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Abstract

A subgroup H of a group G is said to be weakly s-supplementedly em-
bedded in G if there exists a subgroup T of G suchthat G = HTand HNT <
H,, < H, where H,, is an S-permutably embedded subgroup of G. In this
paper, we investigate the structure of G under the assumption that some
subgroups of prime-power order are weakly S-supplementedly embedded
in G, and some new criteria for p-nilpotency are obtained.

1 Introduction

Let G be a finite group. |G| is the order of G, and 7 (G) = {p1 > p2 > --- > ps}
is the set of prime divisors of |G|. For p € 71(G), Syl,(G) is the set of all Sylow
p-subgroups of G, O,(G) is the maximal normal p-subgroup of G, and OF(G) =
(Q € Syly(G) | g € m(G),q # p). Let [A]B denote the semidirect product of the
groups A and B, where B is an operator group of A.

G is a Sylow-tower group if there exists a series: 1 = Gp < G; < G, < --- <
Gs-1 < Gs = G such that G; 4G and [Giy1/Gi| = piil, i = 0,1,...,s — 1.
A subgroup H of G is subnormal in G if there exists a series: H = H; < Hy <
e < Hs—l < HS — GSUChthatHiﬁHi+1,i: 1,2,...,t—1.
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A class of finite groups F is called a formation if the following conditions are
satisfied:

(0) if G € F, then all groups isomorphic to G also belong to F;
(1) if G € F and N is a normal subgroup of G, then G/N € F;

(2) if N; are normal subgroups of a group G (not necessarily belonging to F
such that G/N; € F,i=1,2,then G/Ny NN, € F.

Recall that the Frattini subgroup ®(G) = Np1<cM of a group G is the intersection
of all maximal subgroups of G. A formation F is saturated if G € F whenever
G/®(G) € F. For example, the class of all p-nilpotent groups(pN) and the class
of all supersolvable groups(i/) are saturated formations.

All other notation and terminology is standard, following [7, 8].

Assume F is a class of groups and A/ B is a chief factor of G. A/ B is called Frattini
provided A/B < ®(G/B). Moreover, A/B is called F-central if
[A/B|(G/Cs(A/B)) € F. Otherwise, A/B is called F-eccentric. In 2009,
Shemetkov and Skiba [15] introduced the concept of F®-hypercentre of G. The
symbol Zr4(G) denotes the FP-hypercentre of G which is the product of all
normal subgroups of G whose non-Frattini G-chief factors are F-central in G.
A (normal) subgroup E of G is called F®-hypercentral in G if E < Zrg(G).
An important fact is that if G has a normal subgroup E such that G/E € F
and E < Zre(G), then G € F, for any saturated formation F. Especially,
G < Zr4(G) is equal to the case that G € F.

Let p € 71(G). Recall that a subgroup H of G is p-local, if H = Ng(S) for some
nontrivial p-subgroup S of G. p-local subgroups play an important role in inves-
tigating the structure of finite groups. For example, Burnside’s Theorem asserts
that G is p-nilpotent if Ng(P) = Cg(P) for some Sylow p-subgroup P of G and
p € 1t(G). The following generalization of Burnside’s Theorem is due to Hall [6]:
if the p’-elements of Ng(P) commute with the elements of P and the class size of
P is smaller than p, then G is p-nilpotent. Huppert [7] showed that a group G is p-
nilpotent if it has a regular Sylow p-subgroup whose G-normalizer is p-nilpotent.
The Frobenius Theorem asserts that G is p-nilpotent if and only if Ng(S) is p-
nilpotent, for every nontrivial p-subgroup S of G.

The idea behind these results (and other available in the literature) is to consider
local properties of subgroups having prime-power order. The aim of this paper
is to investigate whether it is possible to reduce the number of subgroups that is
needed to characterize p-nilpotency.

Recall that a subgroup H of G is called S-permutable (or S-quasinormal or
rt-quasinormal) in G if HP = PH for all Sylow subgroups P of G. H is called
S-permutably embedded in G if each Sylow subgroup of H is a Sylow subgroup of
some S-permutable subgroup of G.

