Central configurations, Morse and fixed point indices

D.L. Ferrario

Abstract

We compute the fixed point index of non-degenerate central configurations for the *n*-body problem in the euclidean space of dimension *d*, relating it to the Morse index of the gravitational potential function \overline{U} induced on the manifold of all maximal O(d)-orbits. In order to do so, we analyze the geometry of maximal orbit type manifolds, and compute Morse indices with respect to the mass-metric bilinear form on configuration spaces.

1 Introduction: central configurations as critical points

Let $E = \mathbb{R}^d$ be the *d*-dimensional euclidean space, for $d \ge 1$. Fix an integer $n \ge 2$. The *configuration space* of *n* (colored) points in *E* is the set of all *n*-tuples of distinct points in *E*, and denoted by $\mathbb{F}_n(E)$:

$$\mathbb{F}_n(E) = \{ \boldsymbol{q} \in E^n : i \neq j \implies \boldsymbol{q}_i \neq \boldsymbol{q}_j \} = E^n \smallsetminus \Delta,$$

where if $q \in E^n$, its *n* components are denoted by q_j , j = 1, ..., n; points in $\mathbb{F}_n(E)$ are termed *configurations* of *n* points in *E*; its complement in E^n is the set of *collisions*

$$\Delta = \{ \boldsymbol{q} \in E^n : \exists (i,j), i \neq j : \boldsymbol{q}_i = \boldsymbol{q}_j \}$$
$$= \bigcup_{1 \le i \le j \le n} \{ \boldsymbol{q} \in E^n : \boldsymbol{q}_i = \boldsymbol{q}_j \}.$$

Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 631-640

Received by the editors in January 2017.

²⁰¹⁰ Mathematics Subject Classification : 70F10, 55M20.

Key words and phrases : Central configurations, relative equilibria, *n*-body problem, fixed point indices.

For j = 1, ..., n let $m_j > 0$ be fixed parameters (that can be interpreted as the mass of the *j*-th particle in *E*), under the normalization condition

$$\sum_{j=1}^n m_j = 1 \, .$$

If v, w are vectors in (the tangent space of) E^n , then let

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle_M = \sum_{j=1}^n m_j \boldsymbol{v}_j \cdot \boldsymbol{w}_j$$

denote the mass scalar product of v and w, where $v_j \cdot w_j$ is the standard euclidean scalar product (in E) of the j-th components of v and w. The unit sphere in $\mathbb{F}_n(E)$ is termed the *inertia ellipsoid* and denoted by

$$S = S_n(E) = \{ q \in \mathbb{F}_n(E) : ||q||_M^2 = 1 \}.$$

It is equal to the unit sphere/ellipsoid in E^n , with collisions removed, $S_n(E) = S_n(E) \setminus \Delta$. The unit sphere/ellipsoid in E^n is denoted by $S_n(E) = \{q \in E^n : \|q\|_M^2 = 1\}$. To simplify notation, if possible we will use the short forms S and S instead of $S_n(E)$ and $S_n(E)$.

The *potential function* $U \colon \mathbb{F}_n(E) \to \mathbb{R}$ is simply defined as

$$\sum_{1 \leq i < j \leq n} \frac{m_i m_j}{|\boldsymbol{q}_i - \boldsymbol{q}_j|^{\alpha}},$$

given a fixed parameter $\alpha > 0$. For $\alpha = 1$, *U* is the Newtonian gravitational potential. It is invariant under the full group of isometries of *E*, acting diagonally on $\mathbb{F}_n(E)$.

Let $D = \nabla$ denote the covariant derivative (which is the Levi-Civita connection with respect to the mass-metric) in $\mathbb{F}_n(E)$, which is again the standard derivative. If $F \colon \mathbb{F}_n(E) \to E$ is a smooth function, then DF = dF is the differential of F, which is a section of the cotangent bundle $T^*\mathbb{F}_n(E)$ defined as $DF[v] = D_vF$ for each vector field v on $\mathbb{F}_n(E)$. If v and w are two vector fields on $\mathbb{F}_n(E)$, then D_vw is the (Euclidean and covariant) derivative of w in the direction of v.

Let ∇^S denote the covariant derivative (Levi-Civita connection) on *S*, induced by the mass-metric of $\mathbb{F}_n(E)$ restricted to *S*, i.e. the restriction to *S* of the Riemannian structure of $\mathbb{F}_n(E)$. If *v* and *w* are two vector fields defined in a neighborhood of *S*, then the covariant derivative $\nabla_v^S w$ is equal, at $x \in S$, to the orthogonal projection of $D_v w$, projected orthogonally to the tangent space $T_x S$ (cf. proposition 3.1 at page 11 of [7], or proposition 1.2 at page 371 of [8]). The same holds with $\mathbb{S} \subset S$ instead of *S*. If Π denote the projection $T\mathbb{F}_n(E) \mapsto T\mathbb{S}$, then $\nabla_v^S w = \Pi D_v w$.

If $F \colon \mathbb{F}_n(E) \to \mathbb{R}$ is a smooth function, and $f = F|_S$ is its restriction to S, then $\nabla^S f = df$ is the restriction of dF to the tangent bundle *T*S. Let grad $(f) = df^{\sharp}$ and grad $(F) = dF^{\sharp}$ denote the gradients of *f* and *F* respectively (i.e., the images of the differentials under the musical isomorphisms induced by the mass-metric). For each $x \in S$, $df^{\sharp}(x) \in T_x S$ and $dF^{\sharp}(x) \in T_x \mathbb{F}_n(E)$ satisfy the equations

$$\langle df^{\sharp}, \boldsymbol{v} \rangle_{M} = df[\boldsymbol{v}] = \langle dF^{\sharp}, \boldsymbol{v} \rangle_{M} = dF[\boldsymbol{v}]$$

for any $v \in T_x S$, and hence $\operatorname{grad}(f) = df^{\sharp}$ is the projection of $\operatorname{grad}(F) = dF^{\sharp}$ on the tangent space $T_x S$. A *critical point* of f is a point $x \in S$ such that $df = 0 \iff \operatorname{grad}(f) = 0$, which is equivalent to say that $\operatorname{grad}(F)$ is orthogonal to $T_x S$.

The *Hessian* of the function f, at a critical point x of f in S, is (cf. page 343 of [8]) equal to the bilinear form Hess(f)[v, w], defined on the tangent space T_xS as

$$\operatorname{Hess}(f)[\boldsymbol{v},\boldsymbol{w}](x) = (\nabla_{\boldsymbol{v}}^{S} \nabla_{\boldsymbol{w}}^{S} f - \nabla_{\nabla_{\boldsymbol{v}}^{S} \boldsymbol{w}}^{S} f)(x) = (\nabla_{\boldsymbol{v}}^{S} \nabla_{\boldsymbol{w}}^{S} f)(x)$$

where *v* and *w* are two vector fields defined in a neighborhood of *x*.

The Hessian of *F* is simply the symmetric matrix of all the second derivatives D^2F :

$$\operatorname{Hess}(F)[\boldsymbol{v},\boldsymbol{w}](x) = (D_{\boldsymbol{v}}D_{\boldsymbol{w}}F)(x) = D^{2}F(x)[\boldsymbol{v},\boldsymbol{w}]$$
$$= \sum_{\substack{i=1...,n\\\beta=1,...,d}} \sum_{\substack{j=1,...,n\\\gamma=1,...,d}} \frac{\partial^{2}F}{\partial \boldsymbol{q}_{i\beta}\partial \boldsymbol{q}_{j\gamma}} \boldsymbol{v}_{i\beta} \boldsymbol{w}_{j\gamma}$$

where $q_{i\beta}$, $v_{i\beta}$ and $w_{j\gamma}$ are the *d* cartesian components in *E* (\mathbb{R}^d as the tangent space of *E*) of q_i , v_i and w_j respectively.

Using the mass-metric, if *N* denotes the unit vector field normal to T_x S in $T_x \mathbb{F}_n(E)$, the projection of $\nabla_v^S u$ of any vector field u on T_x S is

$$\nabla_{\boldsymbol{v}}^{\boldsymbol{S}}\boldsymbol{u}=D_{\boldsymbol{v}}\boldsymbol{u}-\langle D_{\boldsymbol{v}}\boldsymbol{u},\boldsymbol{N}\rangle_{\boldsymbol{M}}\boldsymbol{N},$$

and

$$df^{\sharp} = dF^{\sharp} - \langle dF^{\sharp}, N \rangle_M N$$
.

The Hessian can be written also as (cf. page 344 of [8]) $\text{Hess}(f)[v, w](x) = \langle \nabla_v^S df^{\sharp}, w \rangle_M$ and $\text{Hess}(F)[v, w](x) = \langle D_v dF^{\sharp}, w \rangle_M$. It follows therefore that

$$\begin{aligned} \operatorname{Hess}(f)[\boldsymbol{v},\boldsymbol{w}](\boldsymbol{x}) &= \langle \nabla_{\boldsymbol{v}}^{S} df^{\sharp}, \boldsymbol{w} \rangle_{M} \\ &= \langle \nabla_{\boldsymbol{v}}^{S} \left(dF^{\sharp} - \langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \boldsymbol{N} \right), \boldsymbol{w} \rangle_{M} \\ &= \langle \nabla_{\boldsymbol{v}}^{S} \left(dF^{\sharp} \right), \boldsymbol{w} \rangle_{M} - \langle \nabla_{\boldsymbol{v}}^{S} \left(\langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \boldsymbol{N} \right), \boldsymbol{w} \rangle_{M}. \end{aligned}$$

Because of the product rule for each function φ and each vector field u

$$\nabla_{\boldsymbol{v}}^{S}(\boldsymbol{\varphi}\boldsymbol{u}) = \boldsymbol{\varphi}\nabla_{\boldsymbol{v}}^{S}\boldsymbol{u} + (d\boldsymbol{\varphi}[\boldsymbol{v}])\boldsymbol{u}$$
$$\implies \nabla_{\boldsymbol{v}}^{S}\left(\langle dF^{\sharp}, \boldsymbol{N} \rangle_{M}\boldsymbol{N}\right) = \langle dF^{\sharp}, \boldsymbol{N} \rangle_{M}\nabla_{\boldsymbol{v}}^{S}\boldsymbol{N} + d\left(\langle dF^{\sharp}, \boldsymbol{N} \rangle_{M}\right)[\boldsymbol{v}]\boldsymbol{N}$$

which implies that

$$\langle \nabla_{\boldsymbol{v}}^{S} \left(\langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \boldsymbol{N} \right), \boldsymbol{w} \rangle_{M} = \langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \langle \nabla_{\boldsymbol{v}}^{S} \boldsymbol{N}, \boldsymbol{w} \rangle_{M}$$

since *N* is orthogonal to *w*. The same argument can be applied to show that for any vector field u (not necessarily tangent to S)

$$\langle \nabla_v^S \boldsymbol{u}, \boldsymbol{w} \rangle_M = \langle D_v \boldsymbol{u}, \boldsymbol{w} \rangle_M,$$

and therefore that, evaluated at the critical point x,

$$\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}] = \langle D_{\boldsymbol{v}} \left(dF^{\sharp} \right), \boldsymbol{w} \rangle_{M} - \langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \langle D_{\boldsymbol{v}} \boldsymbol{N}, \boldsymbol{w} \rangle_{M}$$
$$= D^{2} F[\boldsymbol{v}, \boldsymbol{w}] - \langle dF^{\sharp}, \boldsymbol{N} \rangle_{M} \langle D_{\boldsymbol{v}} \boldsymbol{N}, \boldsymbol{w} \rangle_{M}.$$

The inertia ellipsoid *S* is defined by the equation $||q||_M^2 = 1$, or equivalently $h(q) = \frac{1}{2}$ where $h(q) = \frac{1}{2} ||q||_M^2$. The normal unit vector *N* is equal to $dh^{\sharp} = q$, and thus

$$\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}] = D^2 F[\boldsymbol{v}, \boldsymbol{w}] - \langle dF^{\sharp}, \boldsymbol{q} \rangle_M \langle D_{\boldsymbol{v}} \boldsymbol{q}, \boldsymbol{w} \rangle_M$$
$$= D^2 F[\boldsymbol{v}, \boldsymbol{w}] - \langle dF^{\sharp}, \boldsymbol{q} \rangle_M \langle \boldsymbol{v}, \boldsymbol{w} \rangle_M.$$

If F = U, then U is homogeneous of degree $-\alpha$, and therefore $\langle dU^{\sharp}, q \rangle_M = dU(q)[q] = -\alpha U(q)$. The following equation follows, at any critical point x of the restriction of U to S.

$$\operatorname{Hess}(U|_{S})[\boldsymbol{v},\boldsymbol{w}] = D^{2}U(\boldsymbol{x})[\boldsymbol{v},\boldsymbol{w}] + \alpha U(\boldsymbol{x})\langle \boldsymbol{v},\boldsymbol{w}\rangle_{M}.$$
(1.1)

A *central configuration* is a configuration $q \in \mathbb{F}_n(E)$ with the property that there exists a multiplier $\lambda \in \mathbb{R}$ such that

$$dU^{\sharp}(\boldsymbol{q}) = \lambda \boldsymbol{q}, \tag{1.2}$$

where dU^{\sharp} is the gradient in E^n of the potential function U, with respect to the mass-metric. Equation (1.2) implies that $\lambda = -\alpha \frac{U(q)}{\|q\|_M^2}$ (for more on central configurations see e.g. [17] (§369–§382bis at pp. 284–306), [15], [10], [12], [18], [1], [6], [2], [11], [5]). An equivalent definition for a normalized (i.e. $q \in S$) central configuration is the following:

(1.3) $q \in S_n(E)$ is a central configuration if and only if it is a critical point for the restriction $U|_S$ of the potential function to $S = S_n(E)$.

Let $c: E^n \to E^n$ be the isometry defined as c(q) = q', with

$$\boldsymbol{q}_j' = \boldsymbol{q}_j - 2\boldsymbol{q}_0 \tag{1.4}$$

for each j = 1, ..., n, and with $q_0 = \sum_{j=1}^n m_j q_j$. It is an isometry, since $||q'||_M^2 = \sum_{j=1}^n m_j |q_j - 2q_0|^2 = \sum_{j=1}^n m_j (|q_j|^2 + 4|q_0|^2 - 4q_j \cdot q_0) = \sum_{j=1}^n m_j |q_j|^2 + 4(\sum_{j=1}^n m_j)|q_0|^2 - 4|q_0|^2 = ||q||_M^2$. It is the orthogonal reflection around the space of all configurations with center of mass q_0 equal to zero: $cq = q \iff q_0 = 0$. It is easy to see that if q is a central configuration then cq = q, and hence q has center of mass q_0 in 0. Let Y be defined as $Y = \{q \in E^n : q_0 = 0\}$, and $S^c = S \cap Y$, $S^c = S \cap Y$. In other words, elements of S^c are normalized configurations with center of mass in 0. Since the potential function is invariant up to translations, U(cq) = U(q), and any critical point of the restriction $U|_{S^c}$ is a critical point of $U|_S$ (for example, by Palais Principle of Symmetric Criticality [13]). Thus it is equivalent to define central configurations as critical points of $U|_{S^c}$ or as critical points of $U|_{S^c}$.

2 Fixed points, SO(d)-orbits and projective configuration spaces

Following [3, 4], consider the function $F: S_n(E) \to S_n(E)$ defined as

$$F(\boldsymbol{q}) = -\frac{dU^{\sharp}(\boldsymbol{q})}{\|dU^{\sharp}(\boldsymbol{q})\|_{M}}$$
(2.1)

where dU^{\sharp} is the gradient of *U*, with respect to the mass-metric.

First, consider the isometry *c* defined above in (1.4). Since F(cq) = cF(q), $F(\mathbb{S}^c) \subset S^c$. Moreover, as the image of *F* is in S^c , if F^c denotes the restriction $F^c: \mathbb{S}^c \to S^c$,

$$\operatorname{Fix}(F^c) = \operatorname{Fix}(F), \tag{2.2}$$

and the fixed point indexes are exactly the same.

Let O(d) be the special orthogonal group, acting diagonally on E^n , and SO(d) the special orthogonal subgroup. The inertia ellipsoid S, S and Y are O(d)-invariant in E^n , and so are S^c and S^c . Let $\pi: S \to S/G$ denote the quotient map onto the space of G-orbits, for G = SO(d) or G = -O(d).

Since *U* is a *G*-invariant function, *F* is a *G*-equivariant map, and hence it induces a map on the quotient spaces:

A fixed point of *F* is a normalized configuration *q* such that F(q) = q. A fixed point of *f* is a conjugacy class [q] of configurations such that f([q]) = [q], i.e. it is a conjugacy class [q] such that F(q) = gq for some $g \in G$. It follows from Theorem (2.5) of [4] that if G = SO(d), then $F(q) = gq \iff F(q) = q$, or equivalently that

$$G = SO(d) \implies \pi(\operatorname{Fix}(F)) = \operatorname{Fix}(f),$$
 (2.4)

and hence also that $\pi(\operatorname{Fix}(F^c)) = \operatorname{Fix}(f^c)$.

(2.5) *Remark.* Elements in \mathbb{S}/G are called projective configurations: for d = 2 and G = SO(2), S/G is the (n-1)-dimensional complex projective space $\mathbb{P}^{n-1}(\mathbb{C})$, and S^c is a hyperplane in it, hence a (n-2)-dimensional complex projective space $\mathbb{P}^{n-2}(\mathbb{C})$ For n = 3, it is the Riemann sphere. Projective configurations are projective classes of elements $[q_1 : q_2 : q_3]$ in $\mathbb{P}^1(\mathbb{C}) \subset \mathbb{P}^2(\mathbb{C})$ such that $m_1q_1 + m_2q_2 + m_3q_3 = 0$, $q_j \in \mathbb{C}$, and $q_1 \neq q_2$, $q_1 \neq q_3$, $q_2 \neq q_3$.

For d = 1, projective configurations are equivalence classes under the action of the orthogonal group $G = O(1) = \mathbb{Z}_2$.

The following Corollary of (2.4) shows that the difference is minor.

(2.6) Corollary. If $q \in S$ is a central configuration such that F(q) = gq, with $g \in O(d)$ (acting diagonally on E^n), then g = 1.

Proof. Let $E' = E \oplus \mathbb{R}$ be the euclidean space of dimension d + 1, and $E \subset E'$ one of its *d*-dimensional subspaces. If $q \in \mathbb{S} \subset \mathbb{F}_n(E)$, then $q \in \mathbb{S} \subset \mathbb{F}_n(E) \subset \mathbb{F}_n(E')$, and there exists $g' \in SO(d + 1)$ such that g'E = E and the restriction of g' to E is equal to g: it follows that F(q) = g'q, in $\mathbb{F}_n(E')$, and therefore g' = 1, from which it follows that g = 1.

Homological calculations on configurations spaces for the sake of central configurations have been done by Palmore [14], Pacella [12] and McCord [9]. We can arrange all the spaces inertia ellipsoids and the corresponding projective quotients as in diagram (2.7).

For each d, $S_n^c(\mathbb{R}^d)$ is a deformation retract of $\mathbb{F}_n^c(\mathbb{R}^d)$, which in turn is a deformation retraction of $\mathbb{F}_n(\mathbb{R}^d)$ (where $\mathbb{F}_n^c(E)$ denotes the space of all configurations with center of mass in 0). The Poincaré polynomial for the cohomology of the configuration space $\mathbb{F}_n(\mathbb{R}^d)$ is equal to

$$P(t) = \prod_{k=1}^{n-1} (1 + kt^{d-1}),$$

as shown e.g. in Theorem 3.2 of [16] (see also Proposition 2.11.2 of [11]).

Now, note that in the sequence of projections

$$\mathbb{S}_n^c(\mathbb{R}^d) \to \mathbb{S}_n^c(\mathbb{R}^d) / SO(d) \to \mathbb{S}_n^c(\mathbb{R}^d) / O(d)$$

the second map corresponds to the projection given by the action of the quotient group $\mathbb{Z}_2 = O(d)/SO(d)$ on the quotient space $S_n^c(\mathbb{R}^d)/SO(d)$ (SO(d) is normal in O(d)). For $d \ge 2$, let h be the orthogonal reflection of \mathbb{R}^d around $\mathbb{R}^{d-1} \subset \mathbb{R}^d$: its coset hSO(d) is the generator of O(d)/SO(d), and hence the image $Im(\bar{\iota}_{d-1})$ in $S_n^c(\mathbb{R}^d)/SO(d)$ is fixed by O(d)/SO(d). Actually, it is equal to the fixed point subset of O(d)/SO(d) in $S_n^c(\mathbb{R}^d)/SO(d)$. Outside the image of $\bar{\iota}_{d-1}$, therefore the \mathbb{Z}_2 action is free: let $\mathbb{M}_n(\mathbb{R}^d)$ denote the manifold

$$\mathbb{M}_n(\mathbb{R}^d) = \left(\mathbb{S}_n^c(\mathbb{R}^d) / SO(d) \setminus \operatorname{Im}(\overline{\iota}_{d-1})\right) / \mathbb{Z}_2 = \mathbb{S}_n^c(\mathbb{R}^d) / O(d) \setminus \operatorname{Im}(\overline{\iota}_{d-1}),$$
(2.8)

where the last equality holds since $\bar{\iota}_{d-1}$ factors through $S_n^c(\mathbb{R}^{d-1})$.

The next proposition follows from the dimension of SO(d) and the previous remarks.

(2.9) The subspace of all points in $S_n^c(\mathbb{R}^d)/O(d)$ with maximal orbit type is the open subspace $\mathbb{M}_n(\mathbb{R}^d)$ defined in (2.8), and it is a manifold of dimension

dim
$$\mathbb{M}_n(\mathbb{R}^d) = d(n-1) - 1 - d(d-1)/2.$$

For d = 1, it is the projective space $\mathbb{P}^{n-2}(\mathbb{R})$ minus collisions. For d = 2, it is a (2n - 4) dimensional manifold (where $\mathbb{P}^{n-2}(\mathbb{C})$ minus collinear and minus collisions is its double cover).

(2.10) $S_n^c(\mathbb{R}^2)/SO(2)$ has the same homotopy type of $\mathbb{F}_{n-2}(\mathbb{R}^2 \setminus \{p,q\})$, where p,q are two arbitrary distinct points of \mathbb{R}^2 .

Proof. It is Lemma 4.1 of [9].

It follows that the Poincaré polynomial (where β_j are Betti numbers) of $S_n^c(\mathbb{R}^2)/SO(2)$ is

$$p(t) = \prod_{k=2}^{n-1} (1+kt) = \sum_{j=0}^{n-2} \beta_j t^j.$$
(2.11)

(see also Proposition 2.11.3 of [11]). McCord in [9] proved also that

dim
$$H^k(\mathbb{M}_n(\mathbb{R}^2)) = \begin{cases} \sum_{j=0}^k \beta j & \text{if } k \le n-3\\ 0 & \text{otherwise,} \end{cases}$$

while Pacella in (2.4) of [12] computed the SO(3)-equivariant homology (using Borel homology) Poincaré series of $\mathbb{S}_n^c(\mathbb{R}^3) \sim \mathbb{F}_n(\mathbb{R}^3)$ as

$$P^{SO(3)}(t) = \frac{\prod_{k=2}^{n-1} (1+kt^2)}{1-t^2}.$$

(2.12) *Remark.* The projective quotient $S_n^c(\mathbb{R}^2)/SO(2)$ is a manifold (it is the projective space $\mathbb{P}^{n-2}(\mathbb{C})$ with collisions removed). It contains $S_n^c(\mathbb{R})/O(1)$ as a submanifold (the collinear configurations). For $d \ge 3$ the isotropy groups of the action start being non-trivial, and the filtration of subspaces of constant orbits type in $S_n^c(\mathbb{R}^d)/SO(d)$ is given by the horizontal arrows $\bar{\iota}_i$ in diagram (2.7).

3 Fixed points and Morse indices

Let $q \in S_n^c(\mathbb{R}^d)$ a central configuration, and hence a fixed point of the map F defined above in (2.1), such that its O(d)-orbits lies in the maximal orbit type submanifold $\mathbb{M}_n(\mathbb{R}^d) \subset S^c(\mathbb{R}^d)/O(d)$.

(3.1) If $DF: T_q \mathbb{S} \to T_q \mathbb{S}$ denotes the differential of F at the central configuration q, then for any $v, w \in T_q \mathbb{S}$ the following equation holds:

$$D^2 U(\boldsymbol{q})[\boldsymbol{v}, \boldsymbol{w}] = -\alpha U(\boldsymbol{q}) \langle DF[\boldsymbol{v}], \boldsymbol{w} \rangle_M.$$

Proof. As we have seen in the introduction, $\langle D_v dU^{\sharp}, w \rangle_M = D^2 U[v, w]$, and if q is a normalized central configuration then by (1.2) $dU^{\sharp}(q) = \lambda q$ with $\lambda = -\alpha \frac{U(q)}{\|q\|_M^2} = -\alpha U(q)$. It follows that $\langle dU^{\sharp}, w \rangle_M = 0$, being w tangent to S, and $\|dU^{\sharp}\|_M = -\lambda = \alpha U(q)$. Also,

$$\begin{split} \langle DF[\boldsymbol{v}], \boldsymbol{w} \rangle_{M} &= \langle D_{\boldsymbol{v}} \left(-\frac{dU^{\sharp}}{\|dU^{\sharp}\|_{M}} \right), \boldsymbol{w} \rangle_{M} \\ &= -\langle \left(\frac{D_{\boldsymbol{v}} dU^{\sharp}}{\|dU^{\sharp}\|_{M}} \right), \boldsymbol{w} \rangle_{M} - \langle D_{\boldsymbol{v}} \left(\frac{1}{\|dU^{\sharp}\|_{M}} \right) dU^{\sharp}, \boldsymbol{w} \rangle_{M} \\ &= -\frac{1}{\|dU^{\sharp}\|_{M}} \langle D_{\boldsymbol{v}} dU^{\sharp}, \boldsymbol{w} \rangle_{M} - 0 \\ &= -\frac{1}{\alpha U(\boldsymbol{q})} D^{2} U(\boldsymbol{q})[\boldsymbol{v}, \boldsymbol{w}]. \end{split}$$

Combining (3.1) with equation (1.1) the following corollary holds.

(3.2) Corollary. If q is as above, then for each $v, w \in T_qS$

$$\operatorname{Hess}(U|_{S})[v,w] = \alpha U(q) \left(\langle v,w \rangle_{M} - \langle DF[v],w \rangle_{M} \right).$$

Finally, consider again the group O(d) acting on $\mathbb{S}_n^c(\mathbb{R}^d)$. Let F and q be the map and the central configuration defined above. Recall that $f: \mathbb{S}/O(d) \rightarrow S/O(d)$ denotes the map defined on the quotient. Let $[q] \in \mathbb{M}_n(\mathbb{R}^d)\mathbb{S}/O(d)$ denote the projective class (i.e. the O(d)-orbit of q) of q, which is a fixed point of f, and is a critical point of the map $\overline{U}: \mathbb{M}_n(\mathbb{R}^d) \rightarrow \mathbb{R}$ induced on \mathbb{M}_n by U, defined simply as $\overline{U}([x]) = U(x)$ for each $x \in \mathbb{S}_n^c(\mathbb{R}^d)$.

(3.3) **Theorem.** The point [q] is a non-degenerate critical point of \overline{U} if and only if it is a non-degenerate fixed point of f. If ind([q], f) denotes the fixed point index of [q] for f, and $\mu([q])$ the Morse index of [q], then the following equation holds:

$$\operatorname{ind}([q], f) = (-1)^{\mu([q])}.$$

Proof. The point [q] is a non-degenerate critical point if and only if the dimension of the kernel of the Hessian $\text{Hess}(U|_S)(q)$ is equal to the dimension of SO(d), i.e. d(d-1)/2. By (3.2), the kernel is equal to the eigenspace of DF(q) corresponding to the eigenvalue 1, which has dimension d(d-1)/2 if and only if the fixed point [q] is non-degenerate. Now, if this holds then the index ind([q], f) is equal to the number $(-1)^e$. where *e* is the number of negative eigenvalues 1 - f', which is the same as the number of negative eigenvalues of 1 - F'. Again by (3.2) and since U > 0, *e* is equal to the number of negative eigenvalues of $\text{Hess}(U|_S)$, which is by definition the Morse index $\mu([q])$.

(3.4) *Remark.* Unfortunately, a former version of this statement had a wrong formula for ind(q). In fact, in (3.5) of [4] one should put $\epsilon = 0$, and not $\epsilon = d(n-1) - 1 - d(d-1)/2 = \dim \mathbb{M}_n(\mathbb{R}^d)$. The error occurred because I used the wrong sign of U in (3.1) (V = -U instead of U).

(3.5) Example. For d = 1 and any n, all critical points are local minima of U, and hence $\mu = 0$, and fixed points have index 1. The map induced on the quotient can be regularized on binary collisions (see [4, 3]), hence the map on the quotient can be extended to a self-map $f \colon \mathbb{P}^1(\mathbb{R}) \to \mathbb{P}^1(\mathbb{R})$ with three fixed points of index 1. Therefore the Lefschetz number of f is 3, and f has degree -2.

For d = 2 and n = 3, the three Euler configurations have $\mu = 1$, while the two Lagrange points have $\mu = 1$, hence the map f induced on the quotient $\mathbb{P}^1(\mathbb{C})$ (again, by regularizing the binary collisions) has Lefschetz number equal to L(f) = 2 - 3 = -1. Therefore the degree of f is equal to -2.

References

- [1] A. Albouy. Symétrie des configurations centrales de quatre corps. *C. R. Acad. Sci. Paris Sér. I Math.*, 320(2):217–220, 1995.
- [2] A. Albouy and V. Kaloshin. Finiteness of central configurations of five bodies in the plane. *Ann. of Math.* (2), 176(1):535–588, 2012.
- [3] D. L. Ferrario. Planar central configurations as fixed points. J. Fixed Point Theory Appl., 2(2):277–291, 2007.
- [4] D. L. Ferrario. Fixed point indices of central configurations. J. Fixed Point Theory Appl., 17(1):239–251, 2015.
- [5] D. L. Ferrario. Central configurations and mutual differences. *arXiv preprint arXiv:1608.00480*, 2016.
- [6] M. Hampton and R. Moeckel. Finiteness of relative equilibria of the fourbody problem. *Invent. Math.*, 163(2):289–312, 2006.
- [7] S. Kobayashi and K. Nomizu. *Foundations of differential geometry. Vol. II.* Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
- [8] S. Lang. *Fundamentals of differential geometry*, volume 191 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1999.
- [9] C. K. McCord. Planar central configuration estimates in the *n*-body problem. *Ergodic Theory Dynam. Systems*, 16(5):1059–1070, 1996.
- [10] R. Moeckel. On central configurations. Math. Z., 205(4):499–517, 1990.
- [11] R. Moeckel. Central configurations. In *Central configurations, periodic orbits, and Hamiltonian systems*, Adv. Courses Math. CRM Barcelona, pages 105–167. Birkhäuser/Springer, Basel, 2015.
- [12] F. Pacella. Central configurations of the *N*-body problem via equivariant Morse theory. *Arch. Rational Mech. Anal.*, 97(1):59–74, 1987.
- [13] R. S. Palais. The principle of symmetric criticality. *Comm. Math. Phys.*, 69(1):19–30, 1979.

- [14] J. I. Palmore. Classifying relative equilibria. I. *Bull. Amer. Math. Soc.*, 79: 904–908, 1973.
- [15] D. G. Saari. Collisions, rings, and other Newtonian N-body problems, volume 104 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, 2005.
- [16] V. V. Vershinin. Homology of braid groups and their generalizations. In *Knot theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 421–446.* Polish Acad. Sci., Warsaw, 1998.
- [17] A. Wintner. *The Analytical Foundations of Celestial Mechanics*. Princeton Mathematical Series, v. 5. Princeton University Press, Princeton, N. J., 1941.
- [18] Z. Xia. Central configurations with many small masses. J. Differential Equations, 91(1):168–179, 1991.

Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi 55 I-20125 Milano email : davide.ferrario@unimib.it