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Abstract

In this paper, the nonlinear singular Thomas-Fermi differential equation
on a semi-infinite domain for neutral atoms is solved by using the general-
ized fractional order of the Chebyshev orthogonal functions (GFCFs) of the
first kind. First, this collocation method reduces the solution of this problem
to the solution of a system of nonlinear algebraic equations.
Second, using solve a system of nonlinear equations, the initial value for the
unknown parameter L is calculated, and finally, the value of L to increase the
accuracy of the initial slope is improved and the value of y′(0) =
−1.588071022611375312718684509 is calculated. The comparison with some
numerical solutions shows that the present solution is highly accurate.

1 Introduction

In this section, the used methods for solving the equations on unbounded
domains are expressed. Also, it is tried that a history for Thomas-Fermi equa-
tion is provided.

1.1 Differential equations on unbounded domains

Many of the problems that are formulated in fluid dynamics, astrophysics, quan-
tum mechanics, and other sciences are defined on unbounded domains. The dif-
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ferent methods are introduced for solving this class of equations, such as semi-
analytical and numerical methods.

1. Numerical methods: Various numerical methods are provided to solve New
Numerical Solution For Solving Nonlinear Singular Thomas-Fermiproblems
on unbounded domains, such as the finite difference method [1], the finite
element method [2], the Spectral methods [3, 4], and the Meshfree methods
[5, 6].

The Spectral approximations for ordinary differential equations (ODEs) on
finite domains have achieved great success and popularity in recent years,
but Spectral approximations for solving ODEs on infinite or semi-infinite
domains have only received limited attention. Several Spectral methods for
treating infinite or semi-infinite domain problems have been proposed by
different researchers:

(a) Direct approaches, by using functions such as Laguerre, Bessel,
Hermite, and Sinc functions that are orthogonal over the unbounded
domains, were used by Parand et al. [7, 8], Guo & Shen [9], and Funaro
& Kavian [10], and etc.

(b) Mapping an unbounded problem to a bounded problem, for example
Guo [11] has introduced a method that coverts the original problem
in an infinite domain to a problem in [−1, 1], and then using the Ja-
cobi polynomials to approximate the resulting problems. Rad et al.
[12, 13] have converted an infinite domain to interval [0, 1] and then
were approximate the solutions of the problems.

(c) Another class of Spectral methods is based on rational approximations.
In this approach, the basic functions on a bounded domain convert to
the functions on an unbounded domain. For example, Christov [14]
and Boyd [15] have developed some Spectral methods on infinite do-
mains by using mutually orthogonal systems of rational functions. Au-
thors of [16, 17] have applied this approach for solving many of differ-
ential equations.

(d) A further approach consists of replacing the infinite domain with
[−A, A] and the semi-infinite domain with [0, A] by choosing A suf-
ficiently large. This method is named domain truncation. [18]

2. Analytical methods: The study of analytical and semi-analytical solutions
of differential equations (DEs) play an important role in engineering, math-
ematical physics, and the other applied sciences. In the past several decades,
various methods for obtaining solutions of DEs are presented, such as Ado-
mian decomposition method [19], Homotopy perturbation method [20],
Variational iteration method [21], Exp-function method [22, 23], and so on.

In this paper, it is attempted to introduce a Spectral method based on the gen-
eralized fractional order of the Chebyshev functions for solving Thomas-Fermi
equation.
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1.2 The Thomas-Fermi equation

The nonlinear singular Thomas-Fermi equation is defined as [24, 25, 26]:

d2y(t)

dt2
− 1√

t
y

3
2 (t) = 0, t ∈ [0, ∞), (1)

with the boundary conditions:

y(0) = 1, lim
t→∞

y(t) = 0. (2)

The Thomas-Fermi equation appears in the problem of determining the effec-
tive nuclear charge in heavy atoms, and because of its importance to theoretical
physics, computing its solutions has attracted the attention of the Nobel laureates
John Slater (chemistry) [33] and Richard Feynman (physics) [34] and of course
Enrico Fermi [27].

One measure of the rapidity of convergence of the procedure is provided by
the calculation of the value of the initial slope y′(0) of Thomas-Fermi potential
[28]. The initial slope y′(0) is difficult to compute by any means, and plays an
important role in determining many physical properties of Thomas-Fermi atom.
It determines the energy of a neutral atom in Thomas-Fermi approximation:

E =
6

7

(
4π

3

) 2
3

Z
7
3 y′(0), (3)

where Z is the nuclear charge. For these reasons, the problem has been studied
by many researchers and has been solved by the different techniques, that some
of them are listed in Table 1.

The paper is constructed as follows: in section 2, the GFCFs and their prop-
erties are introduced. In Section 3, the method is expressed. In Section 4, results
and discussions of the method are shown. Finally, a conclusion is provided.

2 Generalized Fractional order of the Chebyshev functions

In this section, the generalized fractional order of the Chebyshev functions (GFCF)
are introduced.

