric spaces as well
as the 2-ranks of compact Lie groups.

Professor T. Nagano and M. Sumi (= M. S. Tanaka) proved in [64] that, for a
compact symmetric space M, the root system R(M−) of a meridian M− 6= M is
obtained from the Dynkin diagram of the root system R(M) of M and they also
found all maximal totally geodesic spheres in SU(n) by means of the (M+, M−)-
method.

5 Two-numbers of compact symmetric spaces

5.1 Antipodal set in terms of symmetries

For compact symmetric spaces, we have the following result form [23, page 275].

Proposition 5.1. For any compact symmetric space M, the two-number #2M is equal
to the maximal possible cardinality #(A2M) of a subset A2M of M such that the point
symmetry sx fixes every point of A2M for every x ∈ A2M.

For compact symmetric spaces, Proposition 5.1 can be regarded as an alterna-
tive definition of two-numbers.

The following inequality from [23, page 276] is an important result for two-
numbers.

Theorem 5.1. #2M − 1 does not exceed the sum of the two-numbers of all the polars of
a point in a compact symmetric space M, that is

#2M ≤ 1 +∑ #2M+. (5.1)

Remark 5.1. The equality (5.1) holds in many cases (such as the groups Sp(n) and
O(n) and the hermitian symmetric spaces) and does not in the other cases (such
as the adjoint group SU(8)∗ of SU(8)).
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5.2 Two-numbers as an obstruction to totally geodesic embeddings

If B is a totally geodesic submanifold of a Riemannian manifold M, then every
geodesic of B is also a geodesic of M. Thus we have

#2B ≤ #2M. (5.2)

Consequently, the invariant #2M is a geometric obstruction to the existence of a
totally geodesic embeddings f : M → N, since the existence of f clearly implies
the inequality

#2M ≤ #2N. (5.3)

For instance, although the real projective n-space RPn can be topologically
embedded in Sm for sufficient high m, but inequality (5.3) implies that every real
projective k-space RPk with k ≥ 2 cannot totally geodesic embedded into Sm

regardless of codimension. This is simply due to the fact:

#2RPk = k + 1 > 2 = #2Sm.

Similarly, while the complex Grassmann manifold G2(C
4) of the 2-dimen-

sional subspaces of the complex vector space C4 is obviously embedded into
G3(C

6) as a totally submanifold, the space G2(C
4)∗ which one obtains by identi-

fying every member of G2(C
4) with its orthogonal complement in C4, however,

cannot be totally geodetically embedded into G3(C
6)∗ simply due to

#2G2(C
4)∗ = 15 > 12 = G3(C

6)∗

according to (5.1).

5.3 Two-numbers of dot products

Suppose a finite group Γ is acting on two spaces M and N freely as automorphism
groups. Then Γ acts on the product space M × N freely. And the orbit space
(M × N)/Γ is called the dot product of M and N (with respect to Γ) and denoted by
M · N. In most cases of our study, Γ will be the group of order two acting on M
and N as the covering transformation groups for double covering morphisms in
the sequel. Γ will not be mentioned in that case, if Γ is obvious or if Γ need not be
specified.

Example 5.1. SO(4) = S3 · S3, U(n) = T · SU(n) and GI has the only polar S2 · S2.
Here Γ for U(n) is the center of SU(n), a cyclic group of order n.

The following result from [23, page 281] provides simple links between dot
products, centrosomes and two-numbers of compact symmetric spaces.

Theorem 5.2. The dot product for double coverings M → M′′ and N → N′′ has the
following properties:

(a) #2M ≤ #2(M · N);
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(b) #2(M · N) ≤ #2(F(so , M) · F(sp , N)) + #2(CM · CN), where CM and CN are
the centrosomes for the point o of M and its pole and for pof N and its pole;

(c) 1
2(#2M)(#2N) ≤ #2(M · N) ≤ 2(#2M′′)(#2N′′).

The following corollaries are easy consequences of Theorem 5.2.

Corollary 5.1. For a compact symmetric space M, we have

#2(S
n · M) ≤ #2M + #2(S

n−1 · CM),

where CM is a centrosome of M.

Corollary 5.2. For a compact symmetric space M, we have

#2M ≤ #2(S
1 · M) ≤ #2M + #2CM ≤ 2#2M.

Corollary 5.3. We have #2(S
m · Sn) = 2(n + 1) if m ≥ n.

5.4 Two-numbers of irreducible compact symmetric spaces

In [23], Nagano and I have determined the two-numbers and the maximal
antipodal sets for most irreducible compact symmetric spaces (see also Appen-
dices II and III of [14, pages 67–71]). However, the antipodal sets of oriented real
Grassmannians have not been discussed in [23].

On the other hand, H. Tasaki had described the maximal antipodal sets of
oriented real Grassmannians in [89, 90].

6 Two-numbers and Topology

The two-numbers link closely with topology. In this section, we shall present a
number of results in this respect.

6.1 Two-numbers and Euler numbers

First, we present some links between two-numbers and Euler numbers of com-
pact symmetric spaces from [23, Theorem 4.1].

Theorem 6.1. For any compact symmetric space M, we have

#2M ≥ χ(M), (6.1)

where χ(M) denotes the Euler number of M.

The proof of this theorem based on a result of Hopf-Samelson on rank of G
and K of a homogeneous space G/K with χ(G/K), a result of H. Hopf on fixed
point sets as well as the (M+, M−)-theory of symmetric spaces.

For any hermitian compact symmetric space of semisimple type, Professor
Nagano and I proved in [23, Theorem 4.3] the following.
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Theorem 6.2. For any compact hermitian symmetric space M of semi-simple type, we
have

#2M = χ(M) = 1 + ∑ #2M+. (6.2)

The proof of this theorem based heavily on the (M+, M−)–theory as well as
the Lefschetz fixed point theorem in the version of Atiyah and Singer [5].

An immediate consequence of this theorem is the following.

