Central configurations, Morse and fixed point
indices

D.L. Ferrario

Abstract

We compute the fixed point index of non-degenerate central configura-
tions for the n-body problem in the euclidean space of dimension d, relating
it to the Morse index of the gravitational potential function U induced on
the manifold of all maximal O(d)-orbits. In order to do so, we analyze the
geometry of maximal orbit type manifolds, and compute Morse indices with
respect to the mass-metric bilinear form on configuration spaces.

1 Introduction: central configurations as critical points

Let E = R? be the d-dimensional euclidean space, for d > 1. Fix an integer n > 2.
The configuration space of n (colored) points in E is the set of all n-tuples of distinct
points in E, and denoted by IF,(E):

Fu(E) ={q€E":i#] = q; # q;} =E"\A,

where if g € E", its n components are denoted by gq;, j = 1,...,n; points in
F,,(E) are termed configurations of n points in E; its complement in E" is the set of

collisions DN s
A={qeE":3(i,j),i#j:q,=q;}
= U {g€E":g9i=2gq;}

1<i<j<n
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Forj=1,...,nlet m; > 0 be fixed parameters (that can be interpreted as the
mass of the j-th particle in E), under the normalization condition

If v, w are vectors in (the tangent space of) E”, then let

n
(v, w)p =) mjv; - w
j=1
denote the mass scalar product of v and w, where v; - w; is the standard euclidean
scalar product (in E) of the j-th components of v and w. The unit sphere in [F,,(E)
is termed the inertia ellipsoid and denoted by

S =Su(E) = {g € Fa(E) : ||qll3s = 1} .

It is equal to the unit sphere/ellipsoid in E", with collisions removed, S,(E) =
Su(E) ~ A. The unit sphere/ellipsoid in E" is denoted by S,(E) = {gq € E" :
I qu\/I = 1}. To simplify notation, if possible we will use the short forms S and S
instead of S,,(E) and S, (E).

The potential function U: F,(E) — R is simply defined as

mim]-
. e’
1<i<j<n |9i — 4]

given a fixed parameter « > 0. For « = 1, U is the Newtonian gravitational
potential. It is invariant under the full group of isometries of E, acting diagonally
onF,(E).

Let D = V denote the covariant derivative (which is the Levi-Civita con-
nection with respect to the mass-metric) in IF,(E), which is again the standard
derivative. If F: IF,(E) — E is a smooth function, then DF = dF is the differential
of F, which is a section of the cotangent bundle T*IF,,(E) defined as DF[v] = D,F
for each vector field v on [F,(E). If v and w are two vector fields on IF,,(E), then
D,w is the (Euclidean and covariant) derivative of w in the direction of v.

Let V° denote the covariant derivative (Levi-Civita connection) on S, induced
by the mass-metric of F,(E) restricted to S, i.e. the restriction to S of the
Riemannian structure of F,(E). If v and w are two vector fields defined in a
neighborhood of S, then the covariant derivative ng is equal, at x € S, to the
orthogonal projection of D,w, projected orthogonally to the tangent space TS
(cf. proposition 3.1 at page 11 of [7], or proposition 1.2 at page 371 of [8]). The
same holds with S C S instead of S. If IT denote the projection TF,(E) — TS,
then Vow = 1D, w.

If F: F,(E) — R is a smooth function, and f = F|g is its restriction to S, then
VS f = df is the restriction of dF to the tangent bundle TS. Let grad(f) = df* and
grad(F) = dF* denote the gradients of f and F respectively (i.e., the images of the
differentials under the musical isomorphisms induced by the mass-metric). For
each x € S, df?(x) € TS and dFf(x) € T,F,(E) satisfy the equations

<dfﬁ,v>M = df[v] = (dpﬁer = dF|[v]
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for any v € T,S, and hence grad(f) = df* is the projection of grad(F) = dF* on
the tangent space T,S. A critical point of f is a point x € Ssuch thatdf =0 <=
grad(f) = 0, which is equivalent to say that grad(F) is orthogonal to T,S.

The Hessian of the function f, at a critical point x of f in S, is (cf. page 343 of
[8]) equal to the bilinear form Hess(f)[v, w], defined on the tangent space TS as

Hess(f)[o, w](x) = (V5Vaf = Vs, /) (%) = (VaVif) (x)

where v and w are two vector fields defined in a neighborhood of x.
The Hessian of F is simply the symmetric matrix of all the second derivatives
D?F:
Hess(F)[v, w](x) = (DyDyF)(x) = D*F(x)[v, w]

. 0°F
i=1.n j=1,..n aqlﬁaqﬂ’
B=1d y=1,...d

VigWiy

where g,p,vig and wj, are the d cartesian components in E (R as the tangent
space of E) of q;, v; and w; respectively.
Using the mass-metric, if N denotes the unit vector field normal to T)S in
T,[F,,(E), the projection of V3u of any vector field # on T,S is
vgu — Dvu - <Dvu, N>MN,

and
df* = dF* — (dF*,N) N .