2.1 The GFCF definition

The Chebyshev polynomials are frequently used in the polynomial approxima-
tion, Gauss-quadrature integration, integral and differential equations and Spec-
tral methods, and also have many properties, such as orthogonal, recursive, sim-
ple real roots, complete in the space of polynomials. For these reasons, many
researchers have used these polynomials in their researches [89, 90].
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Table 1: A summary of the methods used to solve the Thomas-Fermi equation,
marked with Analytical or Numerical methods (A/N)

Author/Authors Year A/N Technique

Fermi [27] 1928 A Statistical method
Baker [29] 1930 A Monotone and Taylor’s series
Bush and Caldwell [30] 1931 N Differential analyzer
Sommerfeld [31] 1932 A Asymptotic behavior
Feynman et al. [34] 1949 A Taylor’s series
Coulson and March [35] 1949 A Asymptotic series
Kobayashi et al. [36] 1955 A Asymptotic series
Mason [37] 1964 A Rational functions
Hille [38] 1970 A Asymptotic behavior and Taylor’s series
More [39] 1976 A Local density approximation
Graef et al. [40] 1976 A Asymptotic behavior
Laurenzi [41] 1990 A Perturbative procedure
MacLeod [42] 1992 N Chebyshev collocation method
Al-Zanaidi, Grossmann [43] 1996 N Monotone discretization principle
Adomian [44] 1998 A Adomian decomposition method(ADM)
Wazwaz [45] 1999 A Pade - ADM
Epele et al. [46] 1999 A Pade approximant
Mandelzweig, Tabakin [47] 2001 N Quasilinearization iteration method
Esposito [48] 2002 A Majorana method
Kiessling [49] 2002 A Asymptotic behavior
Liao [50] 2003 A Homotopy analysis method
He [51] 2003 A Hybrid of semi-inverse and Ritz methods
Ramos [52] 2004 N Piecewise quasilinearization technique
Zaitsev et al. [53] 2004 N Iterative and sweep methods
Desaix et al. [54] 2004 A Direct variational method
Khan and Xu [55] 2007 A Homotopy analysis method
El-Nahhas [56] 2008 A Homotopy analysis method
Iacono [57] 2008 A By exploiting integral properties
Yao [58] 2008 A Homotopy analysis method
Parand and Shahini [59] 2009 N Rational Chebyshev collocation method
Ebaid [60] 2011 A Improved Adomian decomposition method
Marinca and Herianu [61] 2011 A Optimal parametric iteration method
Oulne [62] 2011 N Variational method
Abbasbandy, Bervillier [63] 2011 A Pade-Hankel method
Dong [64] 2011 A Density matrix
Caetano and Reis [65] 2011 N Neural networks
Fernandez [66] 2011 A Pade-rational approximation
Fewster-Young, Tisdell [67] 2012 A Existence of solutions for BVP
Kusano et al. [68] 2012 A Existence solution and asymptotics behavior
Kusano and Manojlovic[69] 2012 A Solutions of Fourth Order T-F equation
Zhu et al. [70] 2012 A Iterative and finite element methods
Turkylmazoglu [71] 2012 A Homotopy analysis method
Zhao et al. [72] 2012 A Improved homotopy analysis method
Ourabah and Tribeche[73] 2013 A Revisited the T-F model with thermal effects
Boyd [74] 2013 N Rational 1-kind Chebyshev collocation method
Parand et al. [75] 2013 N Sinc-collocation method
Marinca and Ene [76] 2014 A Optimal homotopy asymptotic method
Jaros and Kusano [77] 2014 A Asymptotic behavior
Kusano et al. [78] 2014 A Asymptotic analysis
Kilicman et al. [79] 2014 N Rational 2-kind Chebyshev collocation method
Jovanovic et al. [80] 2014 N Spectral method on exponential basis set
Bayat and Parand [81] 2014 N Collocation method on Hermite polynomials
Amore et al. [82] 2014 A Pade-Hankel method
Feng et al. [83] 2015 A Existence of solutions for fractional BVP
Dahmani and Anber [84] 2015 A ADM and VIM for fractional T-F model
Liu and Zhu [85] 2015 A Iterative method on Laguerre pseudoSpectral
Parand et al. [86] 2016 N Iterative method based on the fractional order

of rational Euler functions
Parand et al. [87] 2016 N Quasilinearization-Fractional-Rational Bessel

collocation method
Parand and Delkhosh[88] 2017 N Quasilinearization-Fractional-Rational Chebyshev

collocation method

Using some transformations, a number of researchers extended Chebyshev
polynomials to various domains, for example by using the transformation of
x = t−L

t+L , L > 0 the rational Chebyshev functions on semi-infinite domain [91, 92],

and by using transformation of x = t√
t2+L

, L > 0 the rational Chebyshev func-

tions on an infinite domain [93] are introduced.