Corollary 6.1. For every complete totally geodesic hermitian subspace B of a semi-simple
hermitian symmetric space M, we have

χ(M) ≥ χ(B). (6.3)

6.2 Two-numbers and homology

A symmetric R-space is a special kind of compact symmetric space for which sev-
eral characterizations were known. Originally, Professor T. Nagano introduced
the notion of a symmetric R-space in [61] as a compact symmetric space M which
admits a Lie transformation group P which is non-compact and contains I0(M) as
a subgroup. For example, a sphere is a symmetric R-space. The I(M) of M = Sn

coincides with the natural action of O(n + 1) on Sn. Thus the action of SO(n + 1)
on Sn coincides with I0(M).

In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a
maximal Zariski closed and connected solvable algebraic subgroup. Subgroups
between a Borel subgroup B and the ambient group G are called parabolic sub-
groups. Working over algebraically closed fields, the Borel subgroups turn out to
be the minimal parabolic subgroups in this sense. Thus B is a Borel subgroup
when the homogeneous space G/B is a complete variety which is as large as
possible.

M. Takeuchi used the terminology symmetric R-space for the first time in [77].
He gave a cell decomposition of an R-space in [77], which is a kind of general-
ization of a symmetric R-space. Here, by a R-space we mean M = G/U where
G is a connected real semisimple Lie group without center and U is a parabolic
subgroup of G.

A compact symmetric space M is said to have a cubic lattice if a maximal torus
of M is isometric to the quotient of Er by a lattice of Er generated by an orthog-
onal basis of the same length. O. Loos [53] gave another intrinsic characteriza-
tion of symmetric R-spaces among all compact symmetric spaces with the prop-
erty that the unit lattice of the maximal torus of the compact symmetric space
(with respect to a canonical metric) is a cubic lattice. Loos’ proof was based on
the correspondence between the symmetric R-spaces and compact Jordan triple
systems.

In [35], D. Ferus characterized symmetric R-spaces as compact symmetric
submanifolds of Euclidean spaces. He also proved that compact extrinsically
symmetric submanifolds are orbits of isotropy representations of symmetric space
of compact type (or non-compact type).

The class of symmetric R-spaces includes:



574 B.-Y. Chen

(a) all hermitian symmetric spaces of compact type

(b) Grassmann manifolds O(p + q)/O(p) × O(q), Sp(p + q)/Sp(p) × Sp(q)

(c) the classical groups SO(m), U(m), Sp(m),

(d) U(2m)/Sp(m), U(m)/O(m),

(e) (SO(p + 1) × SO(q + 1))/S(O(p) × O(q)), where S(O(p) × O(q)) is the
subgroup of SO(p + 1)× SO(q + 1) consisting of matrices of the form:









ǫ 0
0 A

ǫ 0
0 B









, ǫ = ±1, A ∈ O(p), B ∈ O(q),

(This R-space is cover twice by Sp × Sq),

(f) the Cayley projective plane FI I = OP2, and

(g) the three exceptional spaces E6/Spin(10) × T, E7/E6 × T, and E6/F4.

For any symmetric R-space, M. Takeuchi proved in [79] the following.

Theorem 6.3. For any symmetric R-space M, we have

#2M = ∑
i≥0

bi(M, Z2), (6.4)

where bi(M, Z2) is the i-th Betti number of M with coefficients in Z2.

This theorem was proved by applying a result of Chen-Nagano from [23] in
conjunction with an earlier result of M. Takeuchi from [77].

6.3 Bott’s periodicity theorem for homotopy of classical groups

The most famous work of R. Bott is his periodicity theorem which describes
periodicity in the homotopy groups of classical groups (cf. [10]).

Bott’s original results may be succinctly summarized as

Theorem 6.4. The homotopy groups of the classical groups are periodic:

πi(U) = πi+2(U), πi(O) = πi+4(Sp), πi(Sp) = πi+4(O)

for i = 0, 1, · · · , where U is the direct limit defined by U = ∪∞
k=1U(k) and similarly for

O and Sp.

The second and third of these isomorphisms given in Theorem 6.4 yield the
8-fold periodicity:

πi(O) = πi+8(O), πi(Sp) = πi+8(Sp)

for i = 0, 1, · · · .
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Bott’s original proof of his periodicity theorem is differential geometric in its
nature (see [9]). His proof relies on the observation that in a compact Riemannian
symmetric space M one can choose two points p and q in “special position” such
that the connected components of the space of shortest geodesics in M joining p
and q are again compact symmetric spaces.

Put M = M0 and let M1 be one of the resulting connected components. This
construction can be repeated inductively.

Let M be a compact symmetric space. The index of a geodesic γ in M from p to
q is the number of conjugate points of p counted with their multiplicities, in the
open geodesic segment from p to q.

We denote the space of shortest geodesics from p to q by the symbol Ωd, which
relates closely with the notion of centrosomes.

The proof of Bott’s periodicity theorem in [9] relied on the following result.

Rott’s theorem. If Ωd is a topological manifold and if every non-shortest geodesic from
p to q has index greater than or equal to λ0, then the (i + 1)-th homotopy groups of M
satisfies

πi+1(M) ∼= πi(Ω
d) (6.5)

for i < λ0 − 1.

6.4 Applications to homotopy

The (M+, M−)–theory as well as centrosomes play significant roles in computing
homotopy of compact symmetric spaces.

In fact, J. M. Burns mentioned in the introduction of his paper [11] that how
our (M+, M−)–theory (in particular, centrosomes) in conjunction with Bott’s
theorem given above can be used to compute the homotopy of compact sym-
metric spaces. In [11], J. M. Burns carried out the computation of the homotopy
in compact symmetric spaces of types: AI, AII and CI. By applying the same
method, he also computed in [11] the homotopy in the exceptional symmetric
spaces: EIII − EIX, F4, FI and FII.

The homotopy groups πi(EVII) with i ≤ 16 were computed in 2012 by P.
Quast [67]. The first eight homotopy groups of EVII have been already deter-
mined by J. M. Burns in [11].

