Central configurations, Morse and fixed point indices

D.L. Ferrario

Abstract

We compute the fixed point index of non-degenerate central configurations for the n-body problem in the euclidean space of dimension d, relating it to the Morse index of the gravitational potential function \bar{U} induced on the manifold of all maximal $O(d)$-orbits. In order to do so, we analyze the geometry of maximal orbit type manifolds, and compute Morse indices with respect to the mass-metric bilinear form on configuration spaces.

1 Introduction: central configurations as critical points

Let $E=\mathbb{R}^{d}$ be the d-dimensional euclidean space, for $d \geq 1$. Fix an integer $n \geq 2$. The configuration space of n (colored) points in E is the set of all n-tuples of distinct points in E, and denoted by $\mathbb{F}_{n}(E)$:

$$
\mathbb{F}_{n}(E)=\left\{\boldsymbol{q} \in E^{n}: i \neq j \Longrightarrow \boldsymbol{q}_{i} \neq \boldsymbol{q}_{j}\right\}=E^{n} \backslash \Delta
$$

where if $q \in E^{n}$, its n components are denoted by $\boldsymbol{q}_{j}, j=1, \ldots, n$; points in $\mathbb{F}_{n}(E)$ are termed configurations of n points in E; its complement in E^{n} is the set of collisions

$$
\begin{aligned}
\Delta & =\left\{\boldsymbol{q} \in E^{n}: \exists(i, j), i \neq j: \boldsymbol{q}_{i}=\boldsymbol{q}_{j}\right\} \\
& =\bigcup_{1 \leq i<j \leq n}\left\{\boldsymbol{q} \in E^{n}: \boldsymbol{q}_{i}=\boldsymbol{q}_{j}\right\} .
\end{aligned}
$$

[^0]For $j=1, \ldots, n$ let $m_{j}>0$ be fixed parameters (that can be interpreted as the mass of the j-th particle in E), under the normalization condition

$$
\sum_{j=1}^{n} m_{j}=1 .
$$

If v, w are vectors in (the tangent space of) E^{n}, then let

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{M}=\sum_{j=1}^{n} m_{j} \boldsymbol{v}_{j} \cdot \boldsymbol{w}_{j}
$$

denote the mass scalar product of v and \boldsymbol{w}, where $\boldsymbol{v}_{j} \cdot \boldsymbol{w}_{j}$ is the standard euclidean scalar product (in E) of the j-th components of v and \boldsymbol{w}. The unit sphere in $\mathbb{F}_{n}(E)$ is termed the inertia ellipsoid and denoted by

$$
\mathrm{S}=\mathrm{S}_{n}(E)=\left\{\boldsymbol{q} \in \mathbb{F}_{n}(E):\|\boldsymbol{q}\|_{M}^{2}=1\right\}
$$

It is equal to the unit sphere/ellipsoid in E^{n}, with collisions removed, $\mathrm{S}_{n}(E)=$ $S_{n}(E) \backslash \Delta$. The unit sphere/ellipsoid in E^{n} is denoted by $S_{n}(E)=\left\{\boldsymbol{q} \in E^{n}\right.$: $\left.\|\boldsymbol{q}\|_{M}^{2}=1\right\}$. To simplify notation, if possible we will use the short forms S and S instead of $S_{n}(E)$ and $S_{n}(E)$.

The potential function $U: \mathbb{F}_{n}(E) \rightarrow \mathbb{R}$ is simply defined as

$$
\sum_{1 \leq i<j \leq n} \frac{m_{i} m_{j}}{\left|\boldsymbol{q}_{i}-\boldsymbol{q}_{j}\right|^{\alpha}}
$$

given a fixed parameter $\alpha>0$. For $\alpha=1, U$ is the Newtonian gravitational potential. It is invariant under the full group of isometries of E, acting diagonally on $\mathbb{F}_{n}(E)$.

Let $D=\nabla$ denote the covariant derivative (which is the Levi-Civita connection with respect to the mass-metric) in $\mathbb{F}_{n}(E)$, which is again the standard derivative. If $F: \mathbb{F}_{n}(E) \rightarrow E$ is a smooth function, then $D F=d F$ is the differential of F, which is a section of the cotangent bundle $T^{*} \mathbb{F}_{n}(E)$ defined as $D F[v]=D_{v} F$ for each vector field v on $\mathbb{F}_{n}(E)$. If v and w are two vector fields on $\mathbb{F}_{n}(E)$, then $D_{v} w$ is the (Euclidean and covariant) derivative of w in the direction of v.