Definition 1.1. A subgroup H of G is called weakly S-supplementedly embedded
in G if there exists a subgroup T of G such that G = HT and HNT < Hs, < H,
where H;, is an S-permutably embedded subgroup of G.
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Take p € 7(G) and P € Syl,(G), and let P’ be the derived subgroup of P. Let
H(P) ={H < P| P <H<®(P)}, and let (P) be the set of subgroups K < G
such that K is p-closed and # (P) contains the Sylow p-subgroup of K. Obviously
H(P) C K(P) and each element in H(P) is normal in P.

Our main result consists of the following characterizations of hypercentre of a
group G with normal subgroup E and Sylow p-subgroup P of E(see Theorems
3.1,35and 3.8): E < Z,xe(G) if there exists H € H(P) such that H is weakly
S-supplementedly embedded in G and Ng(P) is p-nilpotent or if there exists
H € H(P) such that H is weakly S-supplementedly embedded in G and Ng(H) is
p-nilpotent or assume that (|G|, p — 1) = 1 and if one of the following conditions
is satisfied

(1) thereexists K € KC(P) such that K is weakly S-supplementedly embedded in
G and every maximal subgroup of P is weakly s-supplementedly embedded
in Ng(P);

(2) there exists K € K(P) such that K is weakly S-supplementedly embedded
in G and every cyclic subgroup of P of order p (and of order 4 if P is non-
abelian and p = 2) is weakly S-supplementedly embedded in Ng(P).

Further, we obtain the following characterizations of p-nilpotency of a group G
with Sylow p-subgroup P: G is p-nilpotent if and only if there exists H € #H(P)
such that H is weakly S-supplementedly embedded in G and N (P) is p-nilpotent
if and only if there exists H € H(P) such that H is weakly S-supplementedly
embedded in G and Ng(H) is p-nilpotent, see corollaries 3.2 and 3.9. These can
be viewed as alternative versions of the Theorems of Burnside and Frobenius. In
corollary 3.7, we give sufficient conditions for a group G to belong to a saturated
formation that contains the class of all supersolvable groups.

2 Preliminaries

Lemma 2.1. [9]
(a) An S-permutable subgroup of G is subnormal in G.
(b) If H < K < Gand H is S-permutable in G, then H is S-permutable in K.
(c) Let K G. If H is S-permutable in G, then HK/K is S-permutable in G /K.
(d) If P is an S-permutable p-subgroup of G for some prime p, then Ng(P) > OF(G).

Lemma 2.2. [1, Lemma 2.1] Suppose that U is S-permutably embedded in G, and that
H < Gand N <G.

(a) If U < H, then U is S-permutably embedded in H.

(b) UN is S-permutably embedded in G and UN/N is S-permutably embedded in
G/N.
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Lemma 2.3. [16, Lemma 2.5] Suppose that H is S-permutable in G, and that P is a Sylow
p-subgroup of H, with p € 7(G). If Hg = 1 or P < Op(G), then P is S-permutable in
G.

Lemma 2.4. [11, Lemma 2.3] Let U be a weakly S-supplementedly embedded subgroup
of G and N be a normal subgroup of G.

(a) If U < H < G, then U is weakly S-supplementedly embedded in H.
(b) If N < U, then U/ N is weakly S-supplementedly embedded in G/N.

(c) Let 7t be a set of primes, U a rt-subgroup and N a 7t’-subgroup of G. Then UN /N
is weakly S-supplementedly embedded in G/ N.

Lemma 2.5. Let P be a Sylow p-subgroup of G, with p € 7(G). Assume that K < G,
and let H be a Sylow p-subgroup of K such that H AK and H < ®(P). If K is weakly
S-supplementedly embedded in G, then H is S-permutably embedded in G.

Proof. By hypothesis, there is a subgroup A of G and an S-permutably embedded
subgroup Ks. of G such that G = KA and KNA < K, < K. Since H <K,
there exists a Sylow p-subgroup P; of A such that P = HP; < ®(P)P; < Pj.
Furthermore, H < P < A and H is a Sylow p-subgroup of Ks,. It follows from the
definition of the S-permutably embedded subgroup that H is an S-permutably
embedded subgroup of G. n

Lemma 2.6. [12] Assume that P is a Sylow p-subgroup of G, with p € 7(G), and that
N <G. IfPNN < ®(P), then N is p-nilpotent.