In the proposed work, by transformation z = 1 − 2( t
η )

α, α, η > 0 on classical

Chebyshev polynomials of the first kind, the GFCFs in interval [0, η] are defined,
that be denoted by ηFTα

n (t) = Tn(1 − 2( t
η )

α).

Fig. 1 shows graphs of GFCFs for various values of n and α and η = 5.
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The ηFTα
n (t) can be obtained using the recursive relation as follows:

ηFTα
0 (t) = 1 , ηFTα

1 (t) = 1 − 2(
t

η
)α,

ηFTα
n+1(t) = (2 − 4(

t

η
)α) ηFTα

n (t)− η FTα
n−1(t), n = 1, 2, · · · .

The analytical form of η FTα
n (t) of degree nα is given by

ηFTα
n (t) =

n

∑
k=0

βn,k,η,α tαk, t ∈ [0, η], (4)

where

βn,k,η,α = (−1)k n22k(n + k − 1)!

(n − k)!(2k)!ηαk
and β0,k,η,α = 1.

Note that ηFTα
n (0) = 1 and ηFTα

n (η) = (−1)n, for all n, η, and α > 0.

(a) Graphs of GFCFs with α = 0.25
and various values of n

(b) Graphs of GFCFs with n = 5 and
various values of α

Figure 1: Graphs of GFCFs for various values of n and α.

Theorem 1. The GFCFs are orthogonal in the interval [0, η] with weight func-

tion w(t) = t
α
2 −1

√
ηα−tα as follows:

∫ η

0
ηFTα

n (t) ηFTα
m(t)w(t)dt =

π

2α
cnδmn, (5)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n ≥ 1.
Proof: The Chebyshev polynomials are orthogonal as follows [94]:

∫ 1

−1
Tn(x) Tm(x)

1√
1 − x2

dx =
π

2
cnδmn.

Now, by transformation x = 1 − 2( t
η )

α, α, η > 0 on the above integral, the theo-

rem can be proved.
Theorem 2. The singular Sturm-Liouville differential equation for the GFCFs

with weight function w(t) = t
α
2 −1

√
ηα−tα is as follows:

d

dt

(
1

w(t)

d

dt
ηFTα

n (t)

)
+ λn w(t) ηFTα

n (t) = 0,
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where λn = n2α2 and t ∈ [0, η].
Proof: The singular Sturm-Liouville differential equation for Chebyshev poly-

nomials is as follows [94]:

d

dx

(√
1 − x2

d

dx
Tn(x)

)
+

n2

√
1 − x2

Tn(x) = 0.

Now, by transformation x = 1 − 2( t
η )

α, α, η > 0 on the above equation, calculat-

ing
dy
dx =

ηα

−2αtα−1
dy
dt , and

√
1 − x2 = 2tα−1

ηα w(t), the theorem can be proved.

2.2 Approximation of functions

We consider Γ = {t | 0 ≤ t ≤ η} and
L2

w(Γ) = {µ : Γ −→ R | µ is measurable and ‖µ‖w < ∞}, where

‖µ‖2
w =

∫ η

0
|µ(t)|2 w(t) dt, w(t) =

t
α
2−1

√
ηα − tα

, (6)

is the norm produced by the inner product on the space L2
w(Γ):

〈ν, µ〉w =
∫ η

0
ν(t) µ(t) w(t) dt. (7)

Now, we assume

GFCFm = span{ ηFTα
0 (t), ηFTα

1 (t), · · · , ηFTα
m−1(t)},

is finite dimensional subspace, therefore GFCFm is a complete subspace of L2
w(Γ)

[93, 94]. The interpolating function of a smooth function y(t) on a finite interval
is denoted by ym(t). It is an element of GFCFm and

y(t) ≈ ym(t) =
m−1

∑
n=0

an ηFTα
n (t) = ATΦ(t), (8)

with

A = [a0, a1, · · · , am−1]
T, (9)

Φ(t) = [ η FTα
0 (t), ηFTα

1 (t), · · · , ηFTα
m−1(t)]

T . (10)

If ym(t) is the best projection of y(t) upon GFCFm with respect to the inner
product Eq. (7) and the norm Eq. (6). Then, we have

〈ym(t)− y(t), ηFTα
n (t)〉 = 0 ∀ η FTα

n (t) ∈ GFCFm.

The coefficients an are obtained by using the orthogonality property of the
GFCFs (Theorem 1) as follows:

an =
2α

πcn

∫ η

0
ηFTα

n (t) y(t) w(t) dt, n = 0, 1, 2, · · · .
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2.3 Convergence analysis

The following theorem shows that by increasing m, the approximation solution
fm(t) is convergent to f (t) exponentially.

Theorem 3. Suppose that Dkα f (t) ∈ C[0, η] for k = 0, 1, ..., m, and Fα
m is the

subspace generated by { η FTα
0 (t), ηFTα

1 (t), ..., ηFTα
m−1(t)}. If fm = ATΦ (in Eq.

