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Abstract

We show how certain topological properties of co-Kähler manifolds
derive from those of the Kähler manifolds which construct them. In par-
ticular, we show that the existence of parallel forms on a co-Kähler manifold
reduces the computation of cohomology from the de Rham complex to cer-
tain amenable sub-cdga’s defined by geometrically natural operators derived
from the co-Kähler structure. This provides a simpler proof of the formality
of the foliation minimal model in this context.

1 Introduction

Co-Kähler manifolds may be thought of as odd-dimensional versions of Kähler
manifolds and various structure theorems explicitly display how the former are
constructed from the latter (see [1, 15]).

In this paper, we take the point of view that topological and geometric proper-
ties of co-Kähler manifolds are inherited from those of the Kähler manifolds that
construct them. We call this the hereditary principle and we shall see this in both
topological and geometric contexts. See [2] for further applications of this princi-
ple. First, let us recall some basic definitions (see [3] for a detailed introduction).
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Definition 1.1. An almost contact metric structure pJ, ξ, η, gq on a manifold M2n`1

consists of a tensor J of type p1, 1q, a vector field ξ, a 1-form η and a Riemannian
metric g such that

J2 “ ´I ` η b ξ, ηpξq “ 1, gpJX, JYq “ gpX, Yq ´ ηpXqηpYq, (1)

for vector fields X and Y, I the identity transformation on TM.

A local J-basis for TM, tX1, . . . , Xn, JX1, . . . , JXn, ξu, may be found with
ηpXiq “ 0 for i “ 1, . . . , n. The fundamental 2-form on M is given by

ωpX, Yq “ gpJX, Yq,

and if tα1, . . . , αn, β1, . . . , βn, ηu is a local 1-form basis dual to the local J-basis,
then

ω “
n

ÿ

i“1

αi ^ βi.

Note that ıξω “ 0.

Definition 1.2. The geometric structure pM2n`1, J, ξ, η, gq is

• co-symplectic if dω “ 0 “ dη;

• normal if rJ, Js ` 2 dη b ξ “ 0;

• co-Kähler if it is co-symplectic and normal; equivalently, if J is parallel with
respect to the metric g.

Recently, co-symplectic geometry has attracted a great deal of interest, espe-
cially in the context of Poisson geometry, where co-symplectic structures are inter-
preted as corank 1 Poisson structures (see for instance [5, 9, 12, 14, 16]). Sasakian
structures also belong to this family; more precisely, they are normal structures
such that dη “ ω (see [4, 6, 7]).

Two crucial facts about co-Kähler manifolds are contained in the following
lemma. For a direct proof of these facts, see [1].

Lemma 1.3. On a co-Kähler manifold, the vector field ξ is Killing and parallel. Further-
more, the 1-form η is parallel and harmonic.

Lemma 1.3 is a key point in Theorem 1.5 below. In fact, in [15] it is shown that
we can replace η by a harmonic integral form ηθ with dual parallel vector field
ξθ and associated metric gθ , p1, 1q-tensor Jθ and closed 2-form ωθ with iξθ

ωθ “ 0.
Then we have the following result of H. Li.

Theorem 1.4 ([15]). With the structure pM2n`1, Jθ, ξθ , ηθ , gθq, there is a compact Kähler
manifold pK, hq and a Hermitian isometry ψ : K Ñ K such that M is diffeomorphic to the
mapping torus

Kψ “
K ˆ r0, 1s

px, 0q „ pψpxq, 1q

with associated fibre bundle K Ñ M “ Kψ Ñ S1.
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In [1], the following refinement of Li’s result is proved:

Theorem 1.5 ([1], Theorem 3.3). Let pM2n`1, J, ξ, η, gq be a compact co-Kähler man-
ifold with integral structure and mapping torus bundle K Ñ M Ñ S1. Then M splits
as M – S1 ˆZm K, where S1 ˆ K Ñ M is a finite cover with structure group Zm

acting diagonally and by translations on the first factor. Moreover, M fibres over the
circle S1{pZmq with finite structure group.