Lemma 2.7. Assume that P is a normal Sylow p-subgroup of G, with p € 7(G), and
that P/®(P) is a minimal normal subgroup of G/®(P). If every maximal subgroup of
P or every cyclic subgroup of P with order p or order 4 (if P is non-abelian and p = 2) is
weakly S-supplementedly embedded in G, then P is cyclic.

Proof. Let P; be a maximal subgroup of P. If P; is weakly S-supplementedly em-
bedded in G, then we claim that P; < ®(P). Let T be a supplement of P; in G
such that G = PiTand P,NT < (P})se < P;. ThenG = PiITand P = PNG =
PNPT =P (PNT). Since P/®(P) is abelian, (PN T)P(P)/P(P) IG/P(P) and
(P N T)®(P) < G. Since P/®(P) is a minimal normal Sylow
p-subgroup of G/®(P), PNT < ®(P)or PNT = P. If PNT < P(P), then
P = P;(PNT) = Pj, which is a contradiction. Now we assume that PNT = P.
Then P, < PLNT < (Pr)se < Op(G) = P. Hence P; is S-permutable in G by
Lemma 2.3. Then P;®(P)/®(P) is S-permutable in G/P(P) by Lemma 2.1(c) and
s0 Ng/a(p)(P1P(P)/®(P)) > OP(G/P(P)). Furthermore, Py®(P)/®(P) is nor-
mal in G/®(P). By the minimality of P/®(P) as a normal subgroup of G/®(P)
again, P; < ®(P). Hence P has a unique maximal subgroup by the above argu-
ment, which implies that P is cyclic.

If every cyclic subgroup of P with order p (and order 4 if P is non-abelianand p =
2) is weakly S-supplementedly embedded in G, then we also have |P/®(P)| = p
and then P is cyclic. Otherwise, let K/ ®(P) be any non-trivial cyclic subgroup of
P/®(P). Let x € K\ ®(P) such that T = (x)®(P). Then by the above argument,
(x) < ®P(P) and so T = ®(P), which is a contradiction. u
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Lemma 2.8. Let P be a normal Sylow p-subgroup of G, with p € 7(G), and assume
that (|G|, p — 1) = 1. Then the following assertions are equivalent:

(1) G is p-nilpotent;
(2) every maximal subgroup of P is weakly S-supplementedly embedded in G;

(3) every cyclic subgroup of P of order p is weakly S-supplementedly embedded in G,
and, in the situation where p = 2 and P is non-abelian, every cyclic subgroup of P
of order 2 or 4 is weakly S-supplementedly embedded in G.

Proof. (1) = (2). If G is p-nilpotent, then G has a normal p-complement T. If P;
is a maximal subgroup of P, then P;T is normal in G since |G : P;T| = p, and it
follows that P; is weakly S-supplementedly embedded in G.

(1) = (3). Let P; be a cyclic subgroup of P of order p. It follows that P; is a
Sylow p-subgroup of P;T. Let Q be a Sylow g-subgroup of G, where g # p is a
prime divisor of |G|. Then Q < T and P;TQ = QP;T = P;T. By hypothesis, P is
normal in G hence PiTP = PT is a subgroup of G, which implies that P;T is an
S-permutable subgroup of G and P; is S-permutably embedded in G. Hence P,
is weakly S-supplementedly embedded in G. Similar arguments apply to cyclic
subgroups of order 4 in the case where p = 2 and P is non-abelian.

(3) = (1). Assume that G is not p-nilpotent. This means that the class of non-
p-nilpotent groups G with order relatively prime to p — 1 and containing P as a
normal p-subgroup is not empty, and we can take such a group G with minimal
order.

Let M be a proper subgroup of G. Then P N M is a normal Sylow p-subgroup of
M, and it follows from Lemma 2.4 that every cyclic subgroup of P with order p
or order 4 is weakly S-supplementedly embedded in M and so M is p-nilpotent.
By [14, VI, Theorem 24.2], P/®(P) is a G-chief factor of P. Now by Lemma 2.7, P
is cyclic and it follows from Burnside’s Theorem that G is p-nilpotent, which is a
contradiction.