(8)) is the best approximation to f (t) from Fα
m, then the error bound is presented

as follows

‖ f (t)− fm(t) ‖w≤
ηmαMα

2mΓ(mα + 1)

√
π

α m!
,

where Mα ≥ |Dmα f (t)|, t ∈ [0, η].
Proof. See Ref. [95].
Theorem 3 shows that if m → ∞ then ‖ f (t)− fm(t) ‖w→ 0.

Theorem 4. The GFCF, ηFTα
n (t), has precisely n real zeros on interval (0, η) in

the form

tk = η

(
1 − cos( (2k−1)π

2n )

2

) 1
α

, k = 1, 2, ..., n

Moreover, d
dt ηFTα

n (t) has precisely n − 1 real zeros on interval (0, η) in the fol-
lowing points:

t′k = η

(
1 − cos( kπ

n )

2

) 1
α

, k = 1, 2, ..., n − 1.

Proof. See Ref. [95].

3 Application of the method

The efficient methods have been used by many researchers to solve the differ-
ential equations (DEs) is based on series expansion of the form ∑

n
i=0 cit

i, such
as Adomian’s decomposition method [96] and Homotopy perturbation method
[97]. But the exact solution of some DEs can’t be estimated by polynomial basis,
therefore, a new basis for Spectral methods to solve them has been defined as
follows:

Φn(t) =
n

∑
i=0

cit
iα.

In this section, the GFCFs collocation method is applied to solve Thomas-
Fermi equation.

For satisfying the boundary conditions, we satisfy conditions Eq. (2) by mul-

tiplying the function ym(t) (in Eq. (8)) in t e−2(t+2) and adding it to L
t+L as follows:

ŷm(t, L) =
L

t + L
+ t e−2(t+2) ym(t), (11)
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where ym(t) is defined in Eq. (8) and L > 0 is an arbitrary numerical parameter.
Now, ŷm(t, L) = 1 when t tends to zero, and ŷm(t, L) = 0 when t tends to ∞

for all L > 0. The term e−2(t+2) is selected for accelerating convergence to zero.
So the function ŷm(t, L) is satisfied in the conditions of Eq. (2) and is defined on
semi-infinite domain.

The method of satisfying the boundary conditions is used in some papers,
for examples see Ref. [98, 99]. Furthermore, in fact, the basic functions used in
the paper can be considered as e−2t

η FTα
n (t). It is clear that the growth of the

exponential function e−2t in the interval of [0, ∞] is much faster than the GFCFs.
For this reason, the basic functions considered in the paper can be considered
convergent.

To apply the collocation method, the residual function is constructed by sub-
stituting ŷm(t, L) in Eq. (11) for y(t) in the Eq. (1):

Res(t; a0 , · · · , am−1, L) =
d2

dt2
ŷm(t, L)− 1√

t
(ŷm(t, L))

3
2 . (12)

One of the problems that exists in all the papers is to calculate the initial value
and the optimal value for the parameter L. We have done two stages working to
fix this problem in this paper:

Stage 1: The equations for obtaining the initial value for the parameter L arise from
equalizing Res(t) to zero on (m + 1) collocation points:

Res(ti ; a0, · · · , am−1, L) = 0, i = 1, 2, ..., m + 1. (13)

i.e. we have added the parameter of L as an unknown to the unknowns
and have solved the system of equations generated by m + 1 equations and
m+ 1 unknowns. At this stage, the initial value for the parameter L is calcu-
lated with accuracy 10−8 for y′(0) compared with Parand et al. [86]. Tables
2 and 3 show that the approximation solution for this stage is calculated
with a good accuracy. In this study, we used the roots of ηFTα

m+1(t) in the
interval [0, η] (Theorem 4), as collocation points.

Stage 2: In this stage, with trial and error method, accurate value for the parameter
L is computed (see Table 3).

The equations for obtaining the coefficient {ai}m−1
i=0 with the accurate value

of L arise from equalizing Res(t) to zero on m collocation points (the roots of

η FTα
m(t) in the interval [0, η] (Theorem 4)):

Res(ti ; a0, · · · , am−1, L) = 0, i = 1, 2, ..., m. (14)

By solving the obtained set of equations, we have the approximating function
ŷm(t) in the Eq. (11).

Baker in 1930 [29] has calculated an analytical solution as follows:

y(t) = 1 + Bt +
4

3
t

3
2 +

2

5
Bt

5
2 +

1

3
t3 +

3

70
B2t

7
2 +

2

15
Bt4 +

4

63
(

2

3
− 1

16
B3)t

9
2 + · · · , (15)
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where B is the value of the first derivative at the origin. The solution in Eq. (15)

has been generated by the powers of t
1
2 , i.e. we can generate this solution using

the basic set {1, t
1
2 , t, t

3
2 , t2, · · · }. For this reason, we solve Thomas-Fermi equation

by using new basic of the GFCFs in the Eq. (4) with α = 1
2 where have been

generated by the powers of t
1
2 . Also consider that all of the computations have

been done by Maple 2015.