Let ∇^{S} denote the covariant derivative (Levi-Civita connection) on S, induced by the mass-metric of $\mathbb{F}_{n}(E)$ restricted to S, i.e. the restriction to S of the Riemannian structure of $\mathbb{F}_{n}(E)$. If v and \boldsymbol{w} are two vector fields defined in a neighborhood of S, then the covariant derivative $\nabla_{v}^{S} w$ is equal, at $x \in S$, to the orthogonal projection of $D_{v} w$, projected orthogonally to the tangent space $T_{x} S$ (cf. proposition 3.1 at page 11 of [7], or proposition 1.2 at page 371 of [8]). The same holds with $S \subset S$ instead of S. If Π denote the projection $T \mathbb{F}_{n}(E) \mapsto T S$, then $\nabla_{v}^{S} w=\Pi D_{v} w$.

If $F: \mathbb{F}_{n}(E) \rightarrow \mathbb{R}$ is a smooth function, and $f=\left.F\right|_{S}$ is its restriction to S , then $\nabla^{S} f=d f$ is the restriction of $d F$ to the tangent bundle TS. Let $\operatorname{grad}(f)=d f^{\sharp}$ and $\operatorname{grad}(F)=d F^{\sharp}$ denote the gradients of f and F respectively (i.e., the images of the differentials under the musical isomorphisms induced by the mass-metric). For each $x \in \mathrm{~S}, d f^{\sharp}(x) \in T_{x} \mathrm{~S}$ and $d F^{\sharp}(x) \in T_{x} \mathbb{F}_{n}(E)$ satisfy the equations

$$
\left\langle d f^{\sharp}, v\right\rangle_{M}=d f[\boldsymbol{v}]=\left\langle d F^{\sharp}, \boldsymbol{v}\right\rangle_{M}=d F[\boldsymbol{v}]
$$

for any $v \in T_{x} S$, and hence $\operatorname{grad}(f)=d f^{\sharp}$ is the projection of $\operatorname{grad}(F)=d F^{\sharp}$ on the tangent space T_{x} S. A critical point of f is a point $x \in S$ such that $d f=0 \Longleftrightarrow$ $\operatorname{grad}(f)=0$, which is equivalent to say that $\operatorname{grad}(F)$ is orthogonal to $T_{x} \mathrm{~S}$.

The Hessian of the function f, at a critical point x of f in S, is (cf. page 343 of [8]) equal to the bilinear form $\operatorname{Hess}(f)[v, w]$, defined on the tangent space $T_{x} \mathrm{~S}$ as

$$
\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}](x)=\left(\nabla_{v}^{S} \nabla_{w}^{S} f-\nabla_{\nabla_{v}^{S} w}^{S} f\right)(x)=\left(\nabla_{v}^{S} \nabla_{w}^{S} f\right)(x)
$$

where v and w are two vector fields defined in a neighborhood of x.
The Hessian of F is simply the symmetric matrix of all the second derivatives $D^{2} F$:

$$
\begin{aligned}
\operatorname{Hess}(F)[\boldsymbol{v}, \boldsymbol{w}](x) & =\left(D_{v} D_{w} F\right)(x)=D^{2} F(x)[\boldsymbol{v}, \boldsymbol{w}] \\
& =\sum_{\substack{i=1 \ldots \ldots, \beta=1, \ldots, d \\
j=1, \ldots, n \\
\gamma=1, \ldots, d}} \sum_{i \beta} \frac{\partial^{2} F}{\partial \boldsymbol{q}_{i \beta} \partial \boldsymbol{q}_{j \gamma}} \boldsymbol{v}_{i \beta} \boldsymbol{w}_{j \gamma}
\end{aligned}
$$

where $\boldsymbol{q}_{i \beta}, \boldsymbol{v}_{i \beta}$ and $\boldsymbol{w}_{j \gamma}$ are the d cartesian components in $E\left(\mathbb{R}^{d}\right.$ as the tangent space of E) of $\boldsymbol{q}_{i}, \boldsymbol{v}_{i}$ and \boldsymbol{w}_{j} respectively.

Using the mass-metric, if N denotes the unit vector field normal to $T_{x} \mathrm{~S}$ in $T_{x} \mathbb{F}_{n}(E)$, the projection of $\nabla_{v}^{S} \boldsymbol{u}$ of any vector field \boldsymbol{u} on $T_{x} S$ is

$$
\nabla_{v}^{S} \boldsymbol{u}=D_{v} \boldsymbol{u}-\left\langle D_{v} \boldsymbol{u}, \boldsymbol{N}\right\rangle_{M} \boldsymbol{N}
$$

and

$$
d f^{\sharp}=d F^{\sharp}-\left\langle d F^{\sharp}, N\right\rangle_{M} N .
$$

