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Abstract

We compute the fixed point index of non-degenerate central configura-
tions for the n-body problem in the euclidean space of dimension d, relating
it to the Morse index of the gravitational potential function Ū induced on
the manifold of all maximal O(d)-orbits. In order to do so, we analyze the
geometry of maximal orbit type manifolds, and compute Morse indices with
respect to the mass-metric bilinear form on configuration spaces.

1 Introduction: central configurations as critical points

Let E = Rd be the d-dimensional euclidean space, for d ≥ 1. Fix an integer n ≥ 2.
The configuration space of n (colored) points in E is the set of all n-tuples of distinct
points in E, and denoted by Fn(E):

Fn(E) = {q ∈ En : i 6= j =⇒ qi 6= qj} = En
r ∆,

where if q ∈ En, its n components are denoted by qj, j = 1, . . . , n; points in
Fn(E) are termed configurations of n points in E; its complement in En is the set of
collisions

∆ = {q ∈ En : ∃(i, j), i 6= j : qi = qj}

=
⋃

1≤i<j≤n

{q ∈ En : qi = qj}.
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For j = 1, . . . , n let mj > 0 be fixed parameters (that can be interpreted as the
mass of the j-th particle in E), under the normalization condition

n

∑
j=1

mj = 1 .

If v, w are vectors in (the tangent space of) En, then let

〈v, w〉M =
n

∑
j=1

mjvj · wj

denote the mass scalar product of v and w, where vj ·wj is the standard euclidean
scalar product (in E) of the j-th components of v and w. The unit sphere in Fn(E)
is termed the inertia ellipsoid and denoted by

S = Sn(E) = {q ∈ Fn(E) : ‖q‖2
M = 1} .

It is equal to the unit sphere/ellipsoid in En, with collisions removed, Sn(E) =
Sn(E) r ∆. The unit sphere/ellipsoid in En is denoted by Sn(E) = {q ∈ En :

‖q‖2
M = 1}. To simplify notation, if possible we will use the short forms S and S

instead of Sn(E) and Sn(E).
The potential function U : Fn(E) → R is simply defined as

∑
1≤i<j≤n

mimj

|qi − qj|α
,

given a fixed parameter α > 0. For α = 1, U is the Newtonian gravitational
potential. It is invariant under the full group of isometries of E, acting diagonally
on Fn(E).

Let D = ∇ denote the covariant derivative (which is the Levi-Civita con-
nection with respect to the mass-metric) in Fn(E), which is again the standard
derivative. If F : Fn(E) → E is a smooth function, then DF = dF is the differential
of F, which is a section of the cotangent bundle T∗Fn(E) defined as DF[v] = DvF
for each vector field v on Fn(E). If v and w are two vector fields on Fn(E), then
Dvw is the (Euclidean and covariant) derivative of w in the direction of v.

Let ∇S denote the covariant derivative (Levi-Civita connection) on S, induced
by the mass-metric of Fn(E) restricted to S, i.e. the restriction to S of the
Riemannian structure of Fn(E). If v and w are two vector fields defined in a
neighborhood of S, then the covariant derivative ∇S

vw is equal, at x ∈ S, to the
orthogonal projection of Dvw, projected orthogonally to the tangent space TxS
(cf. proposition 3.1 at page 11 of [7], or proposition 1.2 at page 371 of [8]). The
same holds with S ⊂ S instead of S. If Π denote the projection TFn(E) 7→ TS,
then ∇S

vw = ΠDvw.
If F : Fn(E) → R is a smooth function, and f = F|S is its restriction to S, then

∇S f = d f is the restriction of dF to the tangent bundle TS. Let grad( f ) = d f ♯ and
grad(F) = dF♯ denote the gradients of f and F respectively (i.e., the images of the
differentials under the musical isomorphisms induced by the mass-metric). For
each x ∈ S, d f ♯(x) ∈ TxS and dF♯(x) ∈ TxFn(E) satisfy the equations

〈d f ♯, v〉M = d f [v] = 〈dF♯, v〉M = dF[v]
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for any v ∈ TxS, and hence grad( f ) = d f ♯ is the projection of grad(F) = dF♯ on
the tangent space TxS. A critical point of f is a point x ∈ S such that d f = 0 ⇐⇒
grad( f ) = 0, which is equivalent to say that grad(F) is orthogonal to TxS.