4 Results and discussion

Calculation of the value of the initial slope y′(0) of Thomas-Fermi potential has
always been of great interest and plays an important role in determining many
physical properties of Thomas-Fermi atom.

Comparison with previous works: Zaitsev et al. [53] have shown that the methods
of the Runge-Kutta and Adams-Bashforth for solving Thomas-Fermi equation
are ill-conditioned on semi-infinite domains. For this reason, many researchers
have used numerical and semi-analytical methods to solve this equation, and
some of them have calculated very good results. For examples, recently, au-
thors of [61, 63, 66, 70, 71, 72, 76, 82, 85] have used analytical methods to solve
this equation, and the best solution for y′(0) was calculated by Amore et al.
[82] by using Pade-Hankel method, correct to 26 decimal places. Authors of
[59, 62, 74, 75, 79, 80, 81] have used numerical methods to solve this equation,
and the best solution for y′(0) was calculated by Parand et al. [86] by using an
iterative method based on the fractional order of rational Euler functions, correct
to 27 decimal places. In these numerical methods, there is a numerical parame-
ter that is selected by the authors. For examples, in [59] is selected 0.258497 to
accuracy 10−6, in [62] is selected 0.93799968 to accuracy 10−8, in [75] is selected
0.62969503 to accuracy 10−6, in [79] is selected 0.0958885 to accuracy 10−7, and
in [81] is selected 1.588071 to accuracy 10−7. Table 2 shows a list of the number
of calculations y′(0) of Thomas-Fermi equation by many researchers. We can see
that some researchers have achieved good results and accuracy. The last two rows
show the best approximation obtained by the present method in two stages. The
solutions in both stages are more accurate than many previous results.

Table 3 shows the obtained values of y′(0) for various values of L and m = 45,
and the absolute error with Parand et al. [86]. Table 4 shows comparison of the
obtained values of y(t) between the present method, Parand and Shahini [59],
Jovanovic [80], and Liao [100] for various values of t. Table 5 shows the obtained
values of y′(t) by the present method for various values of t.

Fig. 2 shows the graphs of residual error Res(t) of the Eq. (12) with
m = 45, and logarithmic of coefficients |ai | to show the convergence of the present
method. Fig. 3 shows the resulting graphs of Thomas-Fermi equation for y(t) and
y′(t) with m = 45.
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5 Conclusion

The fundamental goal of the paper has been to construct an approximation to the
solution of nonlinear Thomas-Fermi equation in a semi-infinite domain which
has a singularity at t = 0 and its boundary condition occurred in infinity. To
achieve this goal, the generalized fractional order of the Chebyshev orthogonal
functions (GFCFs) of the first kind are used. The present method has several
advantages, such as:

1. The generalized fractional order of the Chebyshev functions (GFCFs) of the
first kind have been introduced as a new basis for Spectral methods and this
basis can be used to develop a framework or theory in Spectral methods.

2. The fractional basis was used for solving an ordinary differential equation
(nonlinear singular Thomas-Fermi differential equation) and it provided in-
sight into an important issue.

3. We know that calculate the initial value and the optimal value for the pa-
rameter L is one of the problems in many papers, but in this method we
calculated the initial value for L by solving a system of (m + 1) equations
and unknowns, i.e. we calculated the initial value L with no attempt.

4. The differential equation is solved without any change of variable in it.

5. The comparison of the obtained values with the others shows that the present
method provides good numerical solution.

6. A good accuracy to 27 decimal places for y(t), y′(t), and y′(0) are achieved.

7. This article tells a good history as follows: (a) A history of the methods
to solve this equation by other researchers. (b) A history of the numerical
methods to solve the equations in unbounded domains.

Acknowledgments: The authors are very grateful to reviewers and editor for
carefully reading the paper and for their comments and suggestions which have
improved the paper.



New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi ... 467

Table 2: Comparison of the obtained values of y′(0) by researchers, inaccurate
digits are bold.

Author/Authors Obtained value of y′(0)

Fermi (1928) [27] -1.58
Baker (1930) [29] -1.588558
Bush and Caldwell (1931) [30] -1.589
Miranda (1934) [32] -1.5880464
Slater and Krutter (1935) [33] -1.58808
Feynman et al. (1949) [34] -1.58875
Kobayashi et al. (1955) [36] -1.588070972
Mason (1964) [37] -1.5880710
Laurenzi (1990) [41] -1.588588
MacLeod (1992) [42] -1.5880710226
Wazwaz (1999) [45] -1.588076779
Epele et al. (1999) [46] -1.588102
Esposito (2002) [48] -1.588
Liao (2003) [50] -1.58712
Khan and Xu (2007) [55] -1.586494973
El-Nahhas (2008) [56] -1.55167
Yao (2008) [58] -1.588004950
Parand and Shahini (2009) [59] -1.5880702966
Marinca and Herianu (2011) [61] -1.5880659888
Oulne (2011) [62] -1.588071034
Abbasbandy and Bervillier (2011) [63] -1.5880710226113753127189
Fernandez (2011) [66] -1.588071022611375313
Zhu et al. (2012) [70] -1.58807411
Turkylmazoglu (2012) [71] -1.58801
Zhao et al. (2012) [72] -1.5880710226
Boyd (2013) [74] -1.5880710226113753127186845
Parand et al. (2013) [75] -1.588070339
Marinca and Ene (2014) [76] -1.5880719992
Kilicman et al. (2014) [79] -1.588071347
Jovanovic et al. (2014) [80] -1.588071022811
Bayatbabolghani & Parand(2014)[81] -1.588071
Amore et al. (2014) [82] -1.588071022611375312718684508
Liu and Zhu (2015) [85] -1.588072
Parand et al. (2016) [86] -1.588071022611375312718684509