(2) = (1). Assume that G is not p-nilpotent. This means that the class of non-
p-nilpotent groups G with order relatively prime to p — 1 and containing P as a
normal p-subgroup is not empty, and we can take such a group G with minimal
order.

Let N be a minimal normal subgroup of G contained in P. It is easy to see that
G/N is p-nilpotent. By a routine argument, we have that N = P. It follows from
Lemma 2.7 that G is p-nilpotent, which is a contradiction. [ ]

Lemma 2.9. Let q is a prime divisor of |G|, and let Q be a normal Sylow g-subgroup of G
such that G/ Q is supersolvable. G is supersolvable if one of the two following conditions
is satisfied:

(1) every maximal subgroup of Q is weakly S-supplementedly embedded in G;

(2) every subgroup of Q of order q, and in the situation where q = 2 and Q is non-
abelian, every subgroup of order 2 or 4 is weakly S-supplementedly embedded in G.

Proof. Assume that G is not supersolvable.
If (2) holds, then it follows from Lemma 2.8 that G is minimal non-supersolv-
able, in the sense that every proper subgroup of G is supersolvable. By [2], G has
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a normal Sylow p-subgroup P such that G = PM, where M is a supersolvable
maximal subgroup of G and P/®(P) is a minimal normal subgroup of G/®(P).
If P # Q,then G < G/P x G/Q is supersolvable, which is a contradiction.
Hence P = Q. Now Q is cyclic by Lemma 2.7 and then G is supersolvable, which
is a contradiction.

Assume that (1) holds, and let N be a minimal normal subgroup of G contained in
Q. Assume that Q;/N is a maximal subgroup of Q/N, then Q; is maximal in Q.
By the hypothesis and Lemma 2.4, Q1 /N is weakly S-supplementedly embedded
in G/N. So G/ N satisfies the hypothesis of the Lemma and G/ N is supersolvable
by the choice of G. It follows that N is the unique minimal normal subgroup of G
contained in Q and N £ ®(G). Hence N = Q. It follows from Lemma 2.7 that Q
is cyclic and G is supersolvable, which is a contradiction. n

Lemma 2.10. Let G be a group and P € Syl,(G) where p € 71(G). If P is abelian and
Ng(P) is p-nilpotent, then G is p-nilpotent.

Proof. Since Ng(P) is p-nilpotent, Ng(P) = P x H, where H is a normal
p-complement of P in Ng(P), and H < Cg(P). On the other hand P is abelian
and P < Cg(P), hence Ng(P) = Cg(P) and G is p-nilpotent by Burnside’s Theo-
rem. ]

Lemma 2.11. [5, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of G.
If NN ®(G) = 1, then the Fitting subgroup F(N) of N is the direct product of minimal
normal subgroups of G which are contained in N.

Lemma 2.12. [3, Lemma A.9.11] Let K and N be the normal subgroups of G with N < K
and K is nilpotent. If K/N < ®(G/N), then K < ®(G)N.

Lemma 2.13. [13, Lemma 2.4] Suppose that P is a p-subgroup of G contained in O,(G).
If P is S-permutably embedded in G, then P is S-permutable in G.

Lemma 2.14. Suppose that R is a minimal normal subgroup of G and R < O,(G),
where p € 11(G). |R| = p if one of the following conditions is satisfied

(1) every maximal subgroup of P is S-supplementedly embedded in G;

(2) every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is S-supplementedly embedded in G.

Proof. Since R is a minimal normal subgroup of G and R < O,(G), we may let Ry
be the maximal subgroup or cyclic subgroup of P of order p (and of order 4 if P
is non-abelian and p = 2) of R such that R; < P, where P is a Sylow p-subgroup
of G. By the hypothesis, R; is S-permutably embedded in G and Lemma 2.13,
then R; is S-permutable in G. Further, by Lemma 2.1, Ng(R;) > OP(G). Then
N¢(R1) = G and R; < G by the choice of R;. Hence Ry = 1 and |R| = p since R
is a minimal normal subgroup of G. m
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3 Main Results

Theorem 3.1. Let EX G, p € n(E), and let P be a Sylow p-subgroup of E. If there
exists H € H(P) such that H is weakly S-supplementedly embedded in G and N (P) is
p-nilpotent, then E < Z,no(G).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that E £ Z,xe(G). Fixing P the class of all couples (G, E) satisfying the con-
ditions of the Theorem such that E £ Z,xr¢(G) is not empty, and we can choose
a (G,E) in such a way that |G| + |E| is minimal. In several steps, we show that
this leads to a contradiction.