The Hessian can be written also as (cf. page 344 of [8]) Hess $(f)[v, w](x)=$ $\left\langle\nabla_{v}^{S} d f^{\sharp}, \boldsymbol{w}\right\rangle_{M}$ and $\operatorname{Hess}(F)[\boldsymbol{v}, \boldsymbol{w}](x)=\left\langle D_{v} d F^{\sharp}, \boldsymbol{w}\right\rangle_{M}$. It follows therefore that

$$
\begin{aligned}
\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}](x) & =\left\langle\nabla_{v}^{S} d f^{\sharp}, \boldsymbol{w}\right\rangle_{M} \\
& =\left\langle\nabla_{v}^{S}\left(d F^{\sharp}-\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M} N\right), \boldsymbol{w}\right\rangle_{M} \\
& =\left\langle\nabla_{v}^{S}\left(d F^{\sharp}\right), \boldsymbol{w}\right\rangle_{M}-\left\langle\nabla_{v}^{S}\left(\left\langle d F^{\sharp}, N\right\rangle_{M} N\right), \boldsymbol{w}\right\rangle_{M} .
\end{aligned}
$$

Because of the product rule for each function φ and each vector field \boldsymbol{u}

$$
\begin{gathered}
\nabla_{v}^{S}(\varphi \boldsymbol{u})=\varphi \nabla_{v}^{S} \boldsymbol{u}+(d \varphi[\boldsymbol{v}]) \boldsymbol{u} \\
\Longrightarrow \nabla_{v}^{S}\left(\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M} \boldsymbol{N}\right)=\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M} \nabla_{v}^{S} \boldsymbol{N}+d\left(\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M}\right)[\boldsymbol{v}] \boldsymbol{N}
\end{gathered}
$$

which implies that

$$
\left\langle\nabla_{v}^{S}\left(\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M} \boldsymbol{N}\right), \boldsymbol{w}\right\rangle_{M}=\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M}\left\langle\nabla_{v}^{S} \boldsymbol{N}, \boldsymbol{w}\right\rangle_{M}
$$

since N is orthogonal to \boldsymbol{w}. The same argument can be applied to show that for any vector field \boldsymbol{u} (not necessarily tangent to S)

$$
\left\langle\nabla_{v}^{S} \boldsymbol{u}, \boldsymbol{w}\right\rangle_{M}=\left\langle D_{v} \boldsymbol{u}, \boldsymbol{w}\right\rangle_{M}
$$

and therefore that, evaluated at the critical point x,

$$
\begin{aligned}
\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}] & =\left\langle D_{v}\left(d F^{\sharp}\right), \boldsymbol{w}\right\rangle_{M}-\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M}\left\langle D_{v} \boldsymbol{N}, \boldsymbol{w}\right\rangle_{M} \\
& =D^{2} F[\boldsymbol{v}, \boldsymbol{w}]-\left\langle d F^{\sharp}, \boldsymbol{N}\right\rangle_{M}\left\langle D_{v} N, \boldsymbol{w}\right\rangle_{M} .
\end{aligned}
$$

The inertia ellipsoid S is defined by the equation $\|\boldsymbol{q}\|_{M}^{2}=1$, or equivalently $h(\boldsymbol{q})=\frac{1}{2}$ where $h(\boldsymbol{q})=\frac{1}{2}\|\boldsymbol{q}\|_{M}^{2}$. The normal unit vector N is equal to $d h^{\sharp}=\boldsymbol{q}$, and thus

$$
\begin{aligned}
\operatorname{Hess}(f)[\boldsymbol{v}, \boldsymbol{w}] & =D^{2} F[\boldsymbol{v}, \boldsymbol{w}]-\left\langle d F^{\sharp}, \boldsymbol{q}\right\rangle_{M}\left\langle D_{v} \boldsymbol{q}, \boldsymbol{w}\right\rangle_{M} \\
& =D^{2} F[\boldsymbol{v}, \boldsymbol{w}]-\left\langle d F^{\sharp}, \boldsymbol{q}\right\rangle_{M}\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{M} .
\end{aligned}
$$

If $F=U$, then U is homogeneous of degree $-\alpha$, and therefore $\left\langle d U^{\sharp}, \boldsymbol{q}\right\rangle_{M}=$ $d U(\boldsymbol{q})[\boldsymbol{q}]=-\alpha U(\boldsymbol{q})$. The following equation follows, at any critical point x of the restriction of U to S.

$$
\begin{equation*}
\operatorname{Hess}\left(\left.U\right|_{S}\right)[\boldsymbol{v}, \boldsymbol{w}]=D^{2} U(x)[\boldsymbol{v}, \boldsymbol{w}]+\alpha U(x)\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{M} . \tag{1.1}
\end{equation*}
$$