The Hessian of the function f , at a critical point x of f in S, is (cf. page 343 of
[8]) equal to the bilinear form Hess( f )[v, w], defined on the tangent space TxS as

Hess( f )[v, w](x) = (∇S
v∇

S
w f −∇S

∇S
vw

f )(x) = (∇S
v∇

S
w f )(x)

where v and w are two vector fields defined in a neighborhood of x.
The Hessian of F is simply the symmetric matrix of all the second derivatives

D2F:
Hess(F)[v, w](x) = (DvDwF)(x) = D2F(x)[v, w]

= ∑
i=1...n

β=1,...,d

∑
j=1,...,n
γ=1,...,d

∂2F

∂qiβ∂qjγ
viβwjγ

where qiβ, viβ and wjγ are the d cartesian components in E (Rd as the tangent
space of E) of qi, vi and wj respectively.

Using the mass-metric, if N denotes the unit vector field normal to TxS in
TxFn(E), the projection of ∇S

vu of any vector field u on TxS is

∇S
vu = Dvu − 〈Dvu, N〉MN ,

and
d f ♯ = dF♯ − 〈dF♯, N〉MN .

The Hessian can be written also as (cf. page 344 of [8]) Hess( f )[v, w](x) =
〈∇S

vd f ♯, w〉M and Hess(F)[v, w](x) = 〈DvdF♯, w〉M. It follows therefore that

Hess( f )[v, w](x) = 〈∇S
vd f ♯, w〉M

= 〈∇S
v

(

dF♯ − 〈dF♯ , N〉MN
)

, w〉
M

= 〈∇S
v

(

dF♯
)

, w〉
M
− 〈∇S

v

(

〈dF♯ , N〉MN
)

, w〉
M

.

Because of the product rule for each function ϕ and each vector field u

∇S
v (ϕu) = ϕ∇S

vu + (dϕ[v])u

=⇒ ∇S
v

(

〈dF♯ , N〉MN
)

= 〈dF♯ , N〉M∇S
vN + d

(

〈dF♯, N〉M

)

[v]N

which implies that

〈∇S
v

(

〈dF♯ , N〉MN
)

, w〉
M

= 〈dF♯ , N〉M〈∇S
vN , w〉M

since N is orthogonal to w. The same argument can be applied to show that for
any vector field u (not necessarily tangent to S)

〈∇S
vu, w〉M = 〈Dvu, w〉M,
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and therefore that, evaluated at the critical point x,

Hess( f )[v, w] = 〈Dv

(

dF♯
)

, w〉
M
− 〈dF♯ , N〉M〈DvN , w〉M

= D2F[v, w] − 〈dF♯ , N〉M〈DvN , w〉M.

The inertia ellipsoid S is defined by the equation ‖q‖2
M = 1, or equivalently

h(q) = 1
2 where h(q) =

1

2
‖q‖2

M. The normal unit vector N is equal to dh♯ = q,

and thus
Hess( f )[v, w] = D2F[v, w] − 〈dF♯, q〉M〈Dvq, w〉M

= D2F[v, w] − 〈dF♯, q〉M〈v, w〉M.

If F = U, then U is homogeneous of degree −α, and therefore 〈dU♯, q〉M =
dU(q)[q] = −αU(q). The following equation follows, at any critical point x of
the restriction of U to S.

Hess(U|S)[v, w] = D2U(x)[v, w] + αU(x)〈v, w〉M. (1.1)

A central configuration is a configuration q ∈ Fn(E) with the property that
there exists a multiplier λ ∈ R such that

dU♯(q) = λq, (1.2)

where dU♯ is the gradient in En of the potential function U, with respect to the

mass-metric. Equation (1.2) implies that λ = −α
U(q)

‖q‖2
M

(for more on central

configurations see e.g. [17] (§369–§382bis at pp. 284–306), [15], [10], [12], [18],
[1], [6], [2], [11], [5]). An equivalent definition for a normalized (i.e. q ∈ S) central
configuration is the following:

(1.3) q ∈ Sn(E) is a central configuration if and only if it is a critical point for the
restriction U|S of the potential function to S = Sn(E).