Step 1. Op/(E) =1.

Now, we consider the couple (G,E) = (G/Oy(E),E/Op(E)). Then
P = PO,(E)/O,(E) is a Sylow p-subgroup of E. Certamly, =(P) = Ng(P)
and (P)) < P’ < H < ®(P) < ®(P). It follows that (P)’ < H < ®(P). Hence
H € H(P). By Lemma 2.4, it is easy to see that (G/O,(E),E/O(E)) satisfies
the conditions of the Theorem, and E/O,(E) < Z,x0(G/Oy(E )) by the choice
of (G, E). Further, E < Z,\r¢(G), which is a contradiction.

Step 2. E = G.

If E < G, then we consider the couple (E,E). By Lemma 2.4, (E, E) satisfies the
conditions of the Theorem, and E < Z,x¢(E) by the choice of (G, E). Further,
E is p-nilpotent and E = P < G by Step 1. Then Ng(P) = G is p-nilpotent and
E < Z,n9(G), which is a contradiction.

Step 3. H is a non-trivial S-permutably embedded subgroup of G and G is not a
non-abelian simple group.

It follows from Lemma 2.5 that H is an S-permutably embedded subgroup of G.
If H=1, then P’ < H = 1 implies that P is abelian. It follows from Lemma 2.10
that G is p-nilpotent, which is a contradiction. Let A be an S-permutable sub-
group of G such that H is a Sylow p-subgroup of A. Then A # 1. Since H < P
and A < G, A is a non-trivial subnormal subgroup of G, which implies that G is
not a non-abelian simple group.

Step 4. G has a unique minimal normal subgroup N and G/N is p-nilpotent.
Furthermore, O,/(G) = 1and N £ ®(G)

Let N be a minimal normal subgroup of G, and consider the quotient group G =
G/N. Then P = PN/N is a Sylow p-subgroup of G. Certainly, No(P) = Ng(P)
and (P) < P’ < H < ®(P) < ®(P). It follows that (P)’ < H < ®(P). Hence
H € H(P). By Step 1 and Lemma 2.2, it is easy to see that G/N satisfies the
hypothesis, and G/N is p-nilpotent by the choice of G. Obviously N is the unique
minimal normal subgroup of G. Furthermore, O,/(G) = 1and N £ O(G

Step 5. 0,(G) = 1.

Assume that O,(G) # 1. Then N < O,(G) and NN ®(G) = 1 by Step 4.
It follows that O,(G) N®(G) = 1,and N = O,(G) by [10, Lemma 2.6].

Now we claim that N < ®(P). Let A be an S-permutable subgroup of G such
that H is a Sylow p-subgroup of A. If Ag # 1, then O,(G) = N < H < ®(P).
If Ac = 1, then H is an S-permutable subgroup of G by Lemma 2.3. It follows
from Lemma 2.1(d) that OP(G) < Ng(H) and so G = PO*(G) < Ng(H), which
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implies that H < G. Hence either H = 1or N < H. If H = 1, then P =1and G
is p-nilpotent by Lemma 2.10, a contradiction. Hence N < H and it follows that
N < ®(P). Then N < &(G), which contradicts Step 4. So O,(G) = 1.

Step 6. Final contradiction.

If NP < G, then NP satisfies the hypothesis and NP is p-nilpotent by the choice
of G. Therefore N is p-nilpotent, which contradicts Step 5. Hence G = NP.