A central configuration is a configuration $q \in \mathbb{F}_{n}(E)$ with the property that there exists a multiplier $\lambda \in \mathbb{R}$ such that

$$
\begin{equation*}
d U^{\sharp}(\boldsymbol{q})=\lambda \boldsymbol{q}, \tag{1.2}
\end{equation*}
$$

where $d U^{\sharp}$ is the gradient in E^{n} of the potential function U, with respect to the mass-metric. Equation (1.2) implies that $\lambda=-\alpha \frac{U(\boldsymbol{q})}{\|\boldsymbol{q}\|_{M}^{2}}$ (for more on central configurations see e.g. [17] (§369-§382bis at pp. 284-306), [15], [10], [12], [18], [1], [6], [2], [11], [5]). An equivalent definition for a normalized (i.e. $q \in S$) central configuration is the following:
(1.3) $q \in \mathrm{~S}_{n}(E)$ is a central configuration if and only if it is a critical point for the restriction $\left.U\right|_{S}$ of the potential function to $S=S_{n}(E)$.

Let $c: E^{n} \rightarrow E^{n}$ be the isometry defined as $c(\boldsymbol{q})=\boldsymbol{q}^{\prime}$, with

$$
\begin{equation*}
\boldsymbol{q}_{j}^{\prime}=\boldsymbol{q}_{j}-2 \boldsymbol{q}_{0} \tag{1.4}
\end{equation*}
$$

for each $j=1, \ldots, n$, and with $\boldsymbol{q}_{0}=\sum_{j=1}^{n} m_{j} \boldsymbol{q}_{j}$. It is an isometry, since $\left\|\boldsymbol{q}^{\prime}\right\|_{M}^{2}=\sum_{j=1}^{n} m_{j}\left|\boldsymbol{q}_{j}-2 \boldsymbol{q}_{0}\right|^{2}=\sum_{j=1}^{n} m_{j}\left(\left|\boldsymbol{q}_{j}\right|^{2}+4\left|\boldsymbol{q}_{0}\right|^{2}-4 \boldsymbol{q}_{j} \cdot \boldsymbol{q}_{0}\right)=\sum_{j=1}^{n} m_{j}\left|\boldsymbol{q}_{j}\right|^{2}+$ $4\left(\sum_{j=1}^{n} m_{j}\right)\left|\boldsymbol{q}_{0}\right|^{2}-4\left|\boldsymbol{q}_{0}\right|^{2}=\|\boldsymbol{q}\|_{M}^{2}$. It is the orthogonal reflection around the space of all configurations with center of mass \boldsymbol{q}_{0} equal to zero: $\boldsymbol{c} \boldsymbol{q}=\boldsymbol{q} \Longleftrightarrow \boldsymbol{q}_{0}=0$. It is easy to see that if \boldsymbol{q} is a central configuration then $c \boldsymbol{q}=\boldsymbol{q}$, and hence \boldsymbol{q} has center of mass \boldsymbol{q}_{0} in 0 . Let Y be defined as $Y=\left\{\boldsymbol{q} \in E^{n}: \boldsymbol{q}_{0}=\boldsymbol{0}\right\}$, and $\mathrm{S}^{c}=\mathrm{S} \cap Y$, $S^{c}=S \cap Y$. In other words, elements of S^{c} are normalized configurations with center of mass in 0 . Since the potential function is invariant up to translations, $U(c \boldsymbol{q})=U(\boldsymbol{q})$, and any critical point of the restriction $\left.U\right|_{S^{c}}$ is a critical point of $\left.U\right|_{S}$ (for example, by Palais Principle of Symmetric Criticality [13]). Thus it is equivalent to define central configurations as critical points of $\left.U\right|_{S^{c}}$ or as critical points of $\left.U\right|_{S}$.

2 Fixed points, $S O(d)$-orbits and projective configuration spaces

Following [3, 4], consider the function $F: \mathrm{S}_{n}(E) \rightarrow S_{n}(E)$ defined as

$$
\begin{equation*}
F(\boldsymbol{q})=-\frac{d U^{\sharp}(\boldsymbol{q})}{\left\|d U^{\sharp}(\boldsymbol{q})\right\|_{M}} \tag{2.1}
\end{equation*}
$$

where $d U^{\sharp}$ is the gradient of U, with respect to the mass-metric.
First, consider the isometry c defined above in (1.4). Since $F(c \boldsymbol{q})=c F(\boldsymbol{q})$, $F\left(S^{c}\right) \subset S^{c}$. Moreover, as the image of F is in S^{c}, if F^{c} denotes the restriction $F^{c}: S^{c} \rightarrow S^{c}$,

$$
\begin{equation*}
\operatorname{Fix}\left(F^{c}\right)=\operatorname{Fix}(F) \tag{2.2}
\end{equation*}
$$

and the fixed point indexes are exactly the same.
Let $O(d)$ be the special orthogonal group, acting diagonally on E^{n}, and $S O(d)$ the special orthogonal subgroup. The inertia ellipsoid S, S and Y are $O(d)$-invariant in E^{n}, and so are S^{c} and S^{c}. Let $\pi: S \rightarrow S / G$ denote the quotient map onto the space of G-orbits, for $G=S O(d)$ or $G=-O(d)$.