The Hessian can be written also as (cf. page 344 of [8]) Hess(f)[v, w](x) =
(V5dft, w),,; and Hess(F)[v, w|(x) = (DydF*, w),,. It follows therefore that

Hess(f)[v, w](x) = (V3df*,w),,
= (VS (dPﬁ — (dF*,N) MN),w>M

— (VS i A v f
= (VS (dp ),w>M (VS ((dF ,N)MN>,w>M
Because of the product rule for each function ¢ and each vector field u
Vi (pu) = Viu + (dolv])u
— V5 (<dPﬁ,N> MN) — (dF!,N) VSN +d (<dpﬁ,N> M) [0]N
which implies that
(V5 ({dFF, N) N ), ) = (dF, N) py(VEN, )y

since N is orthogonal to w. The same argument can be applied to show that for
any vector field u (not necessarily tangent to S)

(Vau,w)y = (Dott, w)
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and therefore that, evaluated at the critical point x,

Hess(f)[v, w]| = (D, (dFﬁ>,w>M — (dF?,N),(DyN, w)
= D?Flv,w] — (dF*,N) (DN, w) ;.

The inertia ellipsoid S is defined by the equation ||q||‘]2w = 1, or equivalently

h(q) = 3 where h(q) = %HqH?M The normal unit vector N is equal to dhf = g,

and thus
Hess(f)[v, w] = D*F[v, w] — (dF*, q) \;(Dvq, w)

— D?Flo,w] — (dF, )5y (0, ).

If F = U, then U is homogeneous of degree —a, and therefore (dU?, q) M=
dU(q)[q] = —aU(g). The following equation follows, at any critical point x of
the restriction of U to S.

Hess(U|s)[v, w] = D*U(x)[v, w] + al(x) (v, w) ;. (1.1)

A central configuration is a configuration q € F,(E) with the property that
there exists a multiplier A € R such that

dUt(q) = Mg, (1.2)
where dU* is the gradient in E" of the potential function U, with respect to the
mass-metric. Equation (1.2) implies that A = —« U(q) (for more on central

lall3,
configurations see e.g. [17] (§369-§382bis at pp. 284-306), [15], [10], [12], [18],

[1], [6], [2], [11], [5]). An equivalent definition for a normalized (i.e. g € S) central
configuration is the following:

(1.3) q € S,(E) is a central configuration if and only if it is a critical point for the
restriction U |s of the potential function to S = S, (E).

Let c: E" — E" be the isometry defined as c(q) = q’, with
q9; = q; — 2q0 (1.4)

for each j = 1,...,n, and with g9 = Z;’Zl mjq;. It is an isometry, since

1q' 154 = Ty mila; — 240> = Ly m;(lg;? + 4lq0l? — 4q; - g0) = Ly mjlq;? +
4(71m;)|q0 > —4]qo|> = ||q||§w It is the orthogonal reflection around the space
of all configurations with center of mass gqg equal to zero: cq = g <= qo = 0.
It is easy to see that if g is a central configuration then cq = g, and hence g has
center of mass g in 0. Let Y be defined asY = {q € E" : gp = 0},and S = SN,
S§¢ = SNY. In other words, elements of 5¢ are normalized configurations with
center of mass in 0. Since the potential function is invariant up to translations,
U(cq) = U(q), and any critical point of the restriction U|gc is a critical point of
Uls (for example, by Palais Principle of Symmetric Criticality [13]). Thus it is
equivalent to define central configurations as critical points of U|sc or as critical
points of U|s.
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2 Fixed points, SO(d)-orbits and projective configuration spaces
Following [3, 4], consider the function F: S,,(E) — S, (E) defined as

_ dUf(g)
1dU (q) ]

where dU" is the gradient of U, with respect to the mass-metric.

First, consider the isometry ¢ defined above in (1.4). Since F(cq) = cF(q),
F(S°) C S°. Moreover, as the image of F is in S, if F¢ denotes the restriction
F€: 8¢ =S¢,

F(q) = (2.1)

Fix(F€) = Fix(F), (2.2)

and the fixed point indexes are exactly the same.

Let O(d) be the special orthogonal group, acting diagonally on E", and SO(d)
the special orthogonal subgroup. The inertia ellipsoid S, S and Y are O(d)-inva-
riant in E”, and so are 5° and S°. Let 7: S — S/G denote the quotient map onto
the space of G-orbits, for G = SO(d) or G = —O(d).