By Step 3, H is a Sylow p-subgroup of an S-permutable subgroup A of G.
If Ac = 1, then by Lemma 2.3 H is S-permutable in G and so H < 0,(G),
which contradicts Step 5. So Ag # 1. It follows from the uniqueness of N that
N < Ag < Aand so HN N is a Sylow p-subgroup of N. Since PN N is also a
Sylow p-subgroup of Nand HNN < PNN,PNN =HNN < H < &(P). By
Lemma 2.6, N is p-nilpotent, which contradicts Step 5. n

Corollary 3.2. Let p € 7(G), and let P be a Sylow p-subgroup of G. Then G is
p-nilpotent if and only if there exists H € H (P) such that H is weakly S-supplementedly
embedded in G and N (P) is p-nilpotent.

Proof. The sufficency follows easily from Theorem 3.1. Next, we consider the
necessity.

If G is p-nilpotent, then N (P) is p-nilpotent and G has a normal p-complement T
such that G = PT. It follows that P'T is normal in G and P’ is a Sylow p-subgroup
of P'T, which implies that P’ is a weakly S-supplementedly embedded subgroup
of G. Itis obvious that P’ € H(P). ]

Corollary 3.3. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|
satisfying (|G|, p — 1) = 1. The following statements are equivalent

(1) G is p-nilpotent;

(2) there exists H € H(P) such that H is weakly S-supplementedly embedded in G
and every maximal subgroup of P is weakly s-supplementedly embedded in Ng(P);

(3) thereexists H € H(P) such that H is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p and of order 2 or 4 is weakly S-supplementedly
embedded in Ng(P).

Proof. This result follows from Lemma 2.8 and corollary 3.2. m

Corollary 3.4. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|
satisfying (|G|, p — 1) = 1. The following statements are equivalent

(1) G is p-nilpotent;

(2) there exists K € IC(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly S-supplemently embedded in Ng(P);

(3) there exists K € K(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P with order p (and every cyclic subgroup of order 4 in the

case where p = 2 and P is non-abelian) is weakly S-supplementedly embedded in
N (P).
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Proof. This result follows from Lemma 2.5 and corollary 3.3. ]

Theorem 3.5. Let G be a group and let p be a prime divisor of |G| satisfying
(IG|,p —1) = 1. Suppose that E is a normal subgroup of G. Let P be a Sylow
p-subgroup of E. E < Z,xo(G) if one of the following conditions is satisfied

(1) there exists K € IC(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly s-supplementedly embedded in Ng(P);

(2) there exists K € IC(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in Ng(P).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that G is not p-nilpotent. Fixing P the class of all couples (G, E) satisfying the
conditions of the Theorem such that G is not p-nilpotent is not empty, and we can
choose a (G, E) in such a way that |G| + |E| is minimal. It follows from Lemma
2.4 and corollary 3.4 that E is p-nilpotent. Let T be the normal p-complement of
E. Then T <G.

If T # 1, then we consider G/ T with normal subgroup E/T. It is easy to see that
E = PT and (|P|,|T|) = 1. An argument similar to Step 4 in Theorem 3.1 shows
that the (G/T,E/T) satisfies the conditions of the Theorem, and this implies that
E/T < Zyne(G/T), by the minimality of |G| + |E|. Then E < Z,x¢(G), which
is a contradiction.

If T =1, then E = P is a p-group and Ng(P) = G. Assume that (1) holds. For
every minimal normal subgroup N of G contained in P, by Lemma 2.2, Lemma
2.4, the argument similar to Step 4 in Theorem 3.1, then E/N < Z,x¢(G/N).
Next, we assert that PN ®(G) = 1. Otherwise, PN ®(G) # 1 and we may choose
a minimal normal subgroup N of G such that N < P N ®(G). By the discussion
above, E/N < Z,no(G/N) and E < Z,9(G), which is a contradiction. Fur-
ther, by Lemma 2.11, P is the direct product of minimal normal subgroups of G
which are contained in P. We assert that P is a minimal normal subgroup of G.
Otherwise, we may choose different minimal normal subgroups N; and N, of
G contained in P. By the discussion above, E/N; < ZPN¢(G/Ni), i =1,2. By
Lemma 2.12, NNy /N; £ ®(G/N;) and NyN, /N, < Z(G/N3). Then Ny < Z(G)
and E < Z, o (G), which is a contradiction. Further, |P| = p by Lemma 2.14 and
E < Z,x9(G), which is a contradiction.