Since U is a G-invariant function, F is a G-equivariant map, and hence it induces a map on the quotient spaces:

A fixed point of F is a normalized configuration \boldsymbol{q} such that $F(\boldsymbol{q})=\boldsymbol{q}$. A fixed point of f is a conjugacy class $[\boldsymbol{q}]$ of configurations such that $f([\boldsymbol{q}])=[\boldsymbol{q}]$, i.e. it is a conjugacy class $[\boldsymbol{q}]$ such that $F(\boldsymbol{q})=g \boldsymbol{q}$ for some $g \in G$. It follows from Theorem (2.5) of [4] that if $G=S O(d)$, then $F(\boldsymbol{q})=g \boldsymbol{q} \Longleftrightarrow F(\boldsymbol{q})=\boldsymbol{q}$, or equivalently that

$$
\begin{equation*}
G=S O(d) \Longrightarrow \pi(\operatorname{Fix}(F))=\operatorname{Fix}(f) \tag{2.4}
\end{equation*}
$$

and hence also that $\pi\left(\operatorname{Fix}\left(F^{c}\right)\right)=\operatorname{Fix}\left(f^{c}\right)$.
(2.5) Remark. Elements in S/G are called projective configurations: for $d=2$ and $G=S O(2), S / G$ is the $(n-1)$-dimensional complex projective space $\mathbb{P}^{n-1}(\mathbb{C})$, and S^{c} is a hyperplane in it, hence a $(n-2)$-dimensional complex projective space $\mathbb{P}^{n-2}(\mathbb{C})$ For $n=3$, it is the Riemann sphere. Projective configurations are projective classes of elements $\left[\boldsymbol{q}_{1}: \boldsymbol{q}_{2}: \boldsymbol{q}_{3}\right]$ in $\mathbb{P}^{1}(\mathbb{C}) \subset \mathbb{P}^{2}(\mathbb{C})$ such that $m_{1} \boldsymbol{q}_{1}+m_{2} \boldsymbol{q}_{2}+m_{3} \boldsymbol{q}_{3}=0, \boldsymbol{q}_{j} \in \mathbb{C}$, and $\boldsymbol{q}_{1} \neq \boldsymbol{q}_{2}, \boldsymbol{q}_{1} \neq \boldsymbol{q}_{3}, \boldsymbol{q}_{2} \neq \boldsymbol{q}_{3}$.

For $d=1$, projective configurations are equivalence classes under the action of the orthogonal group $G=O(1)=\mathbb{Z}_{2}$.

The following Corollary of (2.4) shows that the difference is minor.
(2.6) Corollary. If $\boldsymbol{q} \in \mathrm{S}$ is a central configuration such that $F(\boldsymbol{q})=g \boldsymbol{q}$, with $g \in O(d)$ (acting diagonally on E^{n}), then $g=1$.

Proof. Let $E^{\prime}=E \oplus \mathbb{R}$ be the euclidean space of dimension $d+1$, and $E \subset E^{\prime}$ one of its d-dimensional subspaces. If $\boldsymbol{q} \in S \subset \mathbb{F}_{n}(E)$, then $\boldsymbol{q} \in S \subset \mathbb{F}_{n}(E) \subset \mathbb{F}_{n}\left(E^{\prime}\right)$, and there exists $g^{\prime} \in S O(d+1)$ such that $g^{\prime} E=E$ and the restriction of g^{\prime} to E is equal to g : it follows that $F(\boldsymbol{q})=g^{\prime} \boldsymbol{q}$, in $\mathbb{F}_{n}\left(E^{\prime}\right)$, and therefore $g^{\prime}=1$, from which it follows that $g=1$.

Homological calculations on configurations spaces for the sake of central configurations have been done by Palmore [14], Pacella [12] and McCord [9]. We can arrange all the spaces inertia ellipsoids and the corresponding projective quotients as in diagram (2.7).

For each $d, \mathrm{~S}_{n}^{c}\left(\mathbb{R}^{d}\right)$ is a deformation retract of $\mathbb{F}_{n}^{c}\left(\mathbb{R}^{d}\right)$, which in turn is a deformation retraction of $\mathbb{F}_{n}\left(\mathbb{R}^{d}\right)$ (where $\mathbb{F}_{n}^{c}(E)$ denotes the space of all configurations with center of mass in 0). The Poincaré polynomial for the cohomology of the configuration space $\mathbb{F}_{n}\left(\mathbb{R}^{d}\right)$ is equal to

$$
P(t)=\prod_{k=1}^{n-1}\left(1+k t^{d-1}\right)
$$

as shown e.g. in Theorem 3.2 of [16] (see also Proposition 2.11.2 of [11]).
Now, note that in the sequence of projections