This article (Stage 1) -1.58807094
This article (Stage 2) -1.588071022611375312718684509

References

[1] B. J. Noye, M. Dehghan, New explicit finite difference schemes for two-
dimensional diffusion subject to specification of mass, Numer. Meth. Par.
Diff. Eq., 15 (1999) 521-534.

[2] H.J. Choi, J.R. Kweon, A finite element method for singular solutions of
the Navier-Stokes equations on a non-convex polygon, J. Comput. Appl.
Math., 292 (2016) 342-362.

[3] K. Parand, S.A. Hossayni, J.A. Rad, An operation matrix method based on
Bernstein polynomials for Riccati differential equation and Volterra popu-
lation model, Appl. Math. Model., 40(2) (2016) 993-1011.



468 K. Parand – M. Delkhosh

Table 3: Obtained values of y′(0) for various values of L and the absolute errors
with Ref. [86]

Stage L Obtained value Abs. Err.

1 0.108 -1.58807094 7.297e-08
2 0.107 -1.58807105 2.738e-08
2 0.1072822 -1.588071022613 1.624e-12
2 0.10728222052 -1.588071022611375190 1.227e-16
2 0.107282220518793 -1.58807102261137531270 1.868e-20
2 0.107282220518792882 -1.58807102261137531271866 2.450e-23
2 0.10728222051879288180562 -1.588071022611375312718684509 3.989e-28

Parand et al. (2016) [86] -1.588071022611375312718684509

Table 4: The comparison of the obtained values of y(t) by the present method and
other methods

t Present method Jovanovic[80] Liao [100] Parand [59]

0.25 0.75520146 0.755202096 0.75520200 0.75588075
0.50 0.60698638 0.606986951 0.60698700 0.60670000
0.75 0.50234684 0.502348140 0.50234700 0.50296404
1.00 0.42400805 0.424010148 0.42400800 0.42433317
1.25 0.36320141 0.363203991 0.36320200 0.36322793
1.50 0.31477746 0.314780118 0.31477800 0.31466064
1.75 0.27545132 0.275453712 0.27545100 0.27523384
2.00 0.24300850 0.243010373 0.24300900 0.24267858
2.25 0.21589462 0.215895823 0.21589500 0.21543933
2.50 0.19298412 0.192984580 0.19298400 0.19240632
2.75 0.19298412 0.173440997 0.17344100 0.17275869
3.00 0.15663267 0.156631657 0.15663300 0.15587186
3.25 0.14207167 0.142067963 0.14207000 0.14126050
3.50 0.12937199 0.129367328 0.12937000 0.12854138
3.75 0.11823180 0.118226225 0.11822900 0.11740805
4.00 0.10840425 0.108401057 0.10840400 0.10761295
4.25 0.09970158 0.099694306 0.09969790 0.09895432
4.50 0.09195242 0.091944333 0.09194820 0.09126645
4.75 0.08502664 0.085017755 0.08502180 0.08441228
5.00 0.07881335 0.078803669 0.07880780 0.07827775
6.00 0.05943190 0.059418888 0.05942300 0.05923642
7.00 0.04611150 0.046094375 0.04609780 0.04623102
8.00 0.03660733 0.036584707 0.03658730 0.03698065
9.00 0.02961945 0.029589375 0.02959090 0.03018090
10.0 0.02435370 0.024313708 0.02431430 0.02504474
15.0 0.01095404 0.010808302 0.01080540 0.01173122
20.0 0.00619613 0.005789307 0.00578494 0.00658563
25.0 0.00435986 0.003478434 0.00347375 0.00410440

[4] K. Parand, M. Delkhosh, Solving the nonlinear Schlomilchs integral equa-
tion arising in ionospheric problems, Afr. Mat., 28(3) (2017) 459-480.

[5] K. Rashedi, H. Adibi, J.A. Rad, K. Parand, Application of meshfree methods
for solving the inverse one-dimensional Stefan problem, Eng. Anal. Bound.
Elem., 40 (2014) 1-21.