Assume that (2) holds. If every cyclic subgroup of P of order p (and of order 4
if P is non-abelian and p = 2) is weakly S-supplementedly embedded in G, then
we assert that every cyclic subgroup of P of order p is S-permutably embedded
in G. Otherwise, assume that there exists a subgroup L of P of order p is comple-
mented in G. Then there exists a maximal subgroup of M of G such that G = LM
and LN M = 1. Further, M< G, PNM <G and P/P N M is a minimal normal
subgroup of G/P N M. Next, we consider (G,P N M). By Lemma 2.4 and the
choice of (G,E), PN M < Z,ne(G) and P < Z,x(G) since [P/PNM| = p,
which is a contradiction. By Lemma 2.13, every cyclic subgroup of P of order p is
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S-permutable in G. By the argument similar to the case on the maximal sub-
groups, every minimal normal subgroup N of G contained in P is of order p.
By Lemma 2.2, Lemma 2.4, the argument similar to Step 4 in Theorem 3.1 and
Lemma 2.11, it easy to see that P is a minimal normal subgroup of G. Then |P| = p
by Lemma 2.14. Further, E < Z, N (G), which is a contradiction. [

Corollary 3.6. Let G be a group and let p be a prime divisor of |G| satisfying
(IGl,p —1) = 1. Suppose that E is a normal subgroup of G such that G/E is
p-nilpotent. Let P be a Sylow p-subgroup of E. G is p-nilpotent if one of the follow-
ing conditions is satisfied

(1) there exists K € IC(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly s-supplementedly embedded in Ng(P);

(2) there exists K € IC(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in Ng(P).

Corollary 3.7. Assume that F is a saturated formation containing the class of all super-
solvable groups U, E 1 G and G/E € F for any prime p dividing |E|. Take P € Syl,(E),
and suppose that there exists K € K(P) such that K is weakly S-supplementedly embed-
ded in G. G € F if one of the following conditions is satisfied:

(1) every maximal subgroup of P is weakly S-supplementedly embedded in Ng(P);

(2) every cyclic subgroup of P with order p and order 4 (if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in N (P).

Proof. Assume that (G, E, K, P) satisfy the conditions of the Theorem and that
G ¢ F. Fix (E,K,P). The class of groups G such that (G, E, K, P) satisfies the
conditions of the Theorem and G ¢ F is not empty, so we can find G of minimal
order in this class.

Let g be the largest prime divisor of |G| and Q € Syl,(G). By corollary 3.6, G is
a Sylow-tower group and Q < G. Applying Lemmas 2.4 and 2.5, it is easy to see
that G/Q satisfies the conditions of the corollary, and G/Q is supersolvable by
minimality of G. It follows from Lemma 2.9 that G is supersolvable. m

Theorem 3.8. Let E G, p € nt(E), and let P be a Sylow p-subgroup of E. If there
exists H € H(P) such that H is weakly S-supplementedly embedded in G and Ng(H)
is p-nilpotent, then E < Z, e (G).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that E £ Z, e (G). Fixing P the class of all couples (G, E) satisfying the con-
ditions of the Theorem such that E £ Z,\¢(G) is not empty, and we can choose
a (G,E) in such a way that |G| + |E| is minimal. In several steps, we show that
this leads to a contradiction.

Step1. O, (E) = 1.

Now, we consider the couple (G,E) = (G/Oy(E),E/Op(E)). Then
P = POy(E)/Oy(E) is a Sylow p-subgroup of E. Certamly, N =(P) = Ng(P)
and (P)’ < P < ﬁ < ®(P) < ®(P). It follows that (P)’ < H < ®(P). Hence
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H € H(P). By Lemma 2.4, it is easy to see that (G/O,(E),E/O(E)) satisfies
the conditions of the Theorem, and E/O,(E) < Z,x9(G/O,(E)) by the choice
of (G, E). Further, E < Z,,5¢(G), which is a contradiction.

Step 2. E = G.

If E < G, then we consider the couple (E,E). By Lemma 2.4, (E, E) satisfies the
conditions of the Theorem, and E < Z,xo(E) by the choice of (G, E). Further,
E is p-nilpotent and E = P < G by Step 1. Then Ng(P) = G is p-nilpotent and
E < Z,no(G), which is a contradiction.