Remark 6.1. It is known that the homotopy group πi(M) of a connected mani-
fold M is the same as the homotopy group πi(M̃) of its universal cover M̃ for
i ≥ 2. Also, the homotopy groups π9, π10 and π14 of EVII can also be directly
read off from the long exact sequence of homotopy groups of coset spaces to-
gether with the corresponding homotopy groups of E6 and E7 that can be found in
[59, page 363].

6.5 Two-numbers and covering maps

In [23], Professor T. Nagano and I also discovered some simple links between
two-numbers and covering maps between compact symmetric spaces.
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For double coverings we have [23, page 280]:

Theorem 6.5. If M is a double covering of M′′, then #2M ≤ 2 · #2(M′′).

Remark 6.2. The inequality in Theorem 6.5 is sharp, since the equality case holds
for M = SO(2m) with m > 2.

For k-fold coverings with odd k, [23, page 278]:

Theorem 6.6. Let φ : M → N is a k-fold covering between compact symmetric spaces.
If k is odd then #2M = #2(N).

6.6 Antipodal sets, 2-numbers and Borsuk-Ulam’s type theorems

A continuous function f : M → R of a compact symmetric space M = G/K into
the real line is called isotropic if f is invariant under the action of the isotropic
subgroup K.

Recently, I obtained the following Borsuk-Ulam’s type results involving an-
tipodal sets and two-numbers of compact symmetric spaces in [18].

Theorem 6.7. Let f : M → R be a continuous isotropic function from a compact
symmetric space into the real line. Then f carries some maximal antipodal set of M to the
same point in R, whenever M is one of the following spaces: Spheres; the projective spaces
FPn (F = R, C, H); the Cayley plane FII; the exceptional spaces EIV; EIV∗; GI; and
the exceptional Lie group G2. Consequently, the function f : M → R carries a maximal
antipodal set with #2M elements to the same point in R.

All of the compact symmetric spaces M mentioned in the list of Theorem 6.7
have single polar for a fixed point o ∈ M. Next, we discuss the case in which
the point o ∈ M has multiple polars. Suppose o ∈ M has multiple polars, say
M1

+, M2
+, . . . , Mk

+. Then we denote by M̂+ a polar of o with the maximal two-
number among all polars of o.

We also have the following results from [18].

Theorem 6.8. Let f : M → R be a continuous isotropic function of a compact symmetric
space M into the real line R. If M admits more than one polar, then f carries an antipodal
set SM of M consisting of 1 + #2M̂+ points of M to the same point in R.

The following corollaries are easy consequences of Theorem 6.7 (see [18] for
more details).

Corollary 6.2. If f : E8 → R is a continuous isotropic function of the exceptional Lie
group E8 into the real line R, then f carries an antipodal set of E8 with 392 elements to
the same point in R.

Corollary 6.3. If f : FI → R is a continuous isotropic function of the compact symmet-
ric space FI into the real line R, then f carries an antipodal set of FI with 24 elements to
the same point in R.

We provide a simple example to illustrate that the isotropic condition on f in
Theorem 6.7 is essential.
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Example 6.1. Consider the real projective plane RP2. Then there is a double cov-
ering π : S2 → RP2. Without loss of generality, we may assume that S2 is the
unit sphere in E3 centered at the origin of E3. For each real-valued function

f : RP2 → R, the lift f̂ : S2 → R of f is an even function via the double cov-
ering π, i.e., f̂ (−x) = f̂ (x), ∀x = (x, y, z) ∈ S2.

Conversely, for every given real-valued even function g : S2 → R of S2,
g induces a real-valued function ǧ : RP2 → R of RP2.

If we choose g : S2 → R to be g(x) = (x − y)2, then g induces a real-valued
function ǧ : RP2 → R which does not carry any maximal antipodal set of RP2 to
the same point in R.

7 2-rank of compact connected Lie groups

7.1 2-ranks of Borel and Serre

A. Borel and J.-P. Serre considered in [7] the 2-rank, denoted by r2G, of a compact
connected Lie group G. By definition the 2-rank of a compact connect Lie group
G is the maximal possible rank of the elementary 2-subgroup of G.

In [7] Borel and Serre proved the following 2 results.

(1) rk(G) ≤ r2(G) ≤ 2rk(G) with rk(G) = rank(G) and

(2) G has (topological) 2-torsion if rk(G) < r2(G).

Borel and Serre were able to determine the 2-rank of simply-connected simple
Lie groups SO(n), Sp(n), U(n), G2 and F4 in [7]. Furthermore, they proved that
the exceptional Lie groups G2, F4 and E8 have 2-torsion. On the other hand, they
also mentioned in [7, page 139] that they were unable to determine the 2-rank for
the exceptional simple Lie groups E6 and E7.

7.2 2-rank and commutative algebra

After Borel and Serre’s paper [7], 2-ranks of compact Lie groups G have been
investigated by a number of mathematicians. In particular, it had been shown
that the 2-ranks of compact Lie groups have several important links with com-
mutative algebra. Here, we provide merely two such links.

(a) Let F be either a field or the rational integer ring Z. Let A = ∑i≥0 Ai be a
graded commutative F-algebra in sense of Milnor-Moore [60]. If A is connected,
then it admits a unique augmentation ε : A → F.

Put Ā = Ker ε. The Ā is called the augmentation ideal of A. A sequence of
elements {x1, . . . , xn ∈ Ā} in Ā is called a simple system of generators if {xǫ1

1 · · · xǫn
n :

ǫi = 0 or 1} is a module base of A.
Let G be a compact connected Lie group. Denote by s(G) the number of

generators of a simple system of the Z2-cohomology H∗(G, Z2) of G.
A. Kono discovered in [50] the following relationship between s(G), r2G and

the Z2-cohomology H∗(G, Z2).
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Theorem 7.1. Let G be a connected compact Lie group. Then the following three condi-
tions are equivalent:

(1) s(G) ≤ r2G;

(2) s(G) = r2G;

(3) H∗(G, Z2) is generated by universally transgressive elements.

