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Abstract

In this paper, we expand certain aspects of Nielsen periodic point
theory from tori and nilmanifolds to infra-nilmanifolds. We show that infra-
nilmanifolds are essentially reducible to the GCD and essentially toral. With
these structural properties in mind, we develop a method to compute the full
Nielsen-Jiang number NFn( f ). We also determine for which maps it holds
that NFn( f ) = N( f n), for all n.

1 Introduction

In classical Nielsen theory, the purpose is to find a homotopy-invariant lower
bound for the number of fixed points of a map. Similarly, Nielsen periodic point
theory will try to find a homotopy-invariant lower bound for the number of
periodic points. Both of these theories work for all continuous maps on con-
nected, compact absolute neighborhood retracts, but in this paper we will mainly
focus on compact manifolds.

So, let f : X → X be a continuous map on a manifold. We call x ∈ X a periodic
point if f n(x) = x for a certain integer n > 0. The smallest n for which this holds,
will be called the period of n. In Nielsen theory, we partition the fixed point
set into fixed point classes and subsequently count the number of fixed point
classes that can not disappear by using a homotopy. The resulting number is the
Nielsen number N( f ). We can do a similar thing for f n and try to approximate
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the number of n-periodic points of f by the number N( f n). However, this lower
bound can be poor. By studying the relations between fixed point classes for
different iterates of f more closely, it is possible to define a better lower bound,
namely the full Nielsen-Jiang periodic number NFn( f ). This number has already
been studied extensively for maps on tori and nilmanifolds and in this paper we
will extend some of these results to infra-nilmanifolds.

In the first two sections, we will give an introduction to the theory of infra-
nilmanifolds and to Nielsen periodic point theory. Subsequently, we will prove
that infra-nilmanifolds are essentially reducible to the GCD (Theorem 4.2) and
essentially toral (Theorem 4.3). These structural properties also hold for maps on
nilmanifolds and tori and are a necessary first step in order to be able to com-
pute NFn( f ) on infra-nilmanifolds. We will also prove that for all n, NFn( f ) =
N( f n) for a large class of maps on infra-nilmanifolds, namely the class of semi-
hyperbolic maps (Corollary 4.6).

Because maps on tori and nilmanifolds are weakly Jiang, the computation of
NFn( f ) turns out to be very doable on these manifolds. On infra-nilmanifolds,
however, this is not the case. In the penultimate section, we will therefore develop
a method that makes the computation of NFn( f ) easier. Sometimes, though, the
computation still can be quite hard, but this might be inherent to the problem,
because, by applying our method to several examples, it becomes apparent that
the expression for NFn( f ) can be very complex.

In the last section, we will look specifically at affine maps on infra-nilmanifolds.
In general, these maps behave better than arbitrary continuous maps. In Theorem
6.2, we prove that, under very mild conditions, these affine maps can only be
Wecken (which means that # Fix( f ) = N( f )) at every level if and only if they are
semi-hyperbolic. This allows us to determine exactly for which maps NFn( f ) =
N( f n), for all n (Corollary 6.5).

2 Infra-nilmanifolds

In this paragraph, we will give a quick overview of the theory of infra-nilmani-
folds. For more details on flat manifolds, we refer to [2]. For a detailed, algebraic
approach to the more general theory of infra-nilmanifolds, we refer to [5].

Let G be a connected, simply connected, nilpotent Lie group. The group of affine
transformations on G, Aff(G) = G Aut(G), admits a natural left action on G:

∀(g, α) ∈ Aff(G), ∀h ∈ G : (g,α)h = gα(h).

Define p : Aff(G) = G Aut(G) → Aut(G) as the natural projection onto the
second factor of the semi-direct product.

Definition 2.1. A subgroup Γ ⊆ Aff(G) is called almost-crystallographic if and
only if p(Γ) is finite and Γ ∩ G is a uniform and discrete subgroup of G. The finite group
F = p(Γ) is called the holonomy group of Γ.
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With these properties, the natural action of such a group Γ on G becomes properly
discontinuous and cocompact. Moreover, when Γ is torsion-free, this action is
free, which makes the resulting quotient space Γ\G a compact manifold. This
idea leads to the following definition.

Definition 2.2. A torsion-free almost-crystallographic group Γ ⊆ Aff(G) is called an
almost-Bieberbach group, and the corresponding manifold Γ\G is called an infra-
nilmanifold (modeled on G).

When the holonomy group is trivial, Γ can be considered to be a lattice in G and
the corresponding manifold Γ\G is a nilmanifold. When G is abelian, i.e. G is
isomorphic to Rn, Γ will be called a Bieberbach group and Γ\G a compact flat
manifold. When G is abelian and the holonomy group of Γ is trivial, then Γ\G
is a torus. Hence, infra-nilmanifolds are a natural generalization of nilmanifolds
and tori.

Now, define the semigroup aff(G) = G Endo(G). Note that aff(G) acts on G in a
similar way as Aff(G):

(d, D) : G → G : h 7→ dD(h).

The elements of this semigroup will be called affine maps, since aff(G) is merely
a generalization of the semigroup of affine maps aff(Rn) to the nilpotent case.
One of the main advantages of working with infra-nilmanifolds, is the fact that
every continuous map lies in the same homotopy class as a map induced by such
an affine map with similar properties. These maps are often easier to handle and
are therefore ideal to use in proving several theorems. This strategy will be often
used throughout this paper, for example in the last section of this paper.

Theorem 2.3 (K.B. Lee [22]). Let G be a connected and simply connected nilpotent Lie
group and suppose that Γ, Γ′ ⊆ Aff(G) are two almost-crystallographic groups modeled
on G. Then for any homomorphism ϕ : Γ → Γ′ there exists an element (d, D) ∈ aff(G)
such that

∀γ ∈ Γ : ϕ(γ)(d, D) = (d, D)γ.

We can consider the equality ϕ(γ)(d, D) = (d, D)γ to lie in aff(G), since Aff(G) is
a subgroup of aff(G). With this equality in mind, when Γ and Γ′ are torsion-free,
it is easy to see that the affine map (d, D) induces a well-defined map between
infra-nilmanifolds:

(d, D) : Γ\G → Γ′\G : Γh → Γ′dD(h),

which exactly induces the morphism ϕ on the level of the fundamental groups.

On the other hand, if we choose an arbitrary map f : Γ\G → Γ′\G between two
infra-nilmanifolds and choose a lifting f̃ : G → G of f , then there exists a mor-
phism f̃∗ : Γ → Γ′ such that f̃∗(γ) ◦ f̃ = f̃ ◦ γ, for all γ ∈ Γ. By Theorem 2.3, an
affine map (d, D) ∈ aff(G) exists which also satisfies f̃∗(γ) ◦ (d, D) = (d, D) ◦ γ

for all γ ∈ Γ. Therefore, the induced map (d, D) and f are homotopic. Hence,
whenever we are studying homotopy-invariant properties for maps on infra-
nilmanifolds, we are free to replace an arbitrary map f by its affine counterpart.
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The map (d, D) will be called an affine homotopy lift of f , while we will denote

the map (d, D) as an affine map on an infra-nilmanifold.

It might be noteworthy to mention that (d, D) is not unique in the sense that it
depends on the choice of lifting f̃ : G → G. For example, from [22] we know that
D is only determined up to an inner automorphism of G.

In [20], J.B. Lee and K.B. Lee gave a formula to compute Lefschetz and Nielsen
numbers on infra-nilmanifolds. Pick an infra-nilmanifold Γ\G, determined by
the almost-Bieberbach group Γ ⊆ Aff(G) and let F ⊆ Aut(G) denote the holon-
omy group of Γ. We will write g for the Lie algebra of G. Because G is a nilpotent,
connected and simply connected Lie group, the map exp : g → G will be a dif-
feomorphism. Therefore, Endo(G) and Endo(g) are isomorphic and for every
endomorphism A ∈ Endo(G), we have a unique A∗ ∈ Endo(g), which is deter-
mined by the relation A ◦ exp = exp ◦A∗. This A∗ will be called the differential
of A. Of course, A is invertible if and only if A∗ is invertible.

Theorem 2.4 (J.B. Lee and K.B. Lee [20]). Let Γ ⊆ Aff(G) be an almost-Bieberbach
group with holonomy group F ⊆ Aut(G). Let M = Γ\G be the associated infra-
nilmanifold. If f : M → M is a map with affine homotopy lift (d, D), then

L( f ) =
1

#F ∑
A∈F

det(I − A∗D∗)

and

N( f ) =
1

#F ∑
A∈F

|det(I − A∗D∗)|.

We will now list a couple of properties that we will need in this paper.

The following lemma can be found in [3]. We have adapted the formulation very
slightly, but in essence it is the same lemma and it can be proved in a similar way.