The first true study of the topological properties of co-Kähler manifolds was
made in [8] where the focus was on things such as Betti numbers and a modified
Lefschetz property. The two results above allow us to say something about the
fundamental group and, moreover, to display the higher homotopy groups as
those of the constituent Kähler manifold K (groups which, of course, are generally
unknown as well).

Here we use work of Verbitsky [17] and the geometric structure of co-Kähler
manifolds to give a completely new decomposition of the cohomology of a
co-Kähler manifold in terms of the basic cohomology of the associated transver-
sally Kähler characteristic foliation. This leads to a new, simpler proof of the
“Lefschetz” property of [8]. Moreover, we show in Proposition 2.12 how the
minimal model of a compact co-Kähler manifold is constructed from the mini-
mal model of the basic cohomology with an extra generator in degree one and
this provides an intriguing link between the formality of the co-Kähler manifold
and the formality of the basic cohomology model. This can be viewed as either
applying the formality result of [10] to prove that of [8, 2] or the reverse!

There is one important thing to note. In [2], we used Theorem 1.5 to derive
results about co-Kähler manifolds that were based on taking G “ Zm invariants
of the action on S1 ˆ K. This included determining the structure of cohomol-
ogy as well as showing that co-Kähler manifolds satisfy the so-called Toral Rank
Conjecture. Here our goal is to go deeper into the geometry of co-Kähler mani-
folds by examining properties inherent in their differential forms. In this context,
we note that the splitting theorem Theorem 1.5 actually uses a modification of
the given co-Kähler structure; in fact, the given co-Kähler structure is already lost
via the argument of Li to get the mapping torus structure in Theorem 1.4. In
some sense, this modification is akin to taking an integral symplectic form near a
given symplectic form. While various properties are not affected, it is not quite
the original symplectic structure that is being studied. The co-Kähler modifi-
cation does no harm when, for instance, proving the Toral Rank Conjecture for
co-Kähler manifolds since the latter is just a property of the cohomology of the
underlying manifold. However, when talking about the co-Kähler version of the
Lefschetz Property (see Proposition 2.4, Theorem 2.9), we want to keep track of
the given co-Kähler structure because, in fact, the Lefschetz Property refers to
it! Then, instead of modifying the co-Kähler structure to one coming from a map-
ping torus, we work with the characteristic foliation intrinsically associated to the
given co-Kähler structure. Thus we prove the Lefschetz Property not for an as-
sociated co-Kähler structure (the one called integral in [1]), but for the given one.
Working with forms has the added benefit of allowing us to relate the minimal
models of the co-Kähler manifold and its characteristic foliation as we alluded to
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above. This relationship cannot be seen from the structure results Theorem 1.4
and Theorem 1.5. We hope this clarifies why we take the approach we do here.

2 Parallel forms and quasi-isomorphisms on co-Kähler mani-

folds

In [17], Verbitsky shows that, in case a smooth Riemannian manifold has a par-
allel form, one can define a derivation of the de Rham algebra whose kernel
is quasi-isomorphic to the manifold’s real cohomology algebra. In this section
we will use this construction in the context of co-Kähler manifolds, where the
1-form η is parallel. Once again, we shall see that some topological properties
of co-Kähler manifolds may be derived from corresponding properties of Kähler
manifolds. This can be interpreted as a geometric incarnation of our hereditary
principle.

Let M be a smooth manifold and let Ω
˚pM; Rq be the (real) de Rham algebra.

A linear map f P EndpΩ
˚pM; Rqq has degree | f | if f : Ω

kpM; Rq Ñ Ω
k`| f |pM; Rq.

Every linear map f : Ω
1pM; Rq Ñ Ω

| f |`1pM; Rq can be extended to a graded
derivation ρ f of Ω

˚pM; Rq by imposing the Leibniz rule, i.e.

ρ f

ˇ

ˇ

Ω0pM;Rq
“ 0

ρ f

ˇ

ˇ

Ω1pM;Rq
“ f

ρ f pα ^ βq “ ρ f pαq ^ β ` p´1q|α|| f |α ^ ρ f pβq. (2)

where α, β P Ω
˚pM; Rq and |α| is the degree of α. (While this apparently well-

known fact is used in [17], it is not proved there. See [13, Lemma 4.3] for a
proof.) Given two linear operators f , f̃ P EndpΩ

˚pM; Rqq, their supercommutator is
defined as

t f , f̃ u “ f ˝ f̃ ´ p´1q| f || f̃ | f̃ ˝ f .

Let pM, gq be a smooth Riemannian manifold and let η P Ω
kpM; Rq be a

k-form. Define a linear map η̄ : Ω
1pM; Rq Ñ Ω

k´1pM; Rq, with |η̄| “ k ´ 2, by

η̄pνq “ ıν# η ,

where # : T˚M Ñ TM is the isomorphism given by the metric. Denote by
ρη : Ω

˚pM; Rq Ñ Ω
˚`k´2pM; Rq the corresponding derivation. Define the linear

operator dη : Ω
˚pM; Rq Ñ Ω

˚`k´1pM; Rq as

dη “ td, ρηu .

Since dη is the supercommutator of two graded derivations, one sees easily that
it is itself a graded derivation of degree k ´ 1 and that it supercommutes with d.
As a consequence, kerpdηq Ă Ω

˚pM; Rq is a differential subalgebra and has the
structure of a cdga. In [17], Verbitsky proves following:

Theorem 2.1. Let pM, g, ηq be a compact Riemannian manifold equipped with a parallel
form η. Then the natural embedding

pkerpdηq, dq ãÑ pΩ
˚pM; Rq, dq

is a quasi-isomorphism.
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Let pM, g, ηq be a Riemannian manifold equipped with a parallel form η.
Theorem 2.1 says that we can recover the cohomology of M by considering the
subalgebra of forms ν which are annihilated by dη, i.e. those for which dηpνq “ 0.
This allows one to greatly simplify, in many cases, the computation of the de
Rham cohomology of this kind of manifold.

Recall from Lemma 1.3 that the 1-form η is parallel on a co-Kähler manifold.
According to Verbitsky’s construction, there is a derivation dη of pΩ

˚pM; Rq, dq
described explicitly as follows.

Lemma 2.2. Let pM, J, η, ξ, gq be a co-Kähler manifold. Then dη “ Lξ , where Lξ denotes
the Lie derivative in the direction of the vector field ξ.

Proof. Denote by η̄ : Ω
˚pM; Rq Ñ Ω

˚pM; Rq the operator which acts on 1-forms
as η̄pνq “ ıν# η. Since |η̄| “ ´1, we have dη “ td, ρηu “ d ˝ ρη ` ρη ˝ d, and |dη| “ 0.
To prove the lemma, by [13], it is enough to consider the action of dη on 0- and
1-forms. Now, according to the formulas in (2) extending η̄ to a derivation ρη , on
1-forms we have ρη “ η̄ and

η̄pνq “ ıν# η “ ηpν#q “ gpξ, ν#q “ νpξq “ ıξν.

Note that this identifies η̄ “ ıξ which is already a derivation, so ρη “ ıξ . Hence,
pd ˝ η̄qpνq “ dıξν and, on the other hand, pη̄ ˝ dqpνq “ ıξpdνq. By Cartan’s magic
formula, we obtain

dηpνq “ pd ˝ η̄qpνq ` pη̄ ˝ dqpνq “ dıξν ` ıξpdνq “ Lξpνq.

Thus dη “ Lξ on 1-forms. On a 0-form (i.e. a function) f , we have

dηp f q “ ρηpd f q “ η̄pd f q “ d f pξq “ ξp f q “ Lξp f q

by the calculation above. Since dη and Lξ are graded derivations of the de Rham
algebra which agree on 0-forms and 1-forms, the result follows.

Let us consider the following graded differential subalgebra pΩ
˚
ηpMq, dq of

pΩ
˚pM; Rq, dq given by

Ω
˚
ηpMq “ tν P Ω

˚pM; Rq | Lξpνq “ 0u .

As a consequence of Theorem 2.1, we obtain the following result.

Corollary 2.3. On a compact co-Kähler manifold, the natural inclusion

pΩ
˚
ηpMq, dq ãÑ pΩ

˚pM; Rq, dq

is a cdga quasi-isomorphism and

H˚pM; Rq – H˚
ηpMq,

where H˚
ηpMq is the cohomology of pΩ

˚
ηpMq, dq.
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We shall use the cdga Ω
˚
ηpMq to give an alternative proof of the Lefschetz

property and of formality for co-Kähler manifolds in the hereditary framework
of the rest of the paper.

Let pM, J, ξ, η, gq be a compact co-Kähler manifold. In [8], the authors defined
a Lefschetz map on harmonic forms and proved that it is an isomorphism. This
is, of course, different from the Kähler context, where the Lefschetz map can be
defined directly on all forms and depends only on the underlying symplectic
structure, not on the metric. On forms, the Lefschetz map is Ln´p : Ω

ppM; Rq Ñ
Ω

2n`1´ppM, Rq, given by

α ÞÑ ωn´p`1 ^ ıξα ` ωn´p ^ η ^ α (3)

One sees immediately that the Lefschetz map does not send closed (resp. exact)
forms to closed (resp. exact) forms, as it happens in the Kähler case, hence does
not descend to a map on cohomology. However, by restricting the Lefschetz map
to the cdga Ω

˚
ηpMq, we are able to descend to cohomology.

Proposition 2.4. The Lefschetz map (3) restricts to a map

L
n´p : Ω

p
ηpMq Ñ Ω

2n`1´p
η pMq

for 0 ď p ď n, which sends closed (resp. exact) forms to closed (resp. exact) forms.
Hence, L descends to the cohomology H˚

ηpMq – H˚pM; Rq.

Proof. We first show that if α P Ω
p
ηpMq, then Ln´ppαq P Ω

2n`1´p
η pMq.

LξpLn´ppαqq “ Lξpωn´p`1 ^ ıξα ` ωn´p ^ η ^ αq “ ωn´p`1 ^ Lξpıξαq “

“ ωn´p`1 ^ ıξdıξα “ ´ωn´p`1 ^ ıξ ıξdα “ 0,

where we have used the facts that the Lie derivative Lξ is a derivation,
Lξ “ ıξd ` dıξ (Cartan’s Magic formula), ıξ ıξ “ 0 and Lξω “ Lξη “ Lξα “ 0.

For α a closed form in Ω
p
ηpMq, we have

dpLn´ppαqq “ dpωn´p`1 ^ ıξα ` ωn´p ^ η ^ αq “ ωn´p`1 ^ dıξα “ 0 ;

for β P Ω
p´1
η pMq,

L
n´ppdβq “ ωn´p`1 ^ ıξdβ ` ωn´p ^ η ^ dβ

“ ´ωn´p`1 ^ dıξ β ´ dpωn´p ^ η ^ βq

“ dp´ωn´p`1 ^ ıξ β ´ ωn´p ^ η ^ βq.

Consider the following two subalgebras of Ω
˚
ηpMq:

Ω
p
1pMq “ tα P Ω

p
ηpMq | ıξα “ 0u, Ω

p
2pMq “ Q ‘ tα P Ω

p
ηpMq | η ^ α “ 0u.
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Lemma 2.5. Ω
p
ηpMq “ Ω

p
1pMq ‘ Ω

p
2pMq for all p ą 0 and Ω

˚
i pMq is a differential

subalgebra of Ω
˚
ηpMq, i “ 1, 2.

Proof. Given any α P Ω
p
ηpMq, we can write tautologically

α “ pα ´ η ^ ıξαq ` η ^ ıξα — α1 ` α2. (4)

Since ηpξq “ 1, we see immediately that ıξα1 “ 0, so α1 P Ω
p
1pMq. Clearly

α2 P Ω
p
2pMq. Now suppose that α P Ω

p
1pMq X Ω

p
2pMq. Then η ^ α “ 0 and

hence, by applying ıξ , we get 0 “ α ´ η ^ ıξα “ α, which gives α “ 0.

Now, if α P Ω
p
ηpMq, then Lξα “ dıξα ` ıξdα “ 0, so ıξdα “ ´dıξα. If α P Ω

p
1pMq,

then we also have ıξpdαq “ ´dıξα “ 0 since α P Ω
p
1pMq. Hence d : Ω

p
1pMq Ñ

Ω
p`1
1 pMq.

Finally, suppose α P Ω
p
2pMq. Then, since η is closed, we have η ^ dα “

´dpη ^ αq “ 0. Hence d : Ω
p
2pMq Ñ Ω

p`1
2 pMq.

As a consequence, the cohomology H
p
η pMq of the cdga Ω

˚
ηpMq can be written

as

H
p
η pMq – H

p
1 pMq ‘ H

p
2 pMq ,

where H
p
i pMq “ HppΩ

˚
i pMqq, i “ 1, 2. Now consider a form α P Ω

p
2pMq. Applying

the derivation ıξ to the equation η ^ α “ 0, we obtain α “ η ^ ıξα, where clearly

ıξα P Ω
p´1
1 pMq. This tells us that Ω

p
2pMq “ η ^ Ω

p´1
1 pMq and, since dη “ 0, we

have a differential splitting

Ω
p
ηpMq “ Ω

p
1pMq ‘ η ^ Ω

p´1
1 pMq .

From this, we immediately deduce

Corollary 2.6. The cohomology H
p
η pMq of Ω

˚
ηpMq splits as

H
p
η pMq “ H

p
1 pMq ‘ rηs ^ H

p´1
1 pMq

This corollary shows that the cohomology of Ω
˚
ηpMq only depends on the coho-

mology of the cdga Ω
˚
1pMq.

Let us now consider the characteristic foliation Fξ on a compact co-Kähler man-
ifold pM, J, ξ, η, gq given by pFξqx “ xξxy for every x P M. Such a foliation is
Riemannian and transversally Kähler. Indeed, at every point x P M, the orthogo-
nal space to ξ is endowed with a Kähler structure given by pJ, g, ωq, and all these
data vary smoothly with x.

Recall that, given a foliation F on a compact manifold M, the basic cohomology
is defined as the cohomology of the complex Ω

˚pM,Fq, where

Ω
ppM,Fq “ tα P Ω

ppMq | ıXα “ ıXdα “ 0 @X P XpFqu

and XpFq denotes the subalgebra of vector fields tangent to F . In our case, we
have the following.
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Lemma 2.7. Let pM, J, ξ, η, gq be a compact co-Kähler manifold and let Fξ be the char-
acteristic foliation. Then Ω

˚
1pMq “ Ω

˚pM,Fξq.

Proof. This is clear, since

α P Ω
˚
1pMq ô Lξα “ ıξα “ 0 ô ıξdα “ ıξα “ 0 ô α P Ω

ppM,Fξq.

Corollary 2.8. On a compact co-Kähler manifold M, H˚
1 pMq – H˚pM,Fξq and

H˚pM; Rq – H˚
ηpMq “ H˚pM,Fξq ‘ rηs ^ H˚´1pM,Fξq .

Theorem 2.9. Let pM, J, ξ, η, gq be a compact co-Kähler manifold. Then the Lefschetz
map

L
n´p : HppM; Rq – H

p
η pMq Ñ H

2n`1´p
η pMq – H2n`1´ppM; Rq,

α ÞÑ ωn´p`1 ^ ıξα ` ωn´p ^ η ^ α

is an isomorphism for 0 ď p ď n.

Proof. First note that, by Poincaré duality, it is sufficient to show that Ln´p has
zero kernel. Now, by Corollary 2.3, on a compact co-Kähler manifold we have
an isomorphism H

p
η pMq – HppMq. In particular, Corollary 2.8 tells us that the

(harmonic) cohomology of M can be computed as a cylinder on the basic coho-
mology of the characteristic foliation. Since the latter is transversally Kähler, in
view of [11], the map HppM,Fξq Ñ H2n´ppM,Fξq given by multiplication with
the Kähler form ωn´p is an isomorphism for p ď n. Again by Corollary 2.8, the

corresponding map H
p
1 pMq Ñ H

2n´p
1 pMq is also an isomorphism.

Now consider the Lefschetz map Ln´p : H
p
η pMq Ñ H

2n`1´p
η pMq given by (3).

Decompose any α P H
p
η pMq as α “ α1 ` α2 according to (4) so that ıξα1 “ 0 and

α2 “ η ^ ıξα. We shall show that the Lefschetz map is non-zero on both α1 and α2

with Ln´ppα1q P η ^ H
2n´p
1 pMq and Ln´ppα2q P H

2n`1´p
1 pMq. Then, because these

sub-algebras are complementary, we will have Ln´ppαq ‰ 0 for all α ‰ 0.
For α1 P H

p
1 pMq – HppM,Fξq, because ıξα1 “ 0, the first term in the Lefschetz

map definition applied to α1 vanishes. Hence, we get that ωn´p ^ α1 ‰ 0 in
H2n´ppM,Fξq and, in view of Corollary 2.8, this implies that ωn´p ^ η ^ α1 is

non-zero in η ^ H
2n´p
1 pMq Ď H

2n`1´p
η pMq.

Because α2 “ η ^ ıξα, we see that the second term in the Lefschetz map

definition applied to α2 vanishes. Now, ıξα2 P H
p´1
1 pMq – Hp´1pM,Fξq, so

ωn´p`1 ^ ıξα2 ‰ 0 in H2n´p`1pM,Fξq – H
2n´p`1
1 pMq. Therefore, when p ě 1,

L
n´ppαq “ ωn´p`1 ^ ıξα ` ωn´p ^ η ^ α

“ ωn´p`1 ^ ıξα2 ` ωn´p ^ η ^ α1

‰ 0,
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so Ln´p has zero kernel and is thus an isomorphism on cohomology. Further-
more, when p “ 0, we get

L
np1q “ ωn ^ η ‰ 0 ,

since ωn ^ η is a volume form by assumption and, hence, cannot be exact.

Since H
p
η pMq – HppMq (harmonic forms) on a compact co-Kähler manifold, we

obtain

Corollary 2.10. Let pM, J, ξ, η, gq be a compact co-Kähler manifold. Then the Lefschetz
map Ln´p : HppMq Ñ H2n`1´ppMq is an isomorphism for 0 ď p ď n.

In [10] the authors prove that the minimal model MM,F of the basic forms
Ω

˚pM,Fq of a transversally Kähler foliation F on a compact manifold is formal.
We would like to use our characterization (in a slightly different form) of the
cohomology of a compact co-Kähler manifold to give an alternative proof of this
formality in the context of co-Kähler geometry as well as a new description of the
minimal model of a co-Kähler manifold. Note that Corollary 2.8 may be phrased
as the following.

Corollary 2.11. Let M be a compact co-Kähler manifold; then H˚
1 pMq – H˚pM,Fξq

and
H˚pM; Rq – H˚

ηpMq “ H˚pM,Fξq b ^prηsq .

Furthermore, the splitting Ω
p
ηpMq “ Ω

p
1pMq ‘ η ^ Ω

p´1
1 pMq (for each p) may be writ-

ten as
Ω

˚
ηpMq “ Ω

˚
1pMq b ^pηq .

Using this description, we can now see the transversally Kähler structure
reflected in the minimal model of M.

Proposition 2.12. Let M be a compact co-Kähler manifold. Then MM,F is formal in the
sense of Sullivan and the minimal model of M splits as a tensor product of cdga’s

MM – MM,F b ^pη, d “ 0q.

Proof. We use two facts: first, by [8, 2], we know that M is formal; secondly, we
know that, in a cdga decomposition A – B b C, A is formal if and only if both B
and C are formal.

Remark 2.13. The proof above is much simpler than the original in [10], but is
only for transversally Kähler foliations arising from co-Kähler structures.
Of course, if we, on the other hand, assume the formality of MM,F (by [10]),
then ^pη, d “ 0q and the identification Ω

˚pM,Fq – Ω
˚
1pMq allow us to obtain the

following diagram.

H˚
ηpMq

–
// H˚pM,Fξq b ^prηsq

MM

θ

OO✤

✤

✤

ρ
//❴❴❴❴

»
��

MM,F b ^pη, d “ 0q

»
��

»

OO

Ω
˚
ηpMq Ω

˚pM,Fq b ^pηq
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Here, the quasi-isomorphism ρ is obtained from a standard lifting lemma in min-
imal model theory applied to the bottom part of the diagram. By composition,
we then obtain θ and we see it is a quasi-isomorphism. Hence, M is formal and,
again by the lifting lemma, the quasi-isomorphism ρ is an isomorphism.
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