Let c : En → En be the isometry defined as c(q) = q′, with

q′
j = qj − 2q0 (1.4)

for each j = 1, . . . , n, and with q0 = ∑
n
j=1 mjqj. It is an isometry, since

‖q′‖2
M = ∑

n
j=1 mj|qj − 2q0|

2 = ∑
n
j=1 mj(|qj|

2 + 4|q0|
2 − 4qj · q0) = ∑

n
j=1 mj|qj|

2 +

4(∑n
j=1 mj)|q0|

2 − 4|q0|
2 = ‖q‖2

M. It is the orthogonal reflection around the space

of all configurations with center of mass q0 equal to zero: cq = q ⇐⇒ q0 = 0.
It is easy to see that if q is a central configuration then cq = q, and hence q has
center of mass q0 in 0. Let Y be defined as Y = {q ∈ En : q0 = 0}, and Sc = S ∩Y,
Sc = S ∩ Y. In other words, elements of Sc are normalized configurations with
center of mass in 0. Since the potential function is invariant up to translations,
U(cq) = U(q), and any critical point of the restriction U|Sc is a critical point of
U|S (for example, by Palais Principle of Symmetric Criticality [13]). Thus it is
equivalent to define central configurations as critical points of U|Sc or as critical
points of U|S.
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2 Fixed points, SO(d)-orbits and projective configuration spaces

Following [3, 4], consider the function F : Sn(E) → Sn(E) defined as

F(q) = −
dU♯(q)

‖dU♯(q)‖M

(2.1)

where dU♯ is the gradient of U, with respect to the mass-metric.
First, consider the isometry c defined above in (1.4). Since F(cq) = cF(q),

F(Sc) ⊂ Sc. Moreover, as the image of F is in Sc, if Fc denotes the restriction
Fc : S

c → Sc,
Fix(Fc) = Fix(F), (2.2)

and the fixed point indexes are exactly the same.
Let O(d) be the special orthogonal group, acting diagonally on En, and SO(d)

the special orthogonal subgroup. The inertia ellipsoid S, S and Y are O(d)-inva-
riant in En, and so are Sc and Sc. Let π : S → S/G denote the quotient map onto
the space of G-orbits, for G = SO(d) or G = −O(d).

Since U is a G-invariant function, F is a G-equivariant map, and hence it
induces a map on the quotient spaces:

S
F

//

π
��

S

π
��

S/G
f

// S/G

(2.3)

A fixed point of F is a normalized configuration q such that F(q) = q. A
fixed point of f is a conjugacy class [q] of configurations such that f ([q]) = [q],
i.e. it is a conjugacy class [q] such that F(q) = gq for some g ∈ G. It follows
from Theorem (2.5) of [4] that if G = SO(d), then F(q) = gq ⇐⇒ F(q) = q, or
equivalently that

G = SO(d) =⇒ π(Fix(F)) = Fix( f ), (2.4)

and hence also that π(Fix(Fc)) = Fix( f c).

(2.5) Remark. Elements in S/G are called projective configurations: for d = 2 and
G = SO(2), S/G is the (n − 1)-dimensional complex projective space Pn−1(C),
and Sc is a hyperplane in it, hence a (n − 2)-dimensional complex projective
space Pn−2(C) For n = 3, it is the Riemann sphere. Projective configurations
are projective classes of elements [q1 : q2 : q3] in P

1(C) ⊂ P
2(C) such that

m1q1 + m2q2 + m3q3 = 0, qj ∈ C, and q1 6= q2, q1 6= q3, q2 6= q3.
For d = 1, projective configurations are equivalence classes under the action

of the orthogonal group G = O(1) = Z2.

The following Corollary of (2.4) shows that the difference is minor.
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(2.6) Corollary. If q ∈ S is a central configuration such that F(q) = gq, with g ∈ O(d)
(acting diagonally on En), then g = 1.

Proof. Let E′ = E ⊕ R be the euclidean space of dimension d + 1, and E ⊂ E′ one
of its d-dimensional subspaces. If q ∈ S ⊂ Fn(E), then q ∈ S ⊂ Fn(E) ⊂ Fn(E′),
and there exists g′ ∈ SO(d + 1) such that g′E = E and the restriction of g′ to E is
equal to g: it follows that F(q) = g′q, in Fn(E

′), and therefore g′ = 1, from which
it follows that g = 1.

Homological calculations on configurations spaces for the sake of central con-
figurations have been done by Palmore [14], Pacella [12] and McCord [9]. We can
arrange all the spaces inertia ellipsoids and the corresponding projective quo-
tients as in diagram (2.7).

S
c
n(R)

ι1
//

��

S
c
n(R

2)
ι2

//

��

S
c
n(R

3)
ι3

//

��

· · ·

Sc
n(R)/SO(1)

ῑ1
//

��

Sc
n(R

2)/SO(2)
ῑ2

//

��

Sc
n(R

3)/SO(3)
ῑ3

//

��

· · ·

Sc
n(R)/O(1)

¯̄ι1
// Sc

n(R
2)/O(2)

¯̄ι2
// Sc

n(R
3)/O(3)

¯̄ι3
// · · ·

(2.7)

For each d, Sc
n(R

d) is a deformation retract of Fc
n(R

d), which in turn is a defor-
mation retraction of Fn(Rd) (where Fc

n(E) denotes the space of all configurations
with center of mass in 0). The Poincaré polynomial for the cohomology of the
configuration space Fn(Rd) is equal to

P(t) =
n−1

∏
k=1

(1 + ktd−1),

as shown e.g. in Theorem 3.2 of [16] (see also Proposition 2.11.2 of [11]).
Now, note that in the sequence of projections

S
c
n(R

d) → S
c
n(R

d)/SO(d) → S
c
n(R

d)/O(d)

the second map corresponds to the projection given by the action of the quotient
group Z2 = O(d)/SO(d) on the quotient space Sc

n(R
d)/SO(d) (SO(d) is normal

in O(d)). For d ≥ 2, let h be the orthogonal reflection of Rd around Rd−1 ⊂ Rd:
its coset hSO(d) is the generator of O(d)/SO(d), and hence the image Im(ῑd−1)
in Sc

n(R
d)/SO(d) is fixed by O(d)/SO(d). Actually, it is equal to the fixed point

subset of O(d)/SO(d) in S
c
n(R

d)/SO(d). Outside the image of ῑd−1, therefore the
Z2 action is free: let Mn(Rd) denote the manifold

Mn(R
d) =

(

S
c
n(R

d)/SO(d)r Im(ῑd−1)
)

/Z2 = S
c
n(R

d)/O(d)r Im(̄̄ιd−1), (2.8)

where the last equality holds since ῑd−1 factors through S
c
n(R

d−1).
The next proposition follows from the dimension of SO(d) and the previous

remarks.
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(2.9) The subspace of all points in S
c
n(R

d)/O(d) with maximal orbit type is the open
subspace Mn(Rd) defined in (2.8), and it is is a manifold of dimension

dim Mn(R
d) = d(n − 1)− 1 − d(d − 1)/2.

For d = 1, it is the projective space Pn−2(R) minus collisions. For d = 2, it
is a (2n − 4) dimensional manifold (where Pn−2(C) minus collinear and minus
collisions is its double cover).

(2.10) Sc
n(R

2)/SO(2) has the same homotopy type of Fn−2(R
2
r {p, q}), where p, q

are two arbitrary distinct points of R2.

Proof. It is Lemma 4.1 of [9].

It follows that the Poincaré polynomial (where β j are Betti numbers) of

Sc
n(R

2)/SO(2) is

p(t) =
n−1

∏
k=2

(1 + kt) =
n−2

∑
j=0

β jt
j. (2.11)

(see also Proposition 2.11.3 of [11] ). McCord in [9] proved also that

dim Hk(Mn(R
2)) =

{

∑
k
j=0 βj if k ≤ n − 3

0 otherwise,

while Pacella in (2.4) of [12] computed the SO(3)-equivariant homology (using
Borel homology) Poincaré series of Sc

n(R
3) ∼ Fn(R3) as

PSO(3)(t) =
∏

n−1
k=2 (1 + kt2)

1 − t2
.

(2.12) Remark. The projective quotient Sc
n(R

2)/SO(2) is a manifold (it is the
projective space Pn−2(C) with collisions removed). It contains Sc

n(R)/O(1) as
a submanifold (the collinear configurations). For d ≥ 3 the isotropy groups of
the action start being non-trivial, and the filtration of subspaces of constant orbits
type in Sc

n(R
d)/SO(d) is given by the horizontal arrows ῑj in diagram (2.7).