To prove Theorem 7.1, A. Kono had applied May’s spectral sequence [58],
Eilenberg-Moore’s spectral sequence [33] as well as Quillen’s result in [69].
In [50], Kano also described some properties of compact Lie groups satisfying
condition (3) in Theorem 7.1 and provided applications.

(b) In commutative algebra, Krull’s dimension of a ring R is the supremum
of the number of strict inclusions in a chain of prime ideals. More precisely, one
says that a strict chain of inclusions of prime ideals of the form:

p0 ( p1 ( · · · ( pn

is of length n. That is, it is counting the number of strict inclusions.
Given a prime ideal p ⊂ R, we define the height of p to be the supremum of

the set {n ∈ N : p is the supremum of a strict chain of length n}. Then the Krull
dimension is the supremum of the heights of all of its primes.

Let G be a compact Lie group and put H∗
G = H∗(BG; Z2), where BG is a

classifying space for G. Let N∗
G ⊂ H∗

G denote the ideal of nilpotent elements.

Then it is known that H∗
G/N∗

G = H#
G is a finitely generated commutative algebra.

In [69], D. Quillen studied the relationship between the finitely generated
commutative algebra H#

G and the structure of the Lie group G. In particular,

he proved that, under some suitable assumptions, the Krull dimension of H#
G

is equal to the 2-rank of G.
D. Quillen proved his result by calculating the mod 2 cohomology ring of extra

special 2-groups. Quillen’s result provided an affirmative answer to a conjecture
of M. F. Atiyah [2] and also of a conjecture of R. G. Swan [76].

8 Applications of two-numbers to group theory

If G is a connected compact Lie group, then by assigning sx(y) = xy−1x to every
point x ∈ G, we have s2

x = idG to each point x. Therefore G becomes a compact
symmetric space with respect to a bi-invariant Riemannian metric.

8.1 Links between two-numbers and 2-ranks

The following simple link between the 2-rank and the two-number of a connected
compact Lie group G was established in [22, Proposition 5].

Theorem 8.1. Let G be a connected compact Lie group. Then we have

#2G = 2r2G. (8.1)
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For products of two compact Lie groups, we have the following result from
[23, Lemma 1.7].

Theorem 8.2. Let G1 and G2 be connected compact Lie groups. Then

#2(G1 × G2) = 2r2G1+r2G2 . (8.2)

Based on these two theorems and (M+, M−)–theory, we were able to deter-
mine the 2-ranks of compact connected Lie groups in [23, pages 289-293].
Consequently, we settled the problem of Borel-Serre for determination of 2-ranks
of connected compact simple Lie groups as follows.

8.2 2-ranks of classical groups

For classical groups we have:

Theorem 8.3. Let U(n)/Zµ be the quotient group of the unitary group U(n) by the
cyclic normal subgroup Zµ of order µ. Then we have

r2(U(n)/Zµ) =

{

n + 1 if µ is even and n = 2 or 4;

n otherwise.
(8.3)

Theorem 8.4. For SU(n)/Zµ, we have

r2(SU(n)/Zµ) =











n + 1 for (n, µ) = (4, 2);

n for (n, µ) = (2, 2) or (4, 4);

n − 1 for the other cases.

(8.4)

Theorem 8.5. One has r2(SO(n)) = n − 1 and, for SO(n)∗ , we have

r2(SO(n)∗) =

{

4 for n = 4;

n − 2 for n even > 4.
(8.5)

Theorem 8.6. Let O(n)∗ = O(n)/{±1}. We have
(a) r2(O(n)) = n;
(b) r2(O(n)∗) is n if n is 2 or 4, while it is n − 1 otherwise.

Theorem 8.7. One has r2(Sp(n)) = n, and, for Sp(n)∗ , we have

r2(Sp(n)∗) =

{

n + 2 for n = 2 or 4

n + 1 otherwise.
(8.6)

Thus we also have

r2(Sp(n)∗) = r2(U(n)/Z2) + 1 (8.7)

for every n.
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8.3 2-ranks of spinors, semi-spinors and Pin(n)

Next, we consider the spinor Spin(n) and its related groups. Recall that Spin(n)
is a subset of the Clifford algebra Cl(n) which is generated over R by the vectors
ei in the fixed orthonormal basis of Rn; subject to the conditions eiej = −ejei and
eiei = −1, i 6= j.

For Spin(n) we have the following two results.

Theorem 8.8. We have

r2(Spin(n)) =

{

r + 1 if n ≡ −1, 0 or 1 (mod 8)

r otherwise,

where r is the rank of Spin(n), r = [n
2 ].

Theorem 8.9. (PERIODICITY) For n ≥ 0, One has

r2(Spin(n + 8)) = r2(Spin(n)) + 4

The group Pin(n) was introduced in [4] by M. F. Atiyah, R. Bott and A. Shapiro
while they studied Clifford modules. Pin(n) is a group in the Clifford algebra
Cl(n) and it double covers O(n) and whose connected component Spin(n) dou-
ble covers SO(n).

For Pin(n) we have:

Theorem 8.10. For Pin(n) we have r2(Pin(n)) = r2(Spin(n + 1)), n ≥ 0.

For the semi-spinor group SO(4m)# = Spin(4m)/{1, e((4m))}, we have:

Theorem 8.11. We have

r2(SO(4m)#) =



















3 if m = 1

6 if m = 2,

r + 1 if m is even > 2,

r if m is odd > 1,

where r is the rank 2m of SO(4m)#.

Remark 8.1. The 2-rank of Spin(16) and of SO(16)# had been obtained indepen-
dently by J. F. Adams in [1]. However, the method of his proof is completely
different from ours given in [23].

8.4 2-ranks of exceptional groups

We also able to determine the 2-ranks of Exceptional groups as follows.