New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi ... 469

Table 5: Obtained values of y′(t) for various values of t

t y′(t) t y′(t)

0.10 -0.9953589245 2.50 -0.0844251701
0.20 -0.7942255741 3.00 -0.0624559504
0.30 -0.6617989334 3.50 -0.0474995240
0.40 -0.5646407361 4.00 -0.0369418708
0.50 -0.4894153789 4.50 -0.0292691261
0.60 -0.4291688088 5.00 -0.0235572632
0.70 -0.3797926716 5.50 -0.0192179759
0.80 -0.3386092951 6.00 -0.0158635463
0.90 -0.3037768696 6.50 -0.0132308957
1.00 -0.2739873053 7.00 -0.0111370301
1.25 -0.2157945052 7.50 -0.0094518853
1.50 -0.1737381340 8.00 -0.0080812533
1.75 -0.1423200326 8.50 -0.0069557455
2.00 -0.1182428478 9.00 -0.0060234837

(a) Graph of residual error (b) Graph of log(|ai|)

Figure 2: Graphs of residual error with m = 45, and logarithmic of coefficients
|ai| to show the convergence of the method.

[6] J.A. Rad, K. Parand, S. Abbasbandy, Local weak form meshless techniques
based on the radial point interpolation (RPI) method and local boundary
integral equation (LBIE) method to evaluate European and American op-
tions, Commun. Nonlinear Sci. Numer. Simulat., 22(1) (2015) 1178-1200.

[7] K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. Kazemnasab Haji, Col-
location method using Sinc and Rational Legendre functions for solving
Volterra’s population model, Commun. Nonlinear Sci. Numer. Simulat., 16
(2011) 1811-1819.

[8] K. Parand, M. Nikarya, J.A. Rad, Solving non-linear Lane-Emden type
equations using Bessel orthogonal functions collocation method, Celest.
Mech. Dyn. Astr., 116 (2013) 97-107.



470 K. Parand – M. Delkhosh

(a) Graph of y(t) (b) Graph of y′(t)

Figure 3: Thomas-Fermi graphs obtained by the present method with m = 45.

[9] B.Y. Guo, J. Shen, Laguerre-Galerkin method for nonlinear partial differen-
tial equations on a semi-infinite interval, Numer. Math. 86(4) (2000) 635-654.

[10] D. Funaro and O. Kavian, approximation of some diffusion evolution equa-
tions in unbounded domains by Hermite functions, Math. Comput., 57
(1991) 597-619.

[11] B.Y. Guo, Jacobi Approximations in Certain Hilbert Spaces and Their Ap-
plications to Singular Differential Equations, J. Math. Anal. Appl., 243
(2000) 373-408.

[12] J.A. Rad, K. Parand, L.V. Ballestra, Pricing European and American options
by radial basis point interpolation, Appl. Math. Comput., 251 (2015) 363-
377.

[13] J.A. Rad, K. Parand, S. Abbasbandy, Pricing European and American Op-
tions Using a Very Fast and Accurate Scheme: The Meshless Local Petrov-
Galerkin Method, P. Natl Acad. Sci. India Section A: Physical Sciences, 85(3)
(2015) 337-351.

[14] C. Christov, A Complete Orthonormal System of Functions in L2(−∞, ∞)
Space, SIAM J. Appl. Math., 42(6) (1982) 1337-1344.

[15] J.P. Boyd, Spectral methods using rational basis functions on an infinite
interval, J. Comput. Phys., 69 (1987) 112-142.

[16] K. Parand, P. Mazaheri, H. Yousefi, M. Delkhosh, Fractional order of ra-
tional Jacobi functions for solving the non-linear singular Thomas-Fermi
equation, Euro. Phys. J. Plus 132(2) (2017) 77.

[17] K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, New numerical solutions
for solving Kidder equation by using the rational Jacobi functions, SeMA
J., (2017) doi:10.1007/s40324-016-0103-z.



New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi ... 471

[18] M. Delkhosh, M. Delkhosh, M. Jamali, Introduction to Green’s Function
and its Numerical Solution, Middle-East J. Sci. Res., 11(7) (2012) 974-981.

[19] M. Tatari, M. Dehghan, M. Razzaghi, Application of the Adomian decom-
position method for the Fokker-Planck equation, Math. Comput. Model.,
45 (2007) 639-650.

[20] J.H. He, homotopy perturbation technique, Comput. Method. Appl. M., 178
(1999) 257-262.

[21] F. Shakeri and M. Dehghan, Numerical solution of the Klein-Gordon equa-
tion via He’s variational iteration method, Nonlinear Dynam., 51 (2008)
89-97.

[22] J.H. He, X. H. Wu, Exp-function method for nonlinear wave equations,
Chaos Soliton. Fract., 30 (2006) 700-708.

[23] K. Parand, J. A. Rad, Exp-function method for some nonlinear PDE’s and a
nonlinear ODE’s, J. King Saud Uni. (Science), 24 (2012) 1-10.