3 Fixed points and Morse indices

Let q ∈ Sc
n(R

d) a central configuration, and hence a fixed point of the map F
defined above in (2.1), such that its O(d)-orbits lies in the maximal orbit type
submanifold Mn(Rd) ⊂ Sc(Rd)/O(d).

(3.1) If DF : TqS → TqS denotes the differential of F at the central configuration q, then
for any v, w ∈ TqS the following equation holds:

D2U(q)[v, w] = −αU(q)〈DF[v], w〉M.
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Proof. As we have seen in the introduction, 〈DvdU♯, w〉M = D2U[v, w], and if

q is a normalized central configuration then by (1.2) dU♯(q) = λq with λ =

−α
U(q)

‖q‖2
M

= −αU(q). It follows that 〈dU♯, w〉M = 0, being w tangent to S, and

‖dU♯‖M = −λ = αU(q). Also,

〈DF[v], w〉M = 〈Dv

(

−
dU♯

‖dU♯‖M

)

, w〉
M

= −〈

(

DvdU♯

‖dU♯‖M

)

, w〉
M

− 〈Dv

(

1

‖dU♯‖M

)

dU♯, w〉
M

= −
1

‖dU♯‖M

〈DvdU♯, w〉M − 0

= −
1

αU(q)
D2U(q)[v, w].

Combining (3.1) with equation (1.1) the following corollary holds.

(3.2) Corollary. If q is as above, then for each v, w ∈ TqS

Hess(U|S)[v, w] = αU(q) (〈v, w〉M − 〈DF[v], w〉M) .

Finally, consider again the group O(d) acting on Sc
n(R

d). Let F and q be
the map and the central configuration defined above. Recall that f : S/O(d) →
S/O(d) denotes the map defined on the quotient. Let [q] ∈ Mn(Rd)S/O(d)
denote the projective class (i.e. the O(d)-orbit of q) of q, which is a fixed point
of f , and is a critical point of the map Ū : Mn(Rd) → R induced on Mn by U,
defined simply as Ū([x]) = U(x) for each x ∈ Sc

n(R
d).

(3.3) Theorem. The point [q] is a non-degenerate critical point of Ū if and only if it is a
non-degenerate fixed point of f . If ind([q], f ) denotes the fixed point index of [q] for f ,
and µ([q]) the Morse index of [q], then the following equation holds:

ind([q], f ) = (−1)µ([q]).

Proof. The point [q] is a non-degenerate critical point if and only if the dimension
of the kernel of the Hessian Hess(U|S)(q) is equal to the dimension of SO(d), i.e.
d(d− 1)/2. By (3.2), the kernel is equal to the eigenspace of DF(q) corresponding
to the eigenvalue 1, which has dimension d(d − 1)/2 if and only if the fixed point
[q] is non-degenerate. Now, if this holds then the index ind([q], f ) is equal to the
number (−1)e. where e is the number of negative eigenvalues 1− f ′, which is the
same as the number of negative eigenvalues of 1 − F′. Again by (3.2) and since
U > 0, e is equal to the number of negative eigenvalues of Hess(U|S), which is
by definition the Morse index µ([q]).

(3.4) Remark. Unfortunately, a former version of this statement had a wrong for-
mula for ind(q). In fact, in (3.5) of [4] one should put ǫ = 0, and not ǫ =
d(n − 1) − 1 − d(d − 1)/2 = dim Mn(Rd). The error occurred because I used
the wrong sign of U in (3.1) (V = −U instead of U).
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(3.5) Example. For d = 1 and any n, all critical points are local minima of U, and
hence µ = 0, and fixed points have index 1. The map induced on the quotient can
be regularized on binary collisions (see [4, 3]), hence the map on the quotient can
be extended to a self-map f : P1(R) → P1(R) with three fixed points of index 1.
Therefore the Lefschetz number of f is 3, and f has degree −2.

For d = 2 and n = 3, the three Euler configurations have µ = 1, while the
two Lagrange points have µ = 1, hence the map f induced on the quotient
P1(C) (again, by regularizing the binary collisions) has Lefschetz number equal
to L( f ) = 2 − 3 = −1. Therefore the degree of f is equal to −2.
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