Since U is a G-invariant function, F is a G-equivariant map, and hence it
induces a map on the quotient spaces:

s F _g (2.3)

4 |

5/G—=S5/G
/ 7 /

A fixed point of F is a normalized configuration g such that F(gq) = q. A
fixed point of f is a conjugacy class [g] of configurations such that f([q]) = [g],
i.e. it is a conjugacy class [g] such that F(q) = gq for some ¢ € G. It follows
from Theorem (2.5) of [4] that if G = SO(d), then F(q) = gq <= F(q) = g, or
equivalently that

G =50(d) = n(Fix(F)) = Fix(f), (2.4)

and hence also that 77 (Fix(F¢)) = Fix(f°).

(2.5) Remark. Elements in S/ G are called projective configurations: for d = 2 and
G = SO(2), S/G is the (n — 1)-dimensional complex projective space IP"~1(C),
and S¢ is a hyperplane in it, hence a (n — 2)-dimensional complex projective
space P"~2(C) For n = 3, it is the Riemann sphere. Projective configurations
are projective classes of elements [q1 : g2 : g3] in P'(C) C IP?(C) such that
miq1 + maga +ms3qs = 0,q9; € C,and q1 # q2, q1 # 43, 92 7 3.

For d = 1, projective configurations are equivalence classes under the action
of the orthogonal group G = O(1) = Z,.

The following Corollary of (2.4) shows that the difference is minor.
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(2.6) Corollary. If q € S is a central configuration such that F(q) = gq, with g € O(d)
(acting diagonally on E"), then ¢ = 1.

Proof. Let E' = E & R be the euclidean space of dimension d + 1, and E C E’ one
of its d-dimensional subspaces. If g € S C F,(E), theng € S C F,(E) C F,(E'),
and there exists ¢’ € SO(d 4 1) such that ¢'E = E and the restriction of ¢’ to E is
equal to g: it follows that F(q) = ¢'q, in F,(E’), and therefore ¢’ = 1, from which
it follows that ¢ = 1. m

Homological calculations on configurations spaces for the sake of central con-
figurations have been done by Palmore [14], Pacella [12] and McCord [9]. We can
arrange all the spaces inertia ellipsoids and the corresponding projective quo-
tients as in diagram (2.7).

8 (IR) ————— 8 (R?) ————= S5 (R%) —
5¢(R)/SO(1) —> 8¢ (R?)/50(2) —2~ 8¢ (R?) /SO(3f—~-- - (2.7)

l SR

S¢(R)/O(1) —~ 8¢ (R2) /0(2) —2~ 8¢ (R?) /O(3) X - - -

For each d, S (R?) is a deformation retract of IF$ (R?), which in turn is a defor-
mation retraction of IF,, (RY) (where IF¢ (E) denotes the space of all configurations
with center of mass in 0). The Poincaré polynomial for the cohomology of the
configuration space IF,, (R?) is equal to

P(t) = 1(1 + k1,

N
|

i
—_

as shown e.g. in Theorem 3.2 of [16] (see also Proposition 2.11.2 of [11]).
Now, note that in the sequence of projections

8¢ (R?) — S (RY)/SO(d) — S5 (R%)/0O(d)

the second map corresponds to the projection given by the action of the quotient
group Z, = O(d)/SO(d) on the quotient space S¢(R%)/SO(d) (SO(d) is normal
in O(d)). For d > 2, let h be the orthogonal reflection of R¥ around R*~! ¢ R%:
its coset hSO(d) is the generator of O(d)/SO(d), and hence the image Im(7;_1)
in ¢ (R%)/SO(d) is fixed by O(d)/SO(d). Actually, it is equal to the fixed point
subset of O(d)/SO(d) in S (R?)/SO(d). Outside the image of 7;_;, therefore the
Z; action is free: let M, (RY) denote the manifold

Mu(RY) = (S5(R?)/SO(d) ~ Im(7y-1) ) /Za = S{(R")/O(d) \ Im{iy-1), (28)
where the last equality holds since 7;_; factors through S§ (IR4~1).

The next proposition follows from the dimension of SO(d) and the previous
remarks.



Central contigurations, Morse and fixed point indices 637

(2.9) The subspace of all points in S§(R?)/O(d) with maximal orbit type is the open
subspace M,,(RY) defined in (2.8), and it is is a manifold of dimension

dimM,,(RY) =d(n—1) =1 —d(d —1)/2.

For d = 1, it is the projective space IP"~?(R) minus collisions. For d = 2, it
is a (2n — 4) dimensional manifold (where IP"~2(C) minus collinear and minus
collisions is its double cover).

(2.10) S5 (IR?)/SO(2) has the same homotopy type of F,_2(R? \ {p,q}), where p,q
are two arbitrary distinct points of R2.

Proof. 1t is Lemma 4.1 of [9]. [ |

It follows that the Poincaré polynomial (where B; are Betti numbers) of
S¢(R%)/SO(2) is

n—1 n—2 )
p(t) =] +kt) =Y Bt (2.11)
k=2 j=0

(see also Proposition 2.11.3 of [11] ). McCord in [9] proved also that

Y oBj ifk<n-—3

im H* (M, (IR?)) {0 otherwise,

while Pacella in (2.4) of [12] computed the SO(3)-equivariant homology (using
Borel homology) Poincaré series of S (IR?) ~ IF,,(IR?) as

I+ k)

135(3(3)(t) s

(2.12) Remark. The projective quotient S¢(R?)/SO(2) is a manifold (it is the
projective space IP"~2(C) with collisions removed). It contains S$(R)/O(1) as
a submanifold (the collinear configurations). For d > 3 the isotropy groups of
the action start being non-trivial, and the filtration of subspaces of constant orbits
type in S (IR?) /SO(d) is given by the horizontal arrows Ij in diagram (2.7).

3 Fixed points and Morse indices

Let g € S¢(R?) a central configuration, and hence a fixed point of the map F
defined above in (2.1), such that its O(d)-orbits lies in the maximal orbit type
submanifold M, (R%) C S¢(R%)/O(d).

(3.1) If DF: T,S — T,S denotes the differential of F at the central configuration q, then
forany v, w € T,S the following equation holds:

D*U(q)[v, w] = —al(q)(DF[v], w) .
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Proof. As we have seen in the introduction, (D,dU*, w),,; = D?U[v, w], and if
g is a normalized central configuration then by (1.2) dUf(q) = Ag with A =

U@

lall3s
|dU* ||y = —A = all(g). Also,

du?
(DF[v], w)y = (Do <—M>IW>M

D, dU* 1
= (| =2 ,w) — (D ( )duﬁ,w>
|dUE|| s M “\ Jlauz|y, M

1
=— (DpdUF, w),, — 0
[dUE[|p° M
1
= — DU v, W)|. |
U (q) (q)[v, w]

Combining (3.1) with equation (1.1) the following corollary holds.

= —al(q). Tt follows that (dU*,w),, = 0, being w tangent to S, and

(3.2) Corollary. If q is as above, then for each v, w € T;S
Hess(U|s)[v, w] = all(q) ({v,w)  — (DF[0], w) )

Finally, consider again the group O(d) acting on S¢(R%). Let F and q be
the map and the central configuration defined above. Recall that f: S/0(d) —
S/0(d) denotes the map defined on the quotient. Let [gq] € M,(R%)S/O(d)
denote the projective class (i.e. the O(d)-orbit of q) of g, which is a fixed point
of f, and is a critical point of the map U: M,(R?) — R induced on M, by U,
defined simply as U([x]) = U(x) for each x € S (IR?).

(3.3) Theorem. The point [q] is a non-degenerate critical point of U if and only if it is a
non-degenerate fixed point of f. If ind([q], f) denotes the fixed point index of [q] for f,
and y([q]) the Morse index of [q), then the following equation holds:

ind([q), f) = (~1)D.

Proof. The point [g] is a non-degenerate critical point if and only if the dimension
of the kernel of the Hessian Hess(U|s)(g) is equal to the dimension of SO(d), i.e.
d(d —1)/2. By (3.2), the kernel is equal to the eigenspace of DF(q) corresponding
to the eigenvalue 1, which has dimension d(d — 1) /2 if and only if the fixed point
[q] is non-degenerate. Now, if this holds then the index ind([g], f) is equal to the
number (—1)¢. where e is the number of negative eigenvalues 1 — f/, which is the
same as the number of negative eigenvalues of 1 — F’. Again by (3.2) and since
U > 0, e is equal to the number of negative eigenvalues of Hess(U|s), which is
by definition the Morse index y([q]). ]

(3.4) Remark. Unfortunately, a former version of this statement had a wrong for-
mula for ind(g). In fact, in (3.5) of [4] one should put € = 0, and not € =
din—1)—1—d(d—1)/2 = dimM,(IR?). The error occurred because I used
the wrong sign of U in (3.1) (V = —U instead of U).
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(3.5) Example. For d = 1 and any n, all critical points are local minima of U, and
hence y = 0, and fixed points have index 1. The map induced on the quotient can
be regularized on binary collisions (see [4, 3]), hence the map on the quotient can
be extended to a self-map f: P'(R) — IP'(IR) with three fixed points of index 1.
Therefore the Lefschetz number of f is 3, and f has degree —2.

For d = 2 and n = 3, the three Euler configurations have y = 1, while the
two Lagrange points have y = 1, hence the map f induced on the quotient
P!(C) (again, by regularizing the binary collisions) has Lefschetz number equal
to L(f) = 2 — 3 = —1. Therefore the degree of f is equal to —2.
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