$$
\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d) \rightarrow \mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / O(d)
$$

the second map corresponds to the projection given by the action of the quotient group $\mathbb{Z}_{2}=O(d) / S O(d)$ on the quotient space $S_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d)(S O(d)$ is normal in $O(d)$). For $d \geq 2$, let h be the orthogonal reflection of \mathbb{R}^{d} around $\mathbb{R}^{d-1} \subset \mathbb{R}^{d}$: its coset $h S O(d)$ is the generator of $O(d) / S O(d)$, and hence the image $\operatorname{Im}\left(\bar{l}_{d-1}\right)$ in $S_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d)$ is fixed by $O(d) / S O(d)$. Actually, it is equal to the fixed point subset of $O(d) / S O(d)$ in $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d)$. Outside the image of $\bar{\tau}_{d-1}$, therefore the \mathbb{Z}_{2} action is free: let $\mathbb{M}_{n}\left(\mathbb{R}^{d}\right)$ denote the manifold

$$
\begin{equation*}
\mathbb{M}_{n}\left(\mathbb{R}^{d}\right)=\left(\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d) \backslash \operatorname{Im}\left(\bar{\tau}_{d-1}\right)\right) / \mathbb{Z}_{2}=\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / O(d) \backslash \operatorname{Im}\left(\bar{\nu}_{d-1}\right), \tag{2.8}
\end{equation*}
$$

where the last equality holds since $\bar{\tau}_{d-1}$ factors through $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d-1}\right)$.
The next proposition follows from the dimension of $S O(d)$ and the previous remarks.
(2.9) The subspace of all points in $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / O(d)$ with maximal orbit type is the open subspace $\mathbb{M}_{n}\left(\mathbb{R}^{d}\right)$ defined in (2.8), and it is is a manifold of dimension

$$
\operatorname{dim} \mathbb{M}_{n}\left(\mathbb{R}^{d}\right)=d(n-1)-1-d(d-1) / 2
$$

For $d=1$, it is the projective space $\mathbb{P}^{n-2}(\mathbb{R})$ minus collisions. For $d=2$, it is a $(2 n-4)$ dimensional manifold (where $\mathbb{P}^{n-2}(\mathbb{C})$ minus collinear and minus collisions is its double cover).
(2.10) $S_{n}^{c}\left(\mathbb{R}^{2}\right) / S O(2)$ has the same homotopy type of $\mathbb{F}_{n-2}\left(\mathbb{R}^{2} \backslash\{p, q\}\right)$, where p, q are two arbitrary distinct points of \mathbb{R}^{2}.

Proof. It is Lemma 4.1 of [9].
It follows that the Poincaré polynomial (where β_{j} are Betti numbers) of $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{2}\right) / S O(2)$ is

$$
\begin{equation*}
p(t)=\prod_{k=2}^{n-1}(1+k t)=\sum_{j=0}^{n-2} \beta_{j} t^{j} . \tag{2.11}
\end{equation*}
$$

(see also Proposition 2.11.3 of [11]). McCord in [9] proved also that

$$
\operatorname{dim} H^{k}\left(\mathbb{M}_{n}\left(\mathbb{R}^{2}\right)\right)= \begin{cases}\sum_{j=0}^{k} \beta j & \text { if } k \leq n-3 \\ 0 & \text { otherwise }\end{cases}
$$

while Pacella in (2.4) of [12] computed the $S O$ (3)-equivariant homology (using Borel homology) Poincaré series of $\mathbb{S}_{n}^{c}\left(\mathbb{R}^{3}\right) \sim \mathbb{F}_{n}\left(\mathbb{R}^{3}\right)$ as

$$
P^{S O(3)}(t)=\frac{\prod_{k=2}^{n-1}\left(1+k t^{2}\right)}{1-t^{2}}
$$

(2.12) Remark. The projective quotient $S_{n}^{c}\left(\mathbb{R}^{2}\right) / S O(2)$ is a manifold (it is the projective space $\mathbb{P}^{n-2}(\mathbb{C})$ with collisions removed). It contains $\mathbb{S}_{n}^{c}(\mathbb{R}) / O(1)$ as a submanifold (the collinear configurations). For $d \geq 3$ the isotropy groups of the action start being non-trivial, and the filtration of subspaces of constant orbits type in $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right) / S O(d)$ is given by the horizontal arrows $\bar{\iota}_{j}$ in diagram (2.7).