Theorem 8.12. One has

r2G2 = 3, r2F4 = 5, r2E6 = 6, r2E7 = 7, r2E8 = 9

for the simply-connected exceptional simple Lie groups.

Remark 8.2. r2G2 = 3 and r2F4 = 5 are due to A. Borel and J. P. Serre.

We also able to determine the rank of the bottom space E∗
6 .

Theorem 8.13. One has r2E∗
6 = 6.
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9 Two-numbers and algebraic geometry

9.1 Two-numbers and projective ranks

The projective rank, Pr(M), of a compact hermitian symmetric space M is the
maximal complex dimension of totally geodesic complex projective spaces N of
M defined by A. Fauntleroy in [34].

A subset E of a maximal antipodal set of a compact symmetric space M is
called equidistant if there is a real number a > 0 such that dM(x, y) = a for any
two points x, y ∈ E .

Put

γ = γM = min{dM(x, y) : x, y ∈ E , x 6= y} (9.1)

and let Aγ ⊂ E be an equidistance set (for the distance γ) of maximal cardinality.
Let µ = #(Aγ) denote the cardinality of Aγ.

C. U. Sánchez and A. Guinta proved in [72] the following.

Theorem 9.1. Let M be a compact connected irreducible hermitian symmetric space.

(a) If M 6= CI(n), then Pr(M) = µ − 1.

(b) If M = CI(n) and A√
2γ is an equidistant set of maximal cardinality (for the

distance
√

2γ(M)) and µ is its cardinality, then Pr(M) = µ − 1.

Theorem 9.1 provides the following simple link between the two-number and
the projective rank for compact irreducible hermitian symmetric spaces.

Theorem 9.2. Pr(M) · rk(M) ≤ #2(M) for every compact irreducible hermitian sym-
metric space M.

9.2 Two-numbers and arithmetic distances

W.-L. Chow introduced in [26] the notion of arithmetic distance “d” for every classi-
cal hermitian symmetric spaces M. In case that the classical hermitian symmetric
space M is the complex Grassmannian Gp(C

n), W.-L. Chow’s arithmetic distance
d(V, W) between V, W ∈ Gp(Cn) is defined by

d(V, W) = dimC V/V ∩ W, (9.2)

i.e., the codimension of their intersection V ∩ W in V (or in W). Equivalently, the
arithmetic distance d(V, W) is the smallest integer t such that there exists a finite
set {Ui}1≤i≤t+1 of linear subspaces in Gp(Cn) such that

(a) U1 = V and Ut+1 = W;

(b) d(Ui, Ui+1) = 1 for 1 ≤ i ≤ t.
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Chow proved in [26] that the d-preserving transformations of M are either holo-
morphic or anti-holomorphic, provided rk(M) > 1

A Helgason sphere in a compact symmetric space is a maximal-dimensional
totally geodesic sphere with maximal sectional curvature. The dimension of a
Helgason sphere is thus equal to one more than the multiplicity of the highest
restricted root.

Using Helgason spheres, S. Peterson [66] extended Chow’s arithmetic distance
to an arithmetic distance d to arbitrary irreducible compact symmetric spaces. In
this general case, d(x, y) satisfies d(x, y) ≤ j if the two points x, y ∈ M are joined
by a chain of j Helgason spheres.

More precisely, put d(x, y) = 0 if x = y. And put d(x, y) = 1 if x 6= y and x, y
lie in a Helgason sphere. Otherwise, d(x, y) is defined to be the smallest j such
that there is a chain of j Helgason spheres joining x and y (instead of a chain of
linear subspaces in Gp(C

n)).
If M is hermitian and irreducible, the holomorphic transformations permute

the Helgason spheres and hence they preserve the new arithmetic distance obvi-
ously. Also, it equals Chow’s arithmetic distance if M = Gp(Cn).

Let M = G/K be a compact Riemannian symmetric space where G denotes
the identity component of the isometry group of M. T. Nagano studied and clas-
sified in [61] the geometric transformation groups of compact symmetric spaces.
Roughly speaking, they are “larger groups” L that act on M such that

(i) G ⊂ L;

(ii) L is a Lie transformation group acting effectively on M;

(iii) L preserves the symmetric structure of M; and

(iv) L is simple.

By using our approach to compact symmetric spaces and a formulation of
Radon’s duality, S. Peterson proved the following rigidity theorem in [66].

Theorem 9.3. Let M be a Gd(F
n), F = R, C, H, or M = AI(n) with dim M ≥ 3 and

let L = {ϕ : M → M, ϕ a diffeomorphism preserving the arithmetic distance d}. Then
L = L′, where L′ be the geometric transformation group of M.

10 Further applications of two-numbers

10.1 Real forms of hermitian symmetric spaces

Let M be a hermitian symmetric space of compact type and let τ be an involutive
anti-holomorphic isometry of M. The fixed point set

F(τ, M) = {x ∈ M : τ(x) = x}
is called a real form of M, which is connected and a totally geodesic Lagrangian
submanifold. For instance, let

M = CP1 = S2, L = RP1 = S1.
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Then M is a hermitian symmetric space of compact type and L is a real form of
M. Any two distinct great circles in S2 intersect at two points which are antipodal
to each other. The intersection is an antipodal set in L as well as in M.

M. Takeuchi proved the following result in [78].

Theorem 10.1. Every real form of a hermitian symmetric space of compact type is a
symmetric R-space. Conversely, every symmetric R-space is realized as a real form of a
hermitian symmetric space of compact type.

Moreover, the correspondence is one-to-one.

In [84], M. S. Tanaka and H. Tasaki studied the intersection of two real forms in
a hermitian symmetric space of compact type. In particular, they proved that the
intersection of two real forms in a Hermitian symmetric space of compact type
is an antipodal set if the intersection is discrete. More precisely, they established
the following link between real forms of hermitian symmetric spaces and two-
numbers in [84].

Theorem 10.2. Let L1, L2 be real forms of a hermitian symmetric space of compact type
whose intersection is discrete. Then L1 ∩ L2 is an antipodal set in L1 and L2. Further-
more, if L1 and L2 are congruent, then L1 ∩ L2 is a 2-set. Thus #(L1 ∩ L2) = #2L1 =
#2L2.

Further results in this respect see [44, 86, 87].

10.2 Fixed point set of a holomorphic isometry

O. Ikawa, M. S. Tanaka and H. Tasaki showed in [45] a necessary and sufficient
condition that the fixed point set of a holomorphic isometry of a Hermitian sym-
metric space of compact type is discrete and proved that the discrete fixed point
set is an antipodal set. They also proved a necessary and sufficient condition that
the intersection of two real forms in a Hermitian symmetric space of compact
type is discrete and consider some relations between the intersection of two real
forms and the fixed point set of a certain holomorphic isometry by the use of the
symmetric triads introduced by O. Ikawa in [43].

10.3 Applications to Lagrangian Floer homology

Let (M, ω) be a symplectic manifold, i.e., M is a manifold with a closed non-
degenerate 2-form ω. Let L be a Lagrangian submanifold in M, i.e., dimR L =
1
2 dimR M and ω vanishes on L.

The symplectic Floer homology is a homology theory associated to a symplectic
manifold and a nondegenerate symplectomorphism of it. If the symplectomor-
phism is Hamiltonian, the homology arises from studying the symplectic action
functional on the (universal cover of the) free loop space of a symplectic manifold.

Symplectic Floer homology is invariant under Hamiltonian isotropy of the
symplectomorphism. Let Hamilt(M, ω) denote the set of all Hamiltonian diffeo-
morphisms of M.
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A. Floer defined in [36] the homology when π2(M, Li) = 0, i = 0, 1, and
proved that it is isomorphic to the singular homology group H∗(L0, Z2) of L0 in
the case where L0 is Hamiltonian isotopic to L1. As a result, Floer solved affirma-
tively the so called Arnold conjecture for Lagrangian intersections in that case.

In [37], A. Givental posed the following conjecture which generalized the
results of Floer and himself.

Conjecture (Arnold-Givental). Let (M, ω) be a symplectic manifold and τ : M → M
be an anti-symplectic involution of M. Assume that the fixed point set L = F(M, τ) is
not empty and compact. Then for any φ ∈ Hamilt(M, ω) such that the Lagrangian
submanifold L and its image φ(L) intersect transversally, the inequality

#(L ∩ φ(L)) ≥ b(L, Z2) (10.1)

holds, where b(L, Z2) = ∑i≥0 bi(L, Z2).

Recall that M. Takeuchi proved that if L is a symmetric R-space, then one has
#2L = b(L, Z2) (cf. Theorem 6.3). H. Iriyeh, T. Sakai and H. Tasaki computed in
[46] the Lagrangian Floer homology HF(L0, L1; Z2) of a pair of real forms (L0, L1)
in a monotone hermitian symmetric space M of compact type in the case where
L0 is not necessarily congruent to L1. In particular, they obtained a generalization
of the Arnold-Givental inequality (10.1) in the case where M is irreducible.

As an application, H. Iriyeh, T. Sakai and H. Tasaki proved the following.

Theorem 10.3. Every totally geodesic Lagrangian sphere in the complex hyperquadric is
globally volume minimizing under Hamiltonian deformations.

10.4 Two-numbers and tight Lagrangian submanifolds

The complex hyperquadric Qn(C) is holomorphically isometric to the compact
hermitian symmetric space G̃2(R

n+2).

For every natural number k with 0 ≤ k ≤ n, the complex hyperquadric Qn(C)
admits certain real forms Sk,n−k defined by Sk,n−k = (Sk × Sn−k)/Z2.

H. Tasaki proved in [88] the following.

Theorem 10.4. Let k, ℓ be integers with 0 ≤ k ≤ ℓ ≤ [n
2 ], and let L1 and L2 be real

forms which are congruent to Sk,n−k and Sℓ,n−ℓ, respectively. If L1 and L2 intersect
transversally, then L1 ∩ L2 is a 2-set of L1 and an antipodal set of L2. Moreover, if
k = ℓ = [n

2 ], then the two-numbers satisfy

#2(G̃2(R
n+2)) = #(L1 ∩ L2).

By applying Theorem 10.4, H. Tasaki obtained the following.

Theorem 10.5. Any real form of the oriented real Grassmannian G̃2(R
n+2) is a globally

tight Lagrangian submanifold.
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10.5 Application to convexity

Let M be a Riemannian manifold and let τ be an involutive isometry of M.
A connected component of the fixed point set of τ with positive dimension is
called a reflective submanifold, which is a totally geodesic submanifold of M.
A connected submanifold S of M is called (geodetically) convex if any shortest
geodesic segment in S is still shortest in M.

The (M+, M−)–theory was also used in [68] by P. Quast and M. S. Tanaka to
prove the following result.

Theorem 10.6. Every reflective submanifold of a symmetric R-space is convex.

10.6 Applications to stability

By applying the (M+, M−)–theory for compact symmetric spaces, the author,
P.-F. Leung and T. Nagano introduced in 1980 an algorithm in [19] to determine
the stability of totally geodesic submanifolds of compact symmetric spaces.

In 1987, Y. Ohnita reformulated and improved the above algorithm in [65] to
include the formulas for the index, the nullity and the Killing nullity of a compact
totally geodesic submanifold in a compact symmetric space. In the same paper,
Ohnita proved that every Helgason sphere in any compact symmetric space is
stable. Subsequently, many results about the stability of totally geodesic subman-
ifolds in compact symmetric spaces were obtained by applying our algorithm and
Ohnita’s reformulation.

In 1990, K. Mashimo and H. Tasaki proved in [57] that every closed Lie sub-
group of Dykin index 1 in every compact simple connected Lie group is stable.