Lemma 2.5. Suppose that F ⊂ GLn(C) is a finite group, D ∈ Cn×n and for all A ∈ F,
there exists a B ∈ F, such that DA = BD. Take an arbitrary element A1 ∈ F and build
the sequence (Aj)j∈N0

, such that DAi = Ai+1D, for all i. Then,

1. ∀j ∈ N0 : det(I − A1D) = det(I − AjD).

2. ∃l, j ∈ N0 : (AjD)l = Dl.

The following two theorems will prove to be very useful in the rest of this paper.

Theorem 2.6 ([6]). Let Γ ⊆ Aff(G) be an almost-Bieberbach group with holonomy
group F ⊆ Aut(G). Let M = Γ\G be the associated infra-nilmanifold. If f : M → M
is a map with affine homotopy lift (d, D), then

R( f ) = ∞ ⇐⇒ ∃A ∈ F such that det(I − A∗D∗) = 0.

Theorem 2.7 ([6]). Let f be a map on an infra-nilmanifold, such that R( f ) < ∞, then
N( f ) = R( f ).
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We will also mention the following definition.

Definition 2.8. Let M be an infra-nilmanifold and f : M → M be a continuous map,
with (d, D) as an affine homotopy lift. We say that f is a hyperbolic map if D∗ has no
eigenvalues of modulus 1. We say that f is semi-hyperbolic if D∗ has no eigenvalues
which are roots of unity.

This class of (semi-)hyperbolic maps contains for example the class of expanding
maps and the class of Anosov diffeomorphisms.

3 Nielsen periodic point theory

In this section, we will mostly follow the outline of [16]. Many of the difficult
aspects of Nielsen periodic point theory will disappear when working on infra-
nilmanifolds. Therefore, we will try to present all the necessary results in a swift
way and skip most of the proofs and unnecessary details. More information
about Nielsen periodic point theory in general can be found in [12],[14],[16] or
[17].

When f n(x) = x, we call x a periodic point. If n is the smallest integer for which
this holds, x is a periodic point of pure period n. We can apply similar techniques
as in Nielsen fixed point theory to achieve Nielsen periodic point theory. Just
like Nielsen fixed point theory divides Fix( f ) into different fixed point classes,
Nielsen periodic point theory divides Fix( f n) into different fixed point classes,
for all n > 0 and looks for relations between fixed point classes on different levels.
This idea is covered in the following definition.

Definition 3.1. Let f : X → X be a self-map. If Fk is a fixed point class of f k, then Fk

will be contained in a fixed point class Fkn of ( f k)n, for all n. We say that Fk boosts to
Fkn. On the other hand, we say that Fkn reduces to Fk.

This idea of boosting a fixed point class also has a more algebraic interpretation.
Fix a lifting f̃ of f to the universal covering (X̃, p) of X. Then f̃ induces a homo-
morphism f∗ on the group of covering transformations by using the following
relation:

f∗(α) ◦ f̃ = f̃ ◦ α.

Let us denote the set of Reidemeister classes of f by R( f ). Any element of this set
will be denoted by the Reidemeister class [α], where α is the coordinate of a lifting
α ◦ f̃ . Let k, n be integers, such that k|n. We then define the following boosting
function:

γnk : R( f k) → R( f n) : [α] 7→ [α f k
∗ (α) f 2k

∗ (α) . . . f n−k
∗ (α)].

The idea behind this boosting function, is the fact that

(α ◦ f̃ k)
n
k = α f k

∗(α) f 2k
∗ (α) . . . f n−k

∗ (α) ◦ f̃ n.

This equality immediately shows that if γnk([β]) = [α], the fixed point class
p Fix(β ◦ f̃ k) will be contained in the fixed point class p Fix(α ◦ f̃ n). Hence, our
algebraic definition is compatible with Definition 3.1.
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In this paper, we will often make a slight abuse of notation. Whenever we use the
expression [α]k, we will simultaneously consider the Reidemeister class
[α] ∈ R( f k) and the fixed point class p(Fix(α ◦ f̃ k)). We will also often switch be-
tween these interpretations whenever necessary. Note that both interpretations
are essentially the same due to the one-to-one correspondence between Reide-
meister classes and fixed point classes. This also means that we make a distinc-
tion between empty fixed point classes that come from a different Reidemeister
classes. In a certain sense, this approach coincides with the idea of labeled fixed
point classes, in [17].

Note that this description only depends on the homomorphism f∗. So, when f
and g induce the same morphism on the group of covering transformations, then
the structure of their periodic point classes will be the same. More specifically,
this means that the whole description above (and everything that will follow) is
homotopy-invariant.

When k|m|n, an easy computation shows that γnmγmk = γnk. Also, γnn = IdR( f n).

Actually, to give the precise definition of Nielsen periodic point theory, we need
a little more than this definition in terms of classes, namely a definition in terms
of orbits. Define the following map

R f : R( f n) → R( f n) : [α] 7→ [ f∗(α)].

One can easily see that this map is well-defined and that (R f )
n = IdR( f n).

Furthermore, by using the commutativity property of the fixed point index on
the maps f and f n−1, it is clear that this map preserves the index of the associated
fixed point classes. By identifying [α] with [ f∗(α)] in R( f n), for all α, we find
the quotient set OR( f n) of orbits of Reidemeister classes. Since the index is pre-
served in every orbit, it makes sense to talk about essential and inessential orbits.
One can also notice that boosting functions make sense in terms of orbits, so we
can talk about reducible and irreducible orbits, depending on whether they have
a pre-image under a boosting function or not.

Lemma 3.2 ([17]). If A ∈ OR( f n) is essential and irreducible, then this orbit contains
at least n periodic points of period n.

This lemma gives the idea for the following definition, which can also be found
in [17].

Definition 3.3. We define the prime Nielsen-Jiang periodic number NPn( f ) as

n × (number of irreducible essential orbits in OR( f n)).

If Pn( f ) is the set of periodic points of f of pure period n, then Lemma 3.2 ensures
us that NPn( f ) is a homotopy-invariant lower bound of #Pn( f ).

We would also like to find a similar lower bound for # Fix( f n). Pick an arbitrary
A ∈ OR( f n). We define the depth d(A) to be the least divisor k of n, such that
A ∈ Im(γnk).
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Definition 3.4. Let n be a fixed positive integer. A subset PS ⊂
⋃

k|n OR( f k) is

called a preceding system if every essential orbit A in
⋃

k|n OR( f k) is preceded by an

element of PS . Such a preceding system is called minimal if the number ∑A∈PS d(A)
is minimal.

Definition 3.5 ([17]). The full Nielsen-Jiang periodic number NFn( f ) is defined as

∑A∈PS d(A), where PS is a minimal preceding system.

Theorem 3.6 ([17]). NFn( f ) is a homotopy-invariant lower bound for the number
# Fix( f n).

Note that every preceding system must contain every essential irreducible orbit
of OR( f n). Since every of these orbits has a depth of n, we know that the follow-
ing inequality holds:

∑
k|n

NPk( f ) ≤ NFn( f ).

An important definition that gives some structure to the boosting and reducing
relations is the following.

Definition 3.7 ([12]). A self-map f : X → X will be called essentially reducible if, for
all n, k, essential fixed point classes of f kn can only reduce to essential fixed point classes
of f k. A space X is called essentially reducible if every self-map f : X → X is essentially
reducible.

It can be shown that the fixed point classes for maps on infra-nilmanifolds always
have this nice structure for their boosting and reducing relations.

Theorem 3.8 ([21]). Infra-nilmanifolds are essentially reducible.

A nice consequence of being essentially reducible, is the following lemma.

Lemma 3.9 ([12]). If f : X → X is essentially reducible, then it has a unique minimal
preceding system, namely the set of all the essential irreducible orbits in

⋃

k|n OR( f k).
As a consequence, the following equality holds:

∑
k|n

NPk( f ) = NFn( f ).

Of course, by using the Möbius inversion formula, we can also write

NPn( f ) = ∑
k|n

µ
(n

k

)

NFk( f ),

where µ denotes the Möbius function.

As a generalization of being essentially reducible, we can define two other struc-
tures on the boosting and reducing relations.

Definition 3.10. A map f : X → X is called essentially reducible to the greatest
common divisor (GCD) if it is essentially reducible and if for every essential fixed point
class [α]n that reduces to both [β]k and [γ]l , there exists a fixed point class [δ]d, with
d = gcd(k, l), such that [α]n reduces to [δ]d. If this holds for every self-map on X, we
will say that X is essentially reducible to the GCD.
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An easy consequence of this definition is the following lemma.

Lemma 3.11 ([12]). If f : X → X is essentially reducible to the GCD, then every
essential fixed point class [α]n in R( f n) is preceded by a unique irreducible essential
fixed point class [β]k. Moreover, d([α]n) = k.

By the length l([α]n), we mean the minimal number l|n, such that Rl
f ([α]n) =

[α]n. Alternatively, this is the number of fixed point classes in an orbit
A ∈ OR( f n).

It is immediately clear that d([α]) ≥ l([α]), because every class in an orbit that
reduces to depth d will be a fixed point of the map Rd

f .