3 Fixed points and Morse indices

Let $q \in S_{n}^{c}\left(\mathbb{R}^{d}\right)$ a central configuration, and hence a fixed point of the map F defined above in (2.1), such that its $O(d)$-orbits lies in the maximal orbit type submanifold $\mathbb{M}_{n}\left(\mathbb{R}^{d}\right) \subset \mathbb{S}^{c}\left(\mathbb{R}^{d}\right) / O(d)$.
(3.1) If $D F: T_{q} S \rightarrow T_{q} S$ denotes the differential of F at the central configuration \boldsymbol{q}, then for any $v, w \in T_{q} S$ the following equation holds:

$$
D^{2} U(\boldsymbol{q})[\boldsymbol{v}, \boldsymbol{w}]=-\alpha U(\boldsymbol{q})\langle D F[\boldsymbol{v}], \boldsymbol{w}\rangle_{M} .
$$

Proof. As we have seen in the introduction, $\left\langle D_{v} d U^{\sharp}, \boldsymbol{w}\right\rangle_{M}=D^{2} U[\boldsymbol{v}, \boldsymbol{w}]$, and if \boldsymbol{q} is a normalized central configuration then by (1.2) $d U^{\sharp}(\boldsymbol{q})=\lambda \boldsymbol{q}$ with $\lambda=$ $-\alpha \frac{U(\boldsymbol{q})}{\|\boldsymbol{q}\|_{M}^{2}}=-\alpha U(\boldsymbol{q})$. It follows that $\left\langle d U^{\sharp}, \boldsymbol{w}\right\rangle_{M}=0$, being \boldsymbol{w} tangent to S , and $\left\|d U^{\sharp}\right\|_{M}=-\lambda=\alpha U(\boldsymbol{q})$. Also,

$$
\begin{aligned}
\langle D F[\boldsymbol{v}], \boldsymbol{w}\rangle_{M} & =\left\langle D_{v}\left(-\frac{d U^{\sharp}}{\left\|d U^{\sharp}\right\|_{M}}\right), \boldsymbol{w}\right\rangle \\
& =-\left\langle\left(\frac{D_{v} d U^{\sharp}}{\left\|d U^{\sharp}\right\|_{M}}\right), \boldsymbol{w}\right\rangle_{M}-\left\langle D_{v}\left(\frac{1}{\left\|d U^{\sharp}\right\|_{M}}\right) d U^{\sharp}, \boldsymbol{w}\right\rangle_{M} \\
& =-\frac{1}{\left\|d U^{\sharp}\right\|_{M}}\left\langle D_{v} d U^{\sharp}, \boldsymbol{w}\right\rangle_{M}-0 \\
& =-\frac{1}{\alpha U(\boldsymbol{q})} D^{2} U(\boldsymbol{q})[v, \boldsymbol{w}] .
\end{aligned}
$$

Combining (3.1) with equation (1.1) the following corollary holds.
(3.2) Corollary. If \boldsymbol{q} is as above, then for each $\boldsymbol{v}, \boldsymbol{w} \in T_{q} S$

$$
\operatorname{Hess}\left(\left.U\right|_{S}\right)[\boldsymbol{v}, \boldsymbol{w}]=\alpha U(\boldsymbol{q})\left(\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{M}-\langle D F[\boldsymbol{v}], \boldsymbol{w}\rangle_{M}\right)
$$

Finally, consider again the group $O(d)$ acting on $\mathrm{S}_{n}^{c}\left(\mathbb{R}^{d}\right)$. Let F and q be the map and the central configuration defined above. Recall that $f: \mathrm{S} / O(d) \rightarrow$ $S / O(d)$ denotes the map defined on the quotient. Let $[\boldsymbol{q}] \in \mathbb{M}_{n}\left(\mathbb{R}^{d}\right) S / O(d)$ denote the projective class (i.e. the $O(d)$-orbit of \boldsymbol{q}) of \boldsymbol{q}, which is a fixed point of f, and is a critical point of the $\operatorname{map} \bar{U}: \mathbb{M}_{n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ induced on \mathbb{M}_{n} by U, defined simply as $\bar{U}([x])=U(x)$ for each $x \in \mathbb{S}_{n}^{c}\left(\mathbb{R}^{d}\right)$.
(3.3) Theorem. The point $[\boldsymbol{q}]$ is a non-degenerate critical point of \bar{U} if and only if it is a non-degenerate fixed point of f. If ind $([\boldsymbol{q}], f)$ denotes the fixed point index of $[\boldsymbol{q}]$ for f, and $\mu([\boldsymbol{q}])$ the Morse index of $[\boldsymbol{q}]$, then the following equation holds:

$$
\operatorname{ind}([\boldsymbol{q}], f)=(-1)^{\mu([q])} .
$$

Proof. The point $[\boldsymbol{q}]$ is a non-degenerate critical point if and only if the dimension of the kernel of the Hessian $\operatorname{Hess}\left(\left.U\right|_{S}\right)(\boldsymbol{q})$ is equal to the dimension of $S O(d)$, i.e. $d(d-1) / 2$. By (3.2), the kernel is equal to the eigenspace of $D F(\boldsymbol{q})$ corresponding to the eigenvalue 1 , which has dimension $d(d-1) / 2$ if and only if the fixed point $[\boldsymbol{q}]$ is non-degenerate. Now, if this holds then the index $\operatorname{ind}([\boldsymbol{q}], f)$ is equal to the number $(-1)^{e}$. where e is the number of negative eigenvalues $1-f^{\prime}$, which is the same as the number of negative eigenvalues of $1-F^{\prime}$. Again by (3.2) and since $U>0, e$ is equal to the number of negative eigenvalues of $\operatorname{Hess}\left(\left.U\right|_{\mathrm{S}}\right)$, which is by definition the Morse index $\mu([\boldsymbol{q}])$.
(3.4) Remark. Unfortunately, a former version of this statement had a wrong formula for $\operatorname{ind}(\boldsymbol{q})$. In fact, in (3.5) of [4] one should put $\epsilon=0$, and not $\epsilon=$ $d(n-1)-1-d(d-1) / 2=\operatorname{dim} \mathbb{M}_{n}\left(\mathbb{R}^{d}\right)$. The error occurred because I used the wrong sign of U in (3.1) $(V=-U$ instead of $U)$.
(3.5) Example. For $d=1$ and any n, all critical points are local minima of U, and hence $\mu=0$, and fixed points have index 1 . The map induced on the quotient can be regularized on binary collisions (see [4,3]), hence the map on the quotient can be extended to a self-map $f: \mathbb{P}^{1}(\mathbb{R}) \rightarrow \mathbb{P}^{1}(\mathbb{R})$ with three fixed points of index 1 . Therefore the Lefschetz number of f is 3 , and f has degree -2 .

For $d=2$ and $n=3$, the three Euler configurations have $\mu=1$, while the two Lagrange points have $\mu=1$, hence the map f induced on the quotient $\mathbb{P}^{1}(\mathbb{C})$ (again, by regularizing the binary collisions) has Lefschetz number equal to $L(f)=2-3=-1$. Therefore the degree of f is equal to -2 .

References

[1] A. Albouy. Symétrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris Sér. I Math., 320(2):217-220, 1995.
[2] A. Albouy and V. Kaloshin. Finiteness of central configurations of five bodies in the plane. Ann. of Math. (2), 176(1):535-588, 2012.
[3] D. L. Ferrario. Planar central configurations as fixed points. J. Fixed Point Theory Appl., 2(2):277-291, 2007.
[4] D. L. Ferrario. Fixed point indices of central configurations. J. Fixed Point Theory Appl., 17(1):239-251, 2015.
[5] D. L. Ferrario. Central configurations and mutual differences. arXiv preprint arXiv:1608.00480, 2016.
[6] M. Hampton and R. Moeckel. Finiteness of relative equilibria of the fourbody problem. Invent. Math., 163(2):289-312, 2006.
[7] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II. Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II. Interscience Publishers John Wiley \& Sons, Inc., New York-London-Sydney, 1969.
[8] S. Lang. Fundamentals of differential geometry, volume 191 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1999.
[9] C. K. McCord. Planar central configuration estimates in the n-body problem. Ergodic Theory Dynam. Systems, 16(5):1059-1070, 1996.
[10] R. Moeckel. On central configurations. Math. Z., 205(4):499-517, 1990.
[11] R. Moeckel. Central configurations. In Central configurations, periodic orbits, and Hamiltonian systems, Adv. Courses Math. CRM Barcelona, pages 105-167. Birkhäuser/Springer, Basel, 2015.
[12] F. Pacella. Central configurations of the N-body problem via equivariant Morse theory. Arch. Rational Mech. Anal., 97(1):59-74, 1987.
[13] R. S. Palais. The principle of symmetric criticality. Comm. Math. Phys., 69(1):19-30, 1979.
[14] J. I. Palmore. Classifying relative equilibria. I. Bull. Amer. Math. Soc., 79: 904-908, 1973.
[15] D. G. Saari. Collisions, rings, and other Newtonian N-body problems, volume 104 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, 2005.
[16] V. V. Vershinin. Homology of braid groups and their generalizations. In Knot theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 421-446. Polish Acad. Sci., Warsaw, 1998.
[17] A. Wintner. The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v. 5. Princeton University Press, Princeton, N. J., 1941.
[18] Z. Xia. Central configurations with many small masses. J. Differential Equations, 91(1):168-179, 1991.

Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi 55 I-20125 Milano email : davide.ferrario@unimib.it

[^0]: Received by the editors in January 2017.
 Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.
 2010 Mathematics Subject Classification : 70F10, 55M20.
 Key words and phrases : Central configurations, relative equilibria, n-body problem, fixed point indices.