K. Mashimo also determined in [56] all of unstable Cartan embeddings of
compact symmetric spaces. Moreover, by applying the algorithm there are results
on the stability of symmetric R-spaces in Hermitian symmetric spaces obtained
by M. Takeuchi [78] and also the stability of polars and meridians by M. S. Tanaka
in [80].

Furthermore, T. Kimura and M. S. Tanaka determined in [49] the stability of
the maximal totally geodesic submanifolds in compact symmetric spaces of rank
two by applying the algorithm.

10.7 Two-numbers and algebraic coding theory

Coding theory is the study of the properties of codes and their respective fitness
for specific applications. The main purpose of codes is to be able to recover the
original content of a transmitted message by correcting errors that have entered
the message during transmission. This capability is useful in maintaining the in-
tegrity of communication systems, computer networks, compact disk recording,
etc.

A p-group H is called extra special if its center Z is cyclic of order p, and the
quotient H/Z is a non-trivial elementary abelian p-group.

J. A. Wood explored in [91] the equivalence between the diagonal extra-special
2-group of the connected compact Lie group Spin(n) and the self-orthogonal
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linear binary codes of algebraic coding theory. Our results in subsection 8.3
(Theorems 8.8 and 8.9) were mentioned and been used in his work in [91].

10.8 An application to theory of designs

The theory of designs is the part of combinatorial mathematics that deals with
the existence, construction and properties of systems of finite sets whose arrange-
ments satisfy generalized concepts of balance and/or symmetry.

In 1973, P. Delsarte [28] unified the theories of codes and designs on associ-
ation schemes and gave the upper bounds for codes and the lower bound for
designs by applying linear programming for polynomials associated with metric
or cometric association schemes.

After Delsarte’s work, the theory of spherical designs was introduced by
Delsarte-Goethals-Seidel in [29] as an analogy of Delsarte technique. The es-
sential tool in their works is the addition formula for polynomials; polynomials
associated with metric or cometric association schemes, or the Gegenbauer poly-
nomials with spheres.

In general, the theory of designs can be given on the Delsarte spaces or the
polynomial spaces, which are metric spaces with “good” polynomials, such as the
polynomials associated with metric or cometric association schemes or Gegen-
bauer’s polynomials.

Compact symmetric spaces of rank one are natural and significant examples
of the Delsarte spaces or the polynomial spaces for continuous metric spaces. The
theory of designs on compact symmetric spaces of rank one was studied in details
by S. G. Hoggar in [40].

For compact symmetric spaces of higher rank, H. Kurihara and T. Okuda
proved in [52] a characterization of maximal antipodal sets of complex Grassman-
nians in term of certain designs (more precisely, E ∪ F -designs) with the smallest
cardinalities.

11 Extensions of two-numbers and applications

11.1 Holomorphic two-numbers of compact hermitian symmetric spaces

C. U. Sánchez defined holomorphic two-number #H
2 (M) for a compact connected

hermitian manifold M in [71] as the maximal possible cardinality of a subset A2

such that for every pair of points x and y of A2, there exists a totally geodesic
complex curve of genus 0 in M on which x and y are antipodal to each other.

C. U. Sánchez proved the following.

Theorem 11.1. #H
2 M = #2(M) for every compact hermitian symmetric space.

By combining Theorem 11.1 with our equality #2M = χ(M) from Theorem
6.2, one has the following.

Corollary 11.1. [71] For every compact hermitian symmetric space M, one has #H
2 (M)

= χ(M).
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11.2 Index numbers for real flag manifolds

A real flag manifold (also called a R-space) is a homogeneous space of the form
G/P, where G is a real semisimple Lie group without compact factors and P is a
parabolic subgroup. Here G/P ≡ K/K ∩ P which is a K-orbit on P.

Every complex flag manifold may be considered an R-space. In fact, let U be
a compact connected semisimple centerless Lie group and u its Lie algebra. The
complex flag manifolds of U are the orbits of the adjoint action of U on u.

Take M = Ad(U)Y for Y 6= 0 in U. Let g = uc = u+ iu. Then there is a Cartan
decomposition of the realization gR of g and one may consider M as the orbit of
iY in iu by the adjoint action of U.

In [71], C. U. Sánchez proved the following.

Proposition 11.1. Let M be a real flag manifold. Then there exists a complex flag mani-
fold Mc such that M is isometrically imbedded in Mc. If M is a symmetric R-space, then
Mc is a hermitian symmetric space and the isometric imbedding is totally geodesic. If M
is already a complex flag manifold, then Mc = M.

Using this fact that every real flag manifold M can be isometrically embed-
ded into a complex flag manifold MC (in fact, it is a connected component of
an antisymplectic involution on a complex flag manifold), C. U. Sánchez defined
in [71] the index number #I M of a real flag manifold M as the maximal possible
cardinality of the p-sets ApM (for a prime p), defined in terms of fixed points of
symmetries of the complex flag manifolds restricted to the real one.

As an extension of Theorem 6.3 of M. Takeuchi, Sánchez proved the following
result in [71].

Theorem 11.2. Let M be a real flag manifold. Then #I M = b(M, Z2), where b(M, Z2) =
∑i≥0 dim bi(M, Z2).

11.3 k-numbers for complex flag manifolds

Now, we explain very briefly the notion of k-number for complex flag manifold
introduced by Sánchez in [70].

For every complex flag manifold MC there exists a positive integer
k0 = ko(MC) ≥ 2 such that for each integer k ≥ k0 there exists a k-symmetric
structure on MC, i.e., for each point x ∈ MC there exists an isometry θx satisfying
θk

x = id with x as an isolated fixed point.
Following [51], a k-symmetric structure is called regular it satisfies

θx ◦ θy = θz ◦ θz (11.1)

with z = θx(y).
As an extension of two-numbers for symmetric spaces, C. U. Sánchez defined

the k-number #k(MC) of the complex flag manifold MC as the maximal possible
cardinality of the so-called k-sets Ak ⊂ MC with the property that for each x ∈ Ak

the corresponding k-symmetry fixes every point of Ak.
Sánchez also proved the following two results in [70].
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Theorem 11.3. For each complex flag manifold MC, one has

#k(MC) = dim H∗(MC, Z2). (11.2)

Let G be a compact connected semisimple Lie group. Then the homogeneous
spaces one obtains as orbits of G under the adjoint representation on the Lie
algebra of G are also called generalized flag manifolds.