Definition 3.12. A map f : X → X is called essentially toral if it is essentially
reducible and if the following two conditions are fulfilled:

1. For every essential fixed point class in R( f n), the length and depth coincide.

2. If [α]n is essential and γnk([β]k) = γnk([γ]k) = [α]n, then [β]k = [γ]k.

If this holds for every self-map on X, we will say that X is essentially toral.

Because lengths and depths coincide, the following lemma follows easily.

Lemma 3.13 ([12]). If f : X → X is essentially toral, then NPn( f ) equals the number
of irreducible essential fixed point classes in R( f n).

This lemma actually tells us that if we are working on an essentially toral space,
we are free to replace the orbit theory by a theory in terms of classes. By combin-
ing Lemma 3.9 and Lemma 3.13, the following can also be easily deduced.

Corollary 3.14. If f : X → X is essentially toral, then NFn( f ) equals the number of
irreducible essential fixed point classes in

⋃

k|n R( f k).

In [12], the following theorem is proved.

Theorem 3.15. Nilmanifolds are essentially reducible to the GCD and essentially toral.

Note that they actually proved a more general version of this theorem, as they
showed that the theorem above also holds for solvmanifolds.

Definition 3.16. A map f : X → X is called weakly Jiang if N( f ) = 0 or N( f ) =
R( f ). This means that all fixed point classes are simultaneously essential or inessential.

Theorem 3.17 ([12], Theorem 5.1). Suppose that X is essentially toral and essentially
irreducible to the GCD. If f : X → X is a map such that f n is weakly Jiang and N( f n) 6=
0, then

NFn( f ) = N( f n)

and the same formula holds for every divisor of n.
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The idea behind this proof is very simple. Since every fixed point class at level
n is essential, by Lemma 3.11, we know that every such class is preceded by a
unique irreducible essential class. On the other hand, every irreducible essential
fixed point class in

⋃

k|n R( f k) has to boost essentially, since there are simply no
inessential fixed point classes to boost to at level n. Because of these observations,
there exist a bijection between the essential fixed point classes at level n and the
irreducible essential fixed point classes in

⋃

k|n R( f k). Corollary 3.14 then proves
the theorem.

It is known that every map on a nilmanifold is weakly Jiang, due to the result of
Anosov ([1]) or Fadell and Husseini ([8]). Consequently, Theorem 3.17 holds for
nilmanifolds. Unfortunately, not every map on an infra-nilmanifold is weakly
Jiang. Even on the Klein bottle, the smallest example of an infra-nilmanifold
which is not a nilmanifold, it is possible to find counterexamples.

Example 1. Suppose we have the following presentation of the Klein bottle group:

< α, β|αβ = β−1α > .

Let z 6= 1 be odd. Now, let f∗ : α 7→ αz, β 7→ β−1 be the induced morphism for a map f
on the Klein bottle. One can check that this morphism indeed induces a map on the Klein
bottle, for which it holds that R( f ) = ∞, while N( f ) 6= 0.

An algebraic argument for the fact that maps on nilmanifolds are weakly Jiang,
while maps on infra-nilmanifolds are generally not, can be found by combining
Theorem 2.4 with Theorem 2.6 and Theorem 2.7. When working on nilmanifolds,
the formula in Theorem 2.4 reduces to a single determinant. By Theorem 2.6, we
know that this determinant will be equal to 0 (and hence N( f ) = 0) if and only
if R( f ) = ∞. By combining this fact with Theorem 2.7, it follows that nilmani-
folds are weakly Jiang. When working on infra-nilmanifolds, the sum generally
consists of multiple determinants. Therefore, it is possible that some of these de-
terminants are 0 and some are not. If this is the case, a similar argument as before
will show that the map is not weakly Jiang, as R( f ) = ∞, while N( f ) 6= 0.

4 Structure on the periodic point classes of infra-nilmanifolds

In this section, we will show that infra-nilmanifolds are both essentially reducible
to the GCD and essentially toral. As a result of these structural properties, we will
be able to show a theorem similar to Theorem 3.17 for semi-hyperbolic maps on
infra-nilmanifolds.

We will prove both of these structural properties for affine maps on infra-nilmani-
folds and because the theory described in the previous section is homotopy-
invariant, this will be sufficient. As already mentioned before, affine maps are
often much easier to deal with. This fact is exemplified in the following proposi-
tion, which can be found in [10].

Proposition 4.1. If (d, D) : M → M is an affine map on an infra-nilmanifold, then
every non-empty fixed point class is path-connected and
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1. every essential fixed point class of (d, D) consists of exactly one point.

2. every non-essential fixed point class of (d, D) is empty or consists of infinitely
many points.

Now we can prove the two main theorems of this section.

Theorem 4.2. Infra-nilmanifolds are essentially reducible to the GCD.

Proof. By Theorem 3.8, we already know that infra-nilmanifolds are essentially
reducible. It is known from [19] that every almost-Bieberbach group Γ has a fully

characteristic subgroup Λ of finite index, such that Λ ⊂ G. Therefore, every infra-
nilmanifold of the form Γ\G is finitely covered by a nilmanifold Λ\G, such that

every continuous map f : Γ\G → Γ\G can be lifted to a map f : Λ\G → Λ\G.
All in all, we have the following commuting diagram, where βn is a covering
transformation and βn is the natural projection of βn onto Γ/Λ.

G

p

��

p′ ##●
●●

●●
●●

●●

βn f̃ n
// G

p

��

p′{{✇✇
✇✇
✇✇
✇✇
✇

Λ\G
βn f

n

//

p

||①①
①①
①①
①①

Λ\G
p

""❋
❋❋

❋❋
❋❋

❋

Γ\G
f n

// Γ\G

.

Suppose that g is the affine map on Γ\G that is induced by an affine homotopy
lift g̃ of f . Let p(Fix(βn g̃n)) be an essential fixed point class on level n, such that,
for r, s|n, this fixed point class reduces to p(Fix(βr g̃r)) and p(Fix(βs g̃s)).

Because of Proposition 4.1, we know that there exists x ∈ Fix(gn), such that all
these fixed point classes are equal to the set {x}. The fixed point index is a local
property and a covering map is a local homeomorphism, hence, the fixed point
class p′(Fix(βn g̃n)) is also essential. By using Proposition 4.1 again, we know this
fixed point class will consist of one point, namely a x ∈ p−1(x). By a similar
reasoning, there will exist γr, γs ∈ Γ and accordingly, γr, γs ∈ Γ/Λ such that

p′(Fix(βr g̃r)) = {γr · x} and p′(Fix(βs g̃s)) = {γs · x}.

An easy calculation then shows that

p′(Fix(γ−1
r βrgr

∗(γr)g̃
r)) = {x} and p′(Fix(γ−1

s βsgs
∗(γs)g̃

s)) = {x}.

This actually means that if we choose good representatives in the Reidemeis-
ter classes of [βr]r and [βs]s, p′(Fix(βn g̃n)) will reduce to both p′(Fix(βr g̃r)) and
p′(Fix(βs g̃s)) on our nilmanifold Λ\G. Since nilmanifolds are known to be es-
sentially reducible to the GCD, there exists a βd, with d = gcd(r, s), such that
p′(Fix(βr g̃r)) and p′(Fix(βs g̃s)) both reduce to p′(Fix(βd g̃d)). By applying p to
this fixed point class, the statement is proved.
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Theorem 4.3. Infra-nilmanifolds are essentially toral.

Proof. Again, we already know that infra-nilmanifolds are essentially reducible
and again, by homotopy-invariance, it suffices to prove this theorem for affine
maps g.

Let [α]n be an essential fixed point class of gn. Since we already know that
d([α]n) ≥ l([α]n), we only need to prove that the strict inequality is impossible.
So, suppose that d = d([α]n) > l([α]n) = l. Because of Proposition 4.1, we know
that there exists x ∈ Fix(gn) such that {x} is the fixed point class associated to
[α]n. Furthermore, {g(x)} will be the fixed point class associated to Rg([α]n). By
definition and because there is only one fixed point in each essential fixed point
class, gl(x) = x. Therefore, [α]n reduces to a fixed point class on level l, which is
a contradiction to the fact that d > l. This proves the first condition.

If [β]k and [γ]k are both boosted to [α]n, then we know that they are both essential
fixed point classes. Hence, they both have the set {x} as associated fixed point
class, which means that [β]k = [γ]k. This proves the second condition of essential
torality.

Now we will use these newly obtained structural properties for infra-nilmanifolds
to establish a few results concerning Nielsen periodic points. We start with the
following definition.

Definition 4.4. We say that an essential fixed point [α]k is (in)essentially boosted to
level n, if [α]k is boosted to an (in)essential fixed point class [β]n.

Let us denote the set of all irreducible fixed point classes which are inessentially
boosted to level n for a continuous self-map f by I IBn( f ). Note that this is a
subset of

⋃

k|n R( f k), since this set contains all fixed point classes on all levels
that will boost to level n.

Theorem 4.5. Whenever a map f is essentially reducible to the GCD and essentially
toral, we have that

NFn( f ) = N( f n) + #I IBn( f ).

In particular, the formula holds true for infra-nilmanifolds.

Proof. When a map f is essentially toral, we know by Corollary 3.14 that NFn( f )
equals the number of irreducible essential classes in

⋃

k|n R( f k). Now, pick an
arbitrary irreducible essential class. We can distinguish two disjoint cases.

On the one hand, suppose this class boosts essentially to level n. As f is essen-
tially reducible to the GCD, we can apply Lemma 3.11 and we know that every es-
sential fixed point class reduces to a unique irreducible essential fixed point class.
This means that there is a bijection between the irreducible essential classes that
are essentially boosted to level n and the essential fixed point classes of R( f n).

If, on the other hand, our class boosts inessentially to level n, it belongs to I IBn( f ).
Since both cases are disjoint, the equality follows.

It is quite easy to see that this proposition is a generalization of Theorem 3.17.
In fact the proof is a slightly adapted version where we take inessential boosting
into account.
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Corollary 4.6. When f is a semi-hyperbolic map on an infra-nilmanifold, then for all
n > 0

NFn( f ) = N( f n).

Proof. Suppose that (d, D) is an affine homotopy lift of f . By combining
Theorem 2.6 and Theorem 2.7 we know that every fixed point class on level n
is essential if and only if for all A ∈ F (where F is the holonomy group of our
infra-nilmanifold),

det(I − A∗Dn
∗) 6= 0.

By Lemma 2.5, we know that there exists B ∈ F and an integer l, such that

(B∗Dn
∗)

l = Dln
∗ and det(I − A∗Dn

∗) = det(I − B∗Dn
∗).

Note that det(I − B∗Dn
∗) = 0 implies that B∗Dn

∗ has an eigenvalue 1, but this
would mean that Dln

∗ had an eigenvalue 1, which is in contradiction with the fact
that f is semi-hyperbolic. Therefore, we know that every fixed point class on
level n is essential, which implies that I IBn( f ) is the empty set. The theorem then
follows from Theorem 4.5.

Note that the proof of this theorem actually also proves the following proposition,
since we proved that every fixed point class on every level is essential.

Proposition 4.7. When f is a semi-hyperbolic map on an infra-nilmanifold, then for all
n > 0, f n is a weakly Jiang map.

With this proposition in mind, one can easily see that Corollary 4.6 is a special
case of Theorem 3.17.

Later on, in the last section, we will show, under mild conditions, that semi-
hyperbolic maps are the only maps for which a non-trivial equality NFn( f ) =
N( f n) holds.

Corollary 4.6 actually has a nice corollary in the area of dynamical zeta functions.
By N f (z), we mean the Nielsen zeta function, as defined in [9] ,[11] or [23]. In [9],
the following definition of the minimal dynamical zeta function can be found:

NFf (z) = exp

(

∞

∑
k=1

NFk( f )zk

k

)

.

We now have the following corollary.

Corollary 4.8. Let f be a semi-hyperbolic map on an infra-nilmanifold, then
N f (z) = NFf (z).

By using the main result of [4], which states that Nielsen zeta functions are ratio-
nal for self-maps on infra-nilmanifolds, we can also conclude the following.

Corollary 4.9. Let f be a semi-hyperbolic map on an infra-nilmanifold, then NFf (z) is
a rational function.



Nielsen periodic point theory on infra-nilmanifolds 549

5 A method for computing NFn( f )

In theory, by using Theorem 4.5, we are now in a position to compute NFn( f ). By
using the standard formula for Nielsen numbers for maps on infra-nilmanifolds
(Theorem 2.4), the computation of N( f n) is very simple and therefore, the only
thing left to check is how many fixed point classes lie in I IBn( f ).

In some cases, for example for semi-hyperbolic maps, the computation of #I IBn( f )
becomes trivial. However, in a more general setting, this number can be a very te-
dious thing to compute. In this section, we will try to develop a method to make
this computation a bit easier.

5.1 ∼ f -equivalence classes

We start this subsection with the following definition.

Definition 5.1. Let f : Γ\G → Γ\G be a continuous map, such that F is the holonomy
group of Γ. We will say that A, B ∈ F are f -conjugated, if there exist a, b ∈ G and
γ ∈ Γ such that (a, A) and (b, B) are elements of Γ and

γ ◦ (a, A) ◦ f∗(γ
−1) = (b, B).

We will write A ∼ f B.

An alternative for this definition is given in the following lemma. In general, the
definition will be more useful when one quickly wants to find elements that are
f -conjugated. The lemma below is often more useful when it comes to finding
properties of the ∼ f -relation.

Lemma 5.2. Let f : Γ\G → Γ\G be a continuous map, such that F is the holonomy
group of Γ. Then A ∼ f B if and only if for all (a, A) ∈ Γ, there exist (b, B), γ ∈ Γ, such
that

γ ◦ (a, A) ◦ f∗(γ
−1) = (b, B).

Proof. One direction is obvious. For the other direction, pick an arbitrary (a, A) ∈
Γ and suppose that A ∼ f B. This means that there exist a0, b0 ∈ G and γ0 ∈ Γ,
such that (a0, A), (b0, B) ∈ Γ and

γ0 ◦ (a0, A) ◦ f∗(γ
−1
0 ) = (b0, B).

Then

γ0 ◦ (a, A) ◦ f∗(γ
−1
0 ) =

(

γ0 ◦ (a0, A) ◦ f∗(γ
−1
0 )
)

◦
(

f∗(γ0) ◦ (A−1(a−1
0 a), Id) ◦ f∗(γ

−1
0 )
)

.

As Γ ∩ G is a normal divisor of Γ, there exists a (c, Id) ∈ Γ ∩ G, such that

γ0 ◦ (a, A) ◦ f∗(γ
−1
0 ) = (b0, B) ◦ (c, Id).

A simple consequence of the previous lemma is the following.
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Corollary 5.3. ∼ f is an equivalence relation.

Proof. The fact that this relation is reflexive and symmetric is easy to see, so the
only thing left to prove is transitivity. Suppose that A ∼ f B and B ∼ f C. By
definition, there exist a, b ∈ G and γ1 ∈ Γ, such that (a, A), (b, B) ∈ Γ and

γ1 ◦ (a, A) ◦ f∗(γ
−1
1 ) = (b, B).

By Lemma 5.2, we know there exist γ2, (c, C) ∈ Γ, such that

γ2 ◦ (b, B) ◦ f∗(γ
−1
2 ) = (c, C).

By combining both equations, we see

(γ2 ◦ γ1) ◦ (a, A) ◦ f∗((γ2 ◦ γ1)
−1) = (c, C),

which means that A ∼ f C.

The fact that ∼ f is an equivalence relation implies that we can partition F into
∼ f -equivalence classes. There is an even more convenient way to look at the
∼ f -equivalence classes for which we only need to work in the holonomy group
F of our infra-nilmanifold. This will be the ideal tool to compute these classes in
a more effective way.

Definition 5.4. By f#(Id), we mean the set of all A ∈ F, such that there exist
(g, Id), (a, A) ∈ Γ, for which f∗(g, Id) = (a, A). Analogously, f#(C) is the set of
all A ∈ F, such that there exist (c, C), (a, A) ∈ Γ, for which f∗(c, C) = (a, A).

Note that it is known that Γ ∩ G is finitely generated. With this in mind, we can
deduce the following lemma.

Lemma 5.5. Pick an arbitrary (c, C) ∈ Γ. Again, p : Aff(G) = G Aut(G) → Aut(G)
denotes the natural projection onto the second factor of the semi-direct product. Suppose
that (gi, Id)n

i=1 is a set of generators for Γ ∩ G. Then we can describe f#(Id) and f#(C)
as follows:

• f#(Id) = grp{p( f∗(gi, Id))}.

• f#(C) = p( f∗(c, C)) f#(Id) = f#(Id)p( f∗(c, C)).

Proof. It is clear that f#(Id) contains all elements p( f∗(gi, Id)) and it is also clear
that f∗(Id) is precisely the set p( f∗(Γ ∩ G)) = p( f∗(grp{(gi, Id) ‖ i = 1 . . . n})).
As p ◦ f∗ is a morphism, this will be equal to grp{p( f∗(gi , Id)) ‖ i = 1 . . . n},
which proves the first statement.

Take an arbitrary element of the form (c1, C) ∈ Γ. It is clear that p( f∗(c1, C)) ∈
f#(C). Now, an easy computation shows that

p( f∗(c1, C)) = p( f∗(c, C))p( f∗(c, C)−1)p( f∗(c1, C)) =

p( f∗(c, C))p( f∗(C
−1(c−1c1), Id)).

As p( f∗(C
−1(c−1c1), Id)) ∈ f#(Id), the first equality of second statement is proved.

The second equality can be proved in a similar way, by multiplying with
p( f∗(c, C)−1)p( f∗(c, C)) on the right.
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As a side remark, note that an easy consequence of this lemma is the fact that if
p ◦ f∗ : Γ → F is a surjective morphism, then f#(Id) will be a normal divisor of F.

By using this lemma, we can derive an easier way of determining ∼ f -equivalence
classes.

Proposition 5.6. Suppose A, B are elements in F. Then, A ∼ f B if and only if there

exists a C ∈ F, such that B ∈ CA f#(C)
−1. Here f#(C)

−1 denotes the set of all inverses
of elements in f#(C), or equivalently f#(C

−1).

Proof. One direction is obvious. For the other direction, suppose that there
exists a C ∈ F, such that B ∈ CA f#(C)

−1. Then, there exist a, c ∈ G, such that
(c, C), (a, A) ∈ Γ. By Lemma 5.5, any element in f#(C)

−1 will come from an
element of the form f∗(c, C)−1 f∗(g, Id), with (g, Id) ∈ Γ. As a result, we find that
there exists a b ∈ G, such that

(c, C)(a, A) f∗(c, C)−1 f∗(g, Id) = (b, B).

Note that (b, B) will also be an element of Γ. By multiplying both sides on the left
with (g−1, Id) (which is also in Γ), we get

(g−1, Id)(c, C)(a, A) f∗((g
−1, Id)(c, C))−1 = (g−1, Id)(b, B) = (g−1b, B).

This proves that A ∼ f B.

In order to see that f#(C
−1) = f#(C)

−1, note that Lemma 5.5 tells us that f#(Id) is
a group and that f#(C) = p( f∗(c, C)) f#(Id) = f#(Id)p( f∗(c, C)), from which we
immediately see that

f#(C)
−1 = f#(Id)

−1p( f∗(c, C))−1 = f#(Id)p( f∗(c, C)−1) = f#(C
−1).

Corollary 5.7. The ∼ f -equivalence class of A equals the set

⋃

C∈F

CA f#(C)
−1.

Corollary 5.8. Let (d, D) be an affine homotopy lift of a continuous map f on an infra-
nilmanifold Γ\G. When D is invertible in Endo(G), for any C ∈ F, f#(C) will be a
singleton.

Proof. Take an arbitrary element (g, Id) of Γ∩G. Then f∗(g, Id) ◦ (d, D) = (d, D) ◦
(g, Id) and hence also, p( f∗(g, Id)) ◦ D = D. As D is invertible, p( f∗(g, Id)) = Id.
As (g, Id) was chosen arbitrarily, this means f#(Id) = {Id}. By Lemma 5.5, f#(C)
is also a singleton.

5.2 Properties of ∼ f -equivalence classes

A first sign that shows that elements in the same ∼ f -equivalence class are strongly
connected, can be found in the following lemma.
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Lemma 5.9. When A ∼ f B and (d, D) is an affine homotopy lift of f , then

det(I − A∗D∗) = det(I − B∗D∗).

Proof. As A ∼ f B, there exists a (c, C) ∈ Γ, such that

(c, C) ◦ (a, A) ◦ f∗(c, C)−1 = (b, B).

Of course, we can compose both sides with (d, D). As a result, we get the follow-
ing equality

(c, C) ◦ (a, A) ◦ (d, D) ◦ (c, C)−1 = (b, B) ◦ (d, D).

Therefore, we have CADC−1 = BD in Aut(G). From this, the statement follows
easily.

The following theorem is in a certain sense the heart of our computational method.
It splits the formula from Theorem 2.4 into several parts, one for each ∼ f -equi-
valence class. The proof is heavily influenced by the proofs in [18] and [19].

Theorem 5.10. Let f : Γ\G → Γ\G be a continuous map on an infra-nilmanifold, with
affine homotopy lift (d, D) and holonomy group F. Let (G, p) be a universal covering of
Γ\G, such that f̃ is a reference lifting of f . If we fix A ∈ F, then, the number of essential
fixed point classes that can be written as p(Fix((a, A) ◦ f̃ )), which we will denote by
NA( f ), equals

1

#F ∑
B∼ f A

|det(I − B∗D∗)|.

Proof. From now on, Λ will be the fully characteristic subgroup of Γ described in
[19]. Similarly to Theorem 4.2, we have the following commuting diagram:

G

p

��

p′ ##●
●●

●●
●●

●●

(a,A)◦ f̃
// G

p

��

p′{{✇✇
✇✇
✇✇
✇✇
✇

Λ\G
(a,A)◦ f

//

p

||①①
①①
①①
①①

Λ\G
p

""❋
❋❋

❋❋
❋❋

❋

Γ\G
f

// Γ\G

.

For α ∈ Γ, we will denote the Reidemeister class of α in Γ by [α]Γ. Now, define an
equivalence relation ∼ Λ on Γ as follows:

α ∼ Λβ iff ∃λ ∈ Λ : β = λ ◦ α ◦ f∗(λ)
−1.

In a similar way as before, [α]Λ will denote the equivalence class with respect
to ∼Λ that contains α. It is straightforward to prove that β ∈ [α]Λ implies that
p′(Fix(β ◦ f̃ )) = p′(Fix(α ◦ f̃ )). In a similar way, one can prove that β 6∈ [α]Λ
implies that p′(Fix(β ◦ f̃ )) ∩ p′(Fix(α ◦ f̃ )) = ∅. Note that this can also mean
that p′(Fix(β ◦ f̃ )) and p′(Fix(α ◦ f̃ )) are fixed point classes for different maps
on the nilmanifold Λ\G. Now, by labeling the possibly empty fixed point sets,
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we can say that there is a one-to-one relation between the sets [α]Λ and the fixed
point classes p′(Fix(α ◦ f̃ )) of liftings of f to Λ\G. Let us denote the set of ∼Λ-
equivalence classes by RΛ( f ) and the set of Reidemeister classes of f by R( f ).
As Λ ≤ Γ, we know that the map

Ψ : RΛ( f ) → R( f ) : [α]Λ 7→ [α]Γ

is a well-defined function, which is clearly surjective. We also know that
p(Fix(α ◦ f̃ )) is essential if and only if p′(Fix(α ◦ f̃ )) is essential, because the fixed
point index is a local property and p is a local homeomorphism. Hence, when [α]Γ
is (in)essential, then every element in Ψ−1([α]Γ) corresponds to an (in)essential
fixed point class of a lift of f to Λ\G. Because of this property and the fact that Ψ

is surjective and well-defined, we know that

NA( f ) ≤ ∑
(b,B)∈Γ/Λ

B∼ f A

N((b, B) ◦ f ). (1)

Suppose that F is a fixed point class of the desired form. Then

F = p(Fix((b, B) ◦ f̃ )) = [(b, B)]Γ,

with B ∼ f A. When F is an inessential fixed point class, [(b, B)]Λ corresponds

to an inessential fixed point class of the map (b, B) ◦ f on the nilmanifold Λ\G.
Due to the main result from [1] or [8], we now know that every fixed point

class of (b, B) ◦ f is inessential, so that N((b, B) ◦ f ) = 0. This also means that
det(I − B∗D∗) = 0. By Lemma 5.9 we know that det(I − C∗D∗) = 0 for all

C ∼ f B, or equivalently, for all C ∼ f A. This also means that N((c, C) ◦ f ) = 0.
By definition, NA( f ) is a non-negative integer and hence, it follows by inequality
(1) that

NA( f ) = 0 =
1

#F ∑
B∼ f A

|det(I − B∗D∗)|.

Now, suppose that F = [(b, B)]Γ is an essential fixed point class. The fact that

NA( f ) ≤ ∑
(b,B)∈Γ/Λ

B∼ f A

N((b, B) ◦ f )

is not necessarily an equality comes from the fact that Ψ is not injective. This is
due to situations where

[(b, B)]Γ = [(c, C)]Γ, while [(b, B)]Λ 6= [(c, C)]Λ.

So, in order to find NA( f ), we need to find the number of elements in RΛ( f )
which are mapped to the same element of R( f ) by Ψ. First, we will show that
this number has |Γ/Λ| as an upper bound. Suppose that γ1 = γ2 ∈ Γ/Λ, then
γ2 = λ ◦ γ1, for λ ∈ Λ. If

(c1, C1) = γ1 ◦ (b, B) ◦ f∗(γ
−1
1 ) and (c2, C2) = γ2 ◦ (b, B) ◦ f∗(γ

−1
2 ),
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then an easy computation shows that

(c2, C2) = λ ◦ (c1, C1) ◦ f∗(λ
−1),

which means that [(c1, C1)]Λ = [(c2, C2)]Λ.

Now we will show that this upper bound is always attained by showing that
[(c1, C1)]Λ = [(c2, C2)]Λ implies that γ1 = γ2 in Γ/Λ. Let (d, D) be an affine
homotopy lift of f . Suppose there exist a λ ∈ Λ, such that

(c1, C1) = γ1 ◦ (b, B) ◦ f∗(γ
−1
1 ) =

λ ◦ (γ2 ◦ (b, B) ◦ f∗(γ
−1
2 )) ◦ f∗(λ

−1) = λ ◦ (c2, C2) ◦ f∗(λ
−1).

As an easy consequence,

(b, B) = (γ−1
1 ◦ λ ◦ γ2) ◦ (b, B) ◦ f∗(γ

−1
1 ◦ λ ◦ γ2)

−1.

Note that p(Fix((b, B) ◦ f̃ )) is an essential fixed point class and therefore
p(Fix((b, B) ◦ (d, D))) will also be an essential fixed point class. Hence, there
exists an x ∈ G such that (b, B) ◦ (d, D)(x) = x. This also means that

(γ−1
1 ◦ λ ◦ γ2) ◦ (b, B) ◦ f∗(γ

−1
1 ◦ λ ◦ γ2)

−1 ◦ (d, D)(x) = x,

which implies that (γ−1
1 ◦ λ ◦ γ2)

−1 · x is also in p(Fix((b, B) ◦ (d, D))). By Propo-
sition 4.1, we know that such a fixed point class is a singleton and hence,

(γ−1
1 ◦ λ ◦ γ2)

−1 · x = x. By the free action of Γ on G, this implies that λ ◦ γ2 = γ1.

Now, we know that Ψ maps |Γ/Λ| different elements of RΛ( f ) to the element
[(b, B)]Γ. As F was chosen arbitrarily, we know that this holds for every essential
fixed point class [(c, C)]Γ in R( f ), for which C ∼ f A. So, this means that

NA( f ) =
1

[Γ : Λ] ∑
(b,B)∈Γ/Λ

B∼ f A

N((b, B) ◦ f ).

In a similar way as in the proof of Theorem 3.4 in [19], we can now derive that

NA( f ) =
1

#F ∑
B∼ f A

|det(I − B∗D∗)|.

Remark 1. During the proof of this theorem, we actually also proved that the fixed point
class p(Fix((a, A) ◦ f̃ )) is essential if and only if det(I − A∗D∗) 6= 0. This is due to the
fact that p(Fix((a, A) ◦ f̃ )) can be lifted to a fixed point class p′(Fix((a, A) ◦ f̃ )) with
the same index. As this is a fixed point class for a map on a nilmanifold, we can use the
result from [1] or [8], which tells us that p′(Fix((a, A) ◦ f̃ )) is essential if and only if
det(I − A∗D∗) 6= 0.

It might be noteworthy to mention that a fixed point class p(Fix((b, B) ◦ f̃ )) can
be written as p(Fix((a, A) ◦ f̃ )) if and only if A ∼ f B. So, in a certain sense, it
is justified to say that NA( f ) is the number of essential fixed point classes above
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the ∼ f -equivalence class of A. We will denote this equivalence class by [A]. Also
note that every fixed point class above A is simultaneously essential or inessen-
tial. Hence, it makes sense to talk about the (in)essential ∼ f -equivalence class [A].
We can also generalize these notions when considering ∼ f k-equivalence classes

of A. For these classes, we will use the notation [A]k.

Some easy corollaries of Theorem 5.10 are the following.

Corollary 5.11.

NA( f ) =
#{B ∈ F‖B ∼ f A}

#F
· |det(I − A∗D∗)|.

Proof. This follows easily by combining Lemma 5.9 and Theorem 5.10.

Corollary 5.12. If all elements of F are in the same ∼ f -equivalence class, then

N( f ) = NA( f ) = |det(I − A∗D∗)| = |det(I − D∗)| = |L( f )|.

This condition is for example satisfied when f∗ : Γ → Γ maps every element into
Γ ∩ G. If this is the case, then f∗ induces the trivial morphism on the holonomy
group, from which it follows easily that all elements in F are in the same ∼ f -
equivalence class.

Corollary 5.13. If every ∼ f -equivalence class in F consists of a single element, then for
all A ∈ F, det(I − A∗D∗) will be divisible by #F.

This is for example the case when f∗ induces the identity morphism on F, while
F itself is an abelian group. For instance, in Example 5, in section 5.4.

5.3 ∼ f -equivalence classes on different levels

Consider the following definition.

Definition 5.14. Let A ∈ F be an element of the holonomy group F of Γ\G. Let k|n.
Then we define γnk(A) to be the following subset of F:

{C ∈ F‖ there exists (a, A) ∈ Γ, such that

(c, C) = γnk(a, A) = (a, A) f k
∗ (a, A) . . . f n−k

∗ (a, A)}.

This definition actually tries to define boosting functions in terms of ∼ f -equiva-
lence classes. This might not necessarily be well-defined, in the sense that it
might happen that for A ∼ f k B, not every element in γnk(A) is automatically

∼ f n-conjugated with every element in γnk(B). Note that Lemma 5.15 tells us that
this would be the case if every element in γnk(A) is in the same ∼ f n-equivalence
class. Because of Corollary 5.8, we know that γnk(A) will be a singleton when-
ever D is invertible, so in that case, these boosting functions are well-defined on
the equivalence classes. Note that it might also not necessarily be true that a
γnk([A]k), by which we mean the set

⋃

B∼
f k A

γnk(B),
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is a full ∼ f n-equivalence class.

Although boosting functions might not behave well on ∼ f k-equivalence classes

in general, we can still use them as a tool for the computation of NFn( f ). The
reason for this is the fact that two fixed point classes above the same equivalence
class [A] will simultaneously boost essentially or inessentially to a certain level
(see Proposition 5.17).

In order to prove this proposition, consider the following lemmas.

Lemma 5.15. If A ∼ f k B, then for any C ∈ γnk(A), there exists a D ∈ γnk(B) such

that C ∼ f n D.

Proof. By Lemma 5.2, for any (a, A) ∈ Γ, there exist (b, B), (e, E) ∈ Γ, such that

(e, E) ◦ (a, A) ◦ f k
∗((e, E)−1) = (b, B).

Because we picked (a, A) arbitrarily, C, with (c, C) = γnk(a, A), is also chosen
arbitrarily in the set γnk(A). Now, the following (d, D) fulfills the necessary con-
ditions:

(d, D) = (b, B) f k
∗ (b, B) . . . f n−k

∗ (b, B).

Indeed, by using the relation (e, E) ◦ (a, A) ◦ f k
∗((e, E)−1) = (b, B), we see

(d, D) = ((e, E) ◦ (a, A) ◦ f k
∗((e, E)−1)) f k

∗ ((e, E) ◦ (a, A) ◦ f k
∗((e, E)−1)) . . .

f n−k
∗ ((e, E) ◦ (a, A) ◦ f k

∗((e, E)−1)).

Since f∗ is a morphism, a simple computation shows that

(d, D) = (e, E) ◦ (c, C) ◦ f n
∗ ((e, E)−1).

Lemma 5.16. Let (d, D) be an affine homotopy lift of f . If B, C ∈ γnk(A), then

det(I − B∗Dn
∗) = det(I − C∗Dn

∗).

Proof. Since there exist (a1, A) and (a2, A), such that γnk(a1, A) = (b, B) and
γnk(a2, A) = (c, C), for certain b, c ∈ G, we know that

((a1 , A)(d, D)k)
n
k = (b, B)(d, D)n and ((a2, A)(d, D)k)

n
k = (c, C)(d, D)n .

So, by just looking at the rotational part, we see

BDn = (ADk)
n
k = CDn.

By taking the differential, we obtain the desired result.

Proposition 5.17. Suppose p(Fix((a, A) ◦ f̃ k)) is a fixed point class at level k of a con-
tinuous map f on an infra-nilmanifold. If this fixed point class boosts (in)essentially to
level n, then every fixed point class of the form p(Fix((b, B) ◦ f̃ k)), with B ∈ [A]k also
boosts (in)essentially to level n.
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Proof. Suppose that (d, D) is an affine homotopy lift of f . By Remark 1, we know
that p(Fix((a, A) ◦ f̃ k)) is an essential fixed point class if and only if
det(I − A∗Dk

∗) 6= 0. Take an arbitrary fixed point class p(Fix((b, B) ◦ f̃ k)), with
B ∈ [A]k. Because of Lemma 5.9, we already know that det(I − B∗Dk

∗) 6= 0 and
that p(Fix((b, B) ◦ f̃ k)) is an essential fixed point class.

Now suppose that γnk(a, A) = (c, C) and γnk(b, B) = (e, E). This means that C ∈
γnk(A) and E ∈ γnk(B). By Lemma 5.15, we know that there exists E0 ∈ γnk(B),
such that C ∈ [E0]n. Lemma 5.9 now tells us that

det(I − C∗Dn
∗) = det(I − E0∗Dn

∗).

By Lemma 5.16 and by the fact that E, E0 ∈ γnk(B), we also know that

det(I − E∗Dn
∗) = det(I − E0∗Dn

∗).

Because det(I − C∗Dn
∗) = det(I − E∗Dn

∗), we know that [(a, A)]k boosts essen-
tially to level n if and only if [(b, B)]k boosts essentially to level n. A similar thing
applies for inessential boosting.

We should mention that these ∼ f k-equivalence classes are not well-defined in

terms of (ir)reducibility. It is possible that one ∼ f k-equivalence class contains both

reducible and irreducible fixed point classes. Consider the following example.

Example 2. We will use the matrix description from [7]. Let the Klein bottle group be
generated by the following two affine transformations:

α = (a, A) =

((

1
2
1
2

)

,

(

1 0
0 −1

))

and β = (e2, Id),

where e2 denotes the second element of the standard basis of R2. Consider a map f on the
Klein bottle induced by the affine map:

(d, D) =

((

r
1
2

)

,

(

z 0
0 −1

))

,

where z is an odd number and r ∈ R. A straightforward computation shows that for all
a, b ∈ Z,

f∗

((

a
b

)

, Id

)

=

((

za
−b

)

, Id

)

, and f∗

((

1
2
1
2

)

,

(

1 0
0 −1

))

=

(( z
2
1
2

)

,

(

1 0
0 −1

))

.

By using the definition of the boosting function, this means that every fixed point class at
level 1 boosts to a fixed point class of the form

p(Fix

(((

t
0

)

, Id

)

◦ f̃ 2

)

),

with t ∈ Z. It follows that the fixed point class

p(Fix

(((

0
1

)

, Id

)

◦ f̃ 2

)

)

is definitely irreducible. This means that the ∼ f 2-equivalence class [Id]2 contains

reducible and irreducible fixed point classes.
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This lack of good behavior in terms of (ir)reducibility is no problem, however. As
mentioned in Theorem 4.5, we are only interested in determining #I IBn( f ), i.e.
how many essential fixed point classes boost inessentially to level n. Note that
these ∼ f k-equivalence classes are well-defined in terms of boosting (Proposition

5.17) and in terms of being essential (Lemma 5.9 and Remark 1). Hence, if we can
determine which ∼ f k-equivalence classes boost inessentially to level n, we can

use an inclusion-exclusion principle and Theorem 5.10 to determine #I IBn( f ).

5.4 Examples

So, let us demonstrate how the computation described above works, by looking
at a couple of examples.

Example 3. Let us first try to compute the Nielsen periodic numbers of the maps in
Example 1. Just as in Example 2, we will use the matrix description from [7] and again,
the Klein bottle group is generated by the following two affine transformations:

α = (a, A) =

((

1
2
1
2

)

,

(

1 0
0 −1

))

and β = (e2, Id),

where e2 denotes the second element of the standard basis of R2. Let us consider the same
map as in Example 2. So, suppose that z 6= 1 is odd and that r ∈ R. Then, the map
induced by

(d, D) =

((

r
1
2

)

,

(

z 0
0 −1

))

will induce the same morphism described in Example 1.

It is clear that D commutes with both A and Id, so f∗ induces the identity morphism on
F and therefore, every ∼ f n-equivalence class consists of precisely one element. Also, it
easy to show that [A]l is essential if and only if l is even, while [Id]l is essential if and
only if l is odd. Now, suppose that m = ql, then a simple computation shows that [Id]l
always boosts to [Id]m. Also, [A]l will boost to [A]m if q is odd and to [Id]m if q is even.
The reason for this, lies in the following computation:

(ADl)q = AqDql = AqDm.

All together, we see that every even boost (q is even) of an essential fixed point class is
inessential while every odd boost is essential.

As a consequence, we see that if n is odd, I IBn( f ) is the empty set and by Theorem 4.5,
it follows that

NFn( f ) = N( f n).

On the other hand, if n is even, the only essential fixed point classes that boost inessen-
tially to level n pass through level n

2 . Every essential fixed point class at this level will
boost inessentially to level n and every element in I IB n

2
( f ) will also boost inessentially

to level n. Therefore:
NFn( f ) = N( f n) + NFn

2
( f ).
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By using an induction argument, NFn( f ) can be computed for every even n.

For the sake of completeness, the case where z = 1 also gives us a map on the Klein bottle.
In this case, an easy computation shows that N( f n) = 0 for every n. As a consequence,
every fixed point class at every level is inessential and hence NFn( f ) = 0, for every
integer n.

If we compare these results to the ones in Example 4.1 in [13], where the authors consid-
ered the Klein bottle to be a solvmanifold, we also find that for n = 2m,

NFn( f ) =
m

∑
i=1

N( f 2i
).

For n = 6, our computations demonstrate that

NF6( f ) = N( f 6) + N( f 3) = |1 − z6|+ |1 − z3|.

This does not agree with the result of [13]. Let us take a closer look at this computation.
Because of Lemma 3.9, we know that

NF6( f ) = NP1( f ) + NP2( f ) + NP3( f ) + NP6( f ).

By using Lemma 3.13, we know that NPn( f ) is the number of essential irreducible fixed
point classes at level n, due to the Klein bottle being essentially toral. We already know
that NP1( f ) = N( f ) and because every even boost is inessential and every odd boost is
essential, we know that

NP2( f ) = N( f 2) and NP3( f ) = N( f 3)− N( f ).

Note that we used the fact that boosting functions are injective on essential fixed point
classes. Furthermore, by again using the fact that every even boost is inessential and
every odd boost is essential, we find that every essential fixed point class at level 1 or
3 boosts inessentially to level 6, while every essential fixed point class at level 2 boosts
essentially to level 6. Hence, because the Klein bottle is essentially reducible, the only
essential reducible fixed point classes at level 6, reduce to level 2. As every essential fixed
point class at level 2 boosts essentially to level 6, we find

NP6( f ) = N( f 6)− N( f 2).

By combining all results, we find

NF6( f ) = N( f )+ N( f 2)+ (N( f 3)− N( f ))+ (N( f 6)− N( f 2)) = N( f 6)+ N( f 3),

which shows that our result is correct.

The following example will illustrate the use of ∼ f -equivalence classes a little
more.

Example 4. Let Γ be the Bieberbach group with generators:

(a, A) =









0
0
1
3



 ,





−1 1 0
−1 0 0
0 0 1







 , (e1, Id) and (e2, Id).
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[Id]1 [Id]2

[A]2

[A2]2

[Id]3 [Id]4

[A]4

[A2]4

[Id]5 [Id]6

[A]6

[A2]6

Figure 1: A scheme of ∼ f k-equivalence classes at different levels for Example 4

In [7] one can find that the affine map

(d, D) =









0
0
0



 ,





0 1 0
1 0 0
0 0 2









induces a continuous map on the flat manifold Γ\R3.

An easy computation shows that DA = A2D and that f∗ induces a morphism f ∗ on the

holonomy group Z3, such that f
2
∗ = Id. So, whenever k is even, every ∼ f k-equivalence

class is a singleton.

To determine [Id]k, with k odd, note that f
k
∗ = f ∗. Also, f ∗(A) = A2 and f ∗(A2) = A.

So, the following are certainly subsets of [Id]k:

A Id f#(A)−1 = {A2} and A2 Id f#(A2)−1 = {A}.

Hence, [Id]k = F for all odd k.

An easy computation shows that [Id]k, with k odd, is always inessential. As a conse-
quence, for every odd n,

NFn( f ) = N( f n) = 0.

When k is even, [Id]k is inessential, while [A]k and [A2]k are essential. In this case, every

element of F commutes with Dk, as f
2

∗ is the identity morphism. Hence, the class [Ai]k
boosts to the class [Aip]pk. So, an essential class can only boost inessentially if p ≡ 0
mod 3.

In Figure 1, a scheme can be found where all these boosting relations are shown up to level
6. In this scheme, inessential and essential fixed point classes are denoted by a circle and a
square respectively. Only the boosting from an essential to an inessential class are drawn,
since these are the only ones that need to be considered for the computation of NFn( f ).

So, suppose that n = 3pq is even, such that gcd(3, q) = 1, then

NFn( f ) =
p

∑
i=0

N( f 3iq).

The next example shows the use of Theorem 5.10 in an essential way.
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[A]1

[A2]1

[A3]1

[A4]1

[A5]1

[Id]1

[A]2

[A2]2

[A3]2

[A4]2

[A5]2

[Id]2

[A]3

[A2]3

[A3]3

[A4]3

[A5]3

[Id]3

Figure 2: A scheme of ∼ f k-equivalence classes at the lowest levels for Example 5

Example 5. Let Γ be the Bieberbach group with generators:

(a, A) =









0
0
1
6



 ,





1 −1 0
1 0 0
0 0 1







 , (e1, Id) and (e2, Id).

In [7], one can find that the following affine map induces a map on the infra-nilmanifold
Γ\R3:

(d, D) =









0
0
0



 ,





0 1 0
−1 1 0
0 0 7







 .

Note that every element of F commutes with D, so every ∼ f -equivalence class consists

of precisely one element. This also means that the class [Ai]k boosts to the class [Aip]pk.
It is also quite easy to compute that [Ap]k is inessential if and only if p ≡ k mod 6.
This boosting scheme can be found in Figure 2.

The only classes at level 1 that boost inessentially to level 2 (to [A2]2), are the inessential
class [A]1 and the essential class [A4]1. It is therefore clear that #I IB2( f ) = NA4( f ).
By Theorem 5.10 and Theorem 4.5:

NF2( f ) = N( f 2) +
|det(I − A4D)|

6
.

In a similar way, one can see that the only classes that boost to [A3]3 are the inessential
class [A]1 and the essential classes [A3]1 and [A5]1. Hence,

NF3( f ) = N( f 3) +
|det(I − A3D)|

6
+

|det(I − A5D)|

6
.

Computing NF4( f ) becomes a little more tricky, since fixed point classes at both level 1
and 2 can boost to inessential fixed point classes of level 4. With an easy computation,
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we see that the classes that boost to [A4]4 are [A]1, [A4]1, [A2]2 and [A5]2. Note that we
already knew that [A]1 is inessential and that the essential class [A4]1 boosts inessentially
to [A2]2. Therefore, there are no essential classes at level 1 that boosts essentially to level
2 and inessentially to level 4. This means that

NF4( f ) = N( f 4) +
|det(I − A5D2)|

6
+

|det(I − A4D)|

6
.

As [Ai]k boosts to [Aip]pk, we know that this boosting relation is a bijection between the
∼ f k-equivalence classes and the ∼ f pk-equivalence classes if and only if p is invertible

modulo 6. So, suppose n > 0 is an integer, such that gcd(n, 6) = 1. Note that every
divisor of n will also be relatively prime to 6. Because there is only one inessential class at
each level, because we know due to the previous remark that there is a bijection between
the equivalence classes at different levels and because maps on infra-nilmanifolds are es-
sentially reducible, every essential equivalence class that boosts to level n will do so in an
essential way. Therefore, if gcd(n, 6) = 1,

NFn( f ) = N( f n).

Whenever n has many prime factors 2 and 3, it will be much harder to compute NFn( f ),
because many inessential boosts occur and we have to keep track of all of them to avoid
mistakes. As an example, let us compute NF6( f ). Note that [Id]6 is the only inessential
class at level 6. The classes that boost to [Id]6 are [Id]3, [A3]3, [Id]2, [A2]2, [A4]2 and all
classes at level 1. The only essential classes at level 1 that boost to essential classes at both
level 2 and level 3, are [Id]1 and [A2]1. Also, there are no essential classes at level 1 that
boost to inessential classes at both level 2 and level 3. Hence,

NF6( f ) = N( f 6) +
|det(I − D3)|

6
+

|det(I − D2)|

6
+

|det(I − A4D2)|

6

−
|det(I − D)|

6
−

|det(I − A2D)|

6
.

Here, these last two terms are precisely the number of essential fixed point classes at level
1 that boost essentially to level 2 and level 3. As they are counted double, we have to
subtract them once.

As one can see from this last example, it can be very hard to compute NFn( f ).
The tools in this section are useful, but they still require a lot of manual labor.
Looking at these examples, it is not unthinkable that there might not exist a gen-
eral formula for NFn( f ).

6 Some properties of affine maps on infra-nilmanifolds

In the last section of this paper, we will look specifically at affine maps on infra-
nilmanifolds in order to derive a nice property of these maps (Theorem 6.2).

Lemma 6.1. If A, B ∈ GLn(C) and D ∈ C
n×n are such that DA = BD, then, for all

n > 0 it holds that
det(I − (AD)n) = det(I − (BD)n).
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Proof. Using the multiplicative properties of the determinant, we find the follow-
ing equalities:

det(I − (AD)n) = det(A−1)det(I − (AD)n)det(A) =

det(I − (DA)n) = det(I − (BD)n).

Remember that a continuous map f will be called Wecken if and only if # Fix( f ) =
N( f ).

Theorem 6.2. Let (d, D) be an affine map on an infra-nilmanifold. Suppose that there

exists at least one k, for which N((d, D)
k
) 6= 0. Then, D∗ is semi-hyperbolic if and only

if (d, D)k is a Wecken map for every k.

Proof. First, suppose that D∗ is semi-hyperbolic. Just as in the proof of Corollary
4.6, we know that every fixed point class at every level is essential. By Proposition

4.1, it follows that (d, D)k is a Wecken map.

On the other hand, suppose that D∗ is not semi-hyperbolic. This means that
there exists an eigenvalue λ of D∗, such that λd = 1. Now we will show that
every essential fixed point class will eventually be boosted to an inessential fixed
point class. Pick an essential fixed point class [(a, A)]k . This is possible,
because not all Nielsen numbers are 0. Let l be an arbitrary positive integer and
set m = kl. Consider the fixed point class γkm([(a, A)]). This coincides with the
set p(Fix(((a, A) ◦ (d, D)k)l)). Now suppose that

(b, B) ◦ (d, D)m = ((a, A) ◦ (d, D)k)l .

This means that BDm = (ADk)l and by Remark 1, we now know that γkm([(a, A)])
is inessential if and only if

det(I − (A∗Dk
∗)

l) = det(I − B∗Dm
∗ ) = 0.

By combining Lemma 6.1 and Lemma 2.5, we see there exists a C ∈ F and a
positive integer p, such that

det(I − (A∗Dk
∗)

l) = det(I − (C∗Dk
∗)

l) and (C∗Dk
∗)

p = D
kp
∗ .

By taking l = lcm(p, d), we know that (C∗Dk
∗)

l = Dkl
∗ . Also, 1 is an eigenvalue of

Dkl
∗ . By combining all of the above, we see that

det(I − B∗Dm
∗ ) = det(I − (A∗Dk

∗)
l) = det(I − (C∗Dk

∗)
l) = det(I − (Dk

∗)
l) = 0.

As there is certainly one essential fixed point class [(a, A)]k , we know that it
will boost to an inessential fixed point class [(b, B)]m . This actually means that
[(a, A)]k ⊂ [(b, B)]m , which implies that the inessential fixed point class [(b, B)]m
is non-empty, which implies that (d, D)

m
is not a Wecken map.

Corollary 6.3. Suppose that there exists at least one k, such that N((d, D)
k
) 6= 0.

If Fix((d, D)
k
) is finite for every k, then (d, D) will be Wecken map for every iteration

and D∗ will be semi-hyperbolic.
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Proof. By Proposition 4.1, we know that every non-empty inessential fixed point
class contains infinitely many fixed points.

Corollary 6.4. Suppose that f is a continuous map on an infra-nilmanifold that is not
semi-hyperbolic. Suppose that N( f k) 6= 0 for at least one k. Then, at certain levels, there
exist non-empty inessential fixed point classes. Also, there exist n > 0, such that

NFn( f ) > N( f n).

Proof. By examining the proof of Theorem 6.2, we see that there will exist an
essential fixed point class which boosts to an inessential fixed point class. There-
fore, this inessential fixed point class will be non-empty. On the other hand, by
Theorem 4.5, the second statement follows.

Corollary 6.5. Suppose that f is a continuous map on an infra-nilmanifold. Then
NFn( f ) = N( f n) for all n if and only if f is a semi-hyperbolic map or, N( f n) = 0
for all n.

Proof. When dealing with semi-hyperbolic maps, the statement follows from
Corollary 4.6 and Corollary 6.4. Hence, the only thing left to prove is that
NFn( f ) = 0 if N( f n) = 0 for all n. This actually follows from Theorem 4.5. As all
fixed point classes at all levels are inessential, we know that #I IBn( f ) = 0. As we
already knew that N( f n) = 0, it follows by Theorem 4.5 that NFn( f ) = 0.

Again, we can translate some of these results into comparable results concerning
dynamical zeta functions.

Corollary 6.6. Suppose that f is continuous map on an infra-nilmanifold. Then,
NFf (z) = N f (z) if and only if f is a semi-hyperbolic map or N( f n) = 0, for all n.

Proof. This follows immediately from Corollary 6.5.

We can actually say something more about another zeta function. In [11], the
following dynamical zeta function was defined:

Mg(z) = exp

(

∞

∑
k=1

# Fix(gk)zk

k

)

.

As the next corollary states explicitly, our results allow us to identify this with
NFg(z)

Corollary 6.7. Suppose that g is an affine semi-hyperbolic map on an infra-nilmanifold,
then

Mg(z) = NFg(z).

Proof. Every such a map is a Wecken map on every level, by Theorem 6.2. From
this it follows, for all k > 0, that

# Fix(gk) = N(gk) = NFk(g).

This result partially answers a question asked in [15] in the case of infra-nilmani-
folds. Given a map f on a manifold, the author of that paper asked if it would be
possible to find a map g homotopic to f , such that

# Fix(gk) = NFk(g) = NFk( f ),

for all k. This question is equivalent to asking whether there exists a map g,
homotopic to f , such that Mg(z) and NFg(z) coincide.
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