Step 3. Ag, the largest normal subgroup of G contained in A, is not trivial.

By Lemma 2.5, H is an S-permutably embedded subgroup of G. If Ag = 1, then
H is S-permutable in G by Lemma 2.3 and so OF(G) < Ng(H). Since H is normal
in P, G = POP(G) < Ng(H) is p-nilpotent, which is a contradiction.

Step 4. Final contradiction.

Since H is a Sylow p-subgroup of HAg, it follows from [4, Lemma 3.6.10] that
NG/AG(HAG/AG) = Ng(H)Ag/Ag and HAg/Ag € H(PAg/Ag). Ttis easy to
see that G/ Ag satisfies the hypothesis of the Theorem and G/ Ag is p-nilpotent
by Step 3 and the minimality of G.

PNAgc = HNAg < ®(P), Ag is p-nilpotent by Lemma 2.6. By Step 1,
Ac < H < ®(P) and so Ag < ®(G), which implies that G is p-nilpotent, which
is a contradiction. n

Corollary 3.9. Let G be a group and let P be a Sylow p-subgroup of G, where p is a prime
divisor of |G|. Then G is p-nilpotent if and only if there exists a subgroup H € H(P)
such that H is weakly S-supplementedly embedded in G and Ng(H) is p-nilpotent.

Proof. The necessity follows easily from Frobenius Theorem and corollary 3.2.
Conversely, we assume E = G and it follows from Theorem 3.8. n

Corollary 3.10 follows as an immediate application of corollary 3.9.

Corollary 3.10. A group G is nilpotent if and only if for every p € 7(G), there
exists a Sylow p-subgroup P of G and a subgroup H € H(P) such that H is weakly
S-supplementedly embedded in G and Ng(H) is p-nilpotent.

4 Applications
Let P be a Sylow p-subgroup of G. It is easy to see that p-nilpotency of Ng(P)
implies that P’ € Syl,((Ng(P))’) and ®(P) € Syl,(P(Ng(P))). Therefore Theo-

rem 3.3 has the following corollaries.

Corollary 4.1. Assume that (|G|,p —1) = 1 and let P be a Sylow p-subgroup of G.
The following assertions are equivalent.

(1) G is p-nilpotent;

(2) P’ is weakly S-supplementedly embedded in G and every maximal subgroup of P is
weakly S-supplementedly embedded in Ng(P);
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(3) P’ is weakly S-supplementedly embedded in G and every cyclic subgroup of P of
order p (and of order 4 if p = 2 and P is non-abelian) is weakly S-supplementedly
embedded in Ng(P);

(4) ®(P) is weakly S-supplementedly embedded in G and every maximal subgroup of
P is weakly S-supplementedly embedded in Ng(P);

(5) ®(P) is weakly S-supplementedly embedded in G and every cyclic subgroup of P of
order p (and of order 4 if p = 2 and P is non-abelian) is weakly S-supplementedly
embedded in Ng(P);

(6) (Ng(P))' is weakly S-supplementedly embedded in G and every maximal subgroup
of P is weakly S-supplementedly embedded in Ng(P);

(7) (Ng(P)) is weakly S-supplementedly embedded in G and every cyclic subgroup of
P of order p (and of order 4 if p = 2 and P is non-abelian) is weakly
S-supplementedly embedded in Ng(P);

(8) ®(Ng(P)) is weakly S-supplementedly embedded in G and every maximal sub-
group of P is weakly S-supplementedly embedded in Ng(P);

(9) ®(Ng(P)) is weakly S-supplementedly embedded in G and every cyclic subgroup
of P of order p (and of order 4 if p = 2 and P is non-abelian) is weakly
S-supplementedly embedded in Ng(P).

Finally, [11, Theorem 3.1] follows as a consequence of Theorem 3.3.

Corollary 4.2. [11, Theorem 3.1] Assume that (|G|,p — 1) = 1 and let P be a Sylow
p-subgroup of G. If there exists a Sylow p-subgroup P of G such that every maximal
subgroup of P is weakly S-supplementedly embedded in N (P) and if P’ is S-permutable
in G, then G is p-nilpotent.
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