It is well-known that these manifolds admit Kähler-Einstein metrics. It is also
well-known that every generalized flag manifold admits k-symmetric structure.

In a similar way, Sánchez also proved the following.

Theorem 11.4. If M is a generalized flag manifold, then any of its k-symmetric structure
on M satisfies #k(M) = χ(M).

11.4 k-number and k-symmetric submanifolds

Let φ : M → Em be an isometric embedding of a compact Riemannian manifold
into the Euclidean m-space. Denote the normal space of M in Em at x by T⊥

x M.
If φ satisfies the following three properties:

(a) For each x ∈ M, there is an isometry σx : Em → Em such that σk
x = idM,

σx(x) = x, and σx|T⊥
x M = identity on T⊥

x M;

(b) σx(M) ⊂ M; and

(c) Let θx = σx|M. The collection {θx, x ∈ M} defines on M a Riemannian
regular s-structure of order k,

then M is called an extrinsic k-symmetric submanifold in [35].
Sánchez proved in [70] the following.

Theorem 11.5. If M ⊂ Em is an extrinsic k-symmetric submanifold, then

#k(M) = b(M, Zp) (11.3)

for any prime number p ≥ 2 which divides k.

11.5 Index numbers and CW complex structures

A CW complex is made of basic building blocks called cells. An n-dimensional
closed cell is the image of an n-dimensional closed ball under an attaching map.
An n-dimensional open cell is a topological space that is homeomorphic to the
n-dimensional open ball. Closure-finite means that each closed cell is covered by
a finite union of open cells. The C stands for “closure-finite” and the W for “weak
topology”.

Professor Nagano and I made the following conjecture on two-numbers which
was presented the first time in my report [14, page 53].

Conjecture. The two-number #2M is equal to the smallest number of cells that are
needed for a CW complex structure on a connected compact symmetric space M.
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Using the convexity Theorems of Atiyah [3] and of Guillemin-Sternberg [38]
for symplectic manifolds with a hamiltonian torus action and the generalization
of Duistermaat [32] for fixed point set of antisymplectic involutions, J. Berndt,
S. Console and A. Fino gave in [6] alternative proofs of Sánchez’s results men-
tioned above. Also, related to our conjecture given above, J. Berndt, S. Console
and A. Fino proved the following result in [6] (see also [27]).

Theorem 11.6. The index number #I M is equal to the smallest number of cells that are
needed for a CW complex structure on M for each real flag manifold M.

12 Conjectures

Let M be a connected compact symmetric space. Professor Nagano and I made
the following three conjectures.

Conjecture 1. χ(M) ≡ #2(M) (mod 2) for every connected compact symmetric space
M.

Conjecture 2. #2M = dim H(M, Z2) for every connected compact symmetric space
M.

Remark 12.1. M. Takeuchi proved that Conjecture 2 is true for all symmetric
R-spaces in [79]. On the other hand, for every compact symmetric space we could
check both Conjectures 1 and 2 are correct.

Conjecture 3. #2M = the smallest number of cells that are needed for a CW complex
structure for every connected compact symmetric space M.

Direct computations show that Conjecture 3 is also true for sphere, real
projective space as well as for hermitian symmetric spaces.

Remark 12.2. These 3 conjectures remain open till now.

13 Open problems

The total Betti numbers, b(M; R) = ∑i≥0 bi(M; R), of a simply-connected com-
pact symmetric space M satisfies (see [14, page 53-54]):

#2M ≥ b(M; R). (13.1)

Professor T. Nagano asked the following.

Problem 13.1. b(M; R) < #2M =⇒ M has 2-torsion?

A. Borel and J. P. Serre defined the p-rank (p prime), rp(G), of a compact Lie
group G as the largest integer h such that G contains the direct product of h cyclic
groups of order p. Very little were known for p-rank. However, Borel and Serre
in [7] proved the next two results.

(a) rp(G) ≥ rk(G) for a connected compact Lie group G;
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(b) rp(G) > rk(G) implies that G has p-torsion;

A. M. Cohen and G. M. Seita proved, via algebraic method in [25], that for an
algebraic group G of exceptional type G2, F4, E6, E7, or E8 over an algebraically
closed field, the maximal elementary abelian p-subgroup E of G with p 6= 2 and
of maximum rank (i.e., rk(E) = rk(G)) is unique up to conjugacy and of types
G2, F4, E∗

7 , and E8 with rk(E) = rk(G) + 1.
Besides these, very little were known for p-ranks of compact Lie groups.
In view of [25] and [70], we asked the following.

Problem 13.2. Is it possible to establish a geometric theory to determine p-rank rp(G)
for compact Lie groups for prime p > 2?

Remark 13.1. We did this for p = 2 in [23].

A Chevalley group is a linear algebraic group of Lie type over finite fields
related to a semisimple complex Lie algebra. Such groups were introduced by
C. Chevalley in [24]. For the Lie algebras An, Bn, Cn, Dn this gave well known
classical groups, but Chevalley’s construction also gave groups associated to the
exceptional Lie algebras E6, E7, E8, F4, and G2. The ones of type E6 and of type
G2 were constructed by L. E. Dickson [30] in 1901 and [31] in 1905, respectively,
known as the Dickson groups.

While we were working on two-numbers during the 1980s, Professor Nagano
asked the following question.

Problem 13.3. Is it possible to extend our study of 2-numbers to Chevalley groups?

Because I don’t know much about finite group theory, I don’t know how to
answer this question. I do hope that someones were able to solve this problem.
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