[24] L.H. Thomas, The calculation of atomic fields, Math. Proc. Cambridge, 23
(1927) 542-548.

[25] H.T. Davis, Introduction to Nonlinear Differential and Integral Equations,
Dover, New York, 1962.

[26] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover,
New York, 1967.

[27] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften
des Atoms und ihre Anwendung auf die Theorie des periodischen Systems
der Elemente, Z. Phys., 48 (1928) 73-79.

[28] B.J. Laurenzi, An analytic solution to the Thomas-Fermi equation, J. Math.
Phys., 10 (1990) 2535-2537.

[29] E.B. Baker, The application of the Fermi-Thomas statistical model to the
calculation of potential distribution in positive ions, Quart. Appl. Math., 36
(1930) 630-647.

[30] V. Bush, S.H. Caldwell, Thomas-Fermi equation solution by the differential
analyzer, Phys. Rev., 38 (1931) 1898-1902.

[31] A. Sommerfeld, Asymptotische Integration der Differentialgleichung des
Thomas-Fermi schen Atoms, Z. Phys., 78 (1932) 283-308.

[32] C. Miranda, Teorie e metodi per l’integrazione numerica dell’equazione
differenziale di Fermi, Memorie della Reale Accademia d’Italia, Classe di
scienze fisiche, Mat. Nat., 5 (1934) 285-322.

[33] J.C. Slater, H.M. Krutter, The Thomas-Fermi method for metals, Phys. Rev.,
47 (1935) 559-568.



472 K. Parand – M. Delkhosh

[34] R.P. Feynman, N. Metropolis, E. Teller, Equations of State of Elements Based
on the Generalized Fermi-Thomas Theory, Phys. Rev., 75(10) (1949) 1561-
1573.

[35] C.A. Coulson, N.H. March, Momenta in Atoms using the Thomas-Fermi
Method, Proc. Phys. Soc. Section A, 63(4) (1949) 67-374.

[36] S. Kobayashi, T. Matsukuma, S. Nagi, K. Umeda, Accurate value of the
initial slope of the ordinary T-F function, J. Phys. Soc. Japan, 10 (1955) 759-
762.

[37] J.C. Mason, Rational approximations to the ordinary Thomas-Fermi func-
tion and its derivative, Proc. Phys. Soc., 84 (1964) 357-359.

[38] E. Hille, Some Aspects of the Thomas-Fermi equation, J. d’Analyse Math.,
23(1) (1970) 147-170.

[39] R.M. More, Radiation pressure and the Thomas-Fermi equation of state, J.
Phys. A: Math. Gen., 9(11) (1976) 1979-1985.

[40] J.R. Graef, Oscillatory and Asyrhptotic Properties of Solutions of General-
ized Thomas-Fermi Equations with Deviating Arguments, J. Math. Analy.
Appl., 84 (1981) 519-529.

[41] B.J. Laurenzi, An analytic solution to the Thomas-Fermi equation, J. Math.
Phys., 31 (1990) 2535-2537.

[42] A.J. MacLeod, Chebyshev series solution of the Thomas-Fermi equation,
Comput. Phys. Commun., 67 (1992) 389-391.

[43] M. Al-zanaidi, C. Grossmann, Monotonous enclosures for the Thomas-
Fermi equation in the isolated neutral atom case, IMA. J. Numer. Anal.,
16 (1996) 413-434.

[44] G. Adomian, Solution of the Thomas-Fermi Equation, Appl. Math. Lett., 11
(1998) 131-133.

[45] A-M. Wazwaz, The modified decomposition method and Pade approxi-
mants for solving the Thomas-Fermi equation, Appl. Math. Comput., 105
(1999) 11-19.

[46] L.N. Epele, H. Fanchiotti, C.A.G. Canal, J.A. Ponciano, Pade approximant
approach to the Thomas-Fermi problem, Phys. Rev. A, 60 (1999) 280-283.

[47] V.B. Mandelzweig, F. Tabakinb, Quasilinearization approach to nonlinear
problems in physics with application to nonlinear ODEs, Comput. Phys.
Commun., 141 (2001) 268-281.

[48] S. Esposito, Majorana solution of the Thomas-Fermi equation, Am. J. Phys.,
70 (2002) 852-856.



New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi ... 473

[49] M.K.H. Kiessling, Symmetry Results for Finite-Temperature, Relativistic
Thomas-Fermi Equations, Commun. Math. Phys., 226 (2002) 607-626.

[50] S. Liao, An explicit analytic solution to the Thomas-Fermi equation, Appl.
Math. Comput., 144 (2003) 495-506.

[51] J.H. He, Variational approach to the Thomas-Fermi equation, , Appl. Math.
Comput., 143 (2003) 533-535.

[52] J.I. Ramos, Piecewise quasilinearization techniques for singular boundary-
value problems, Comput. Phys. Commun., 158 (2004) 12-25.

[53] N.A. Zaitsev, I.V. Matyushkin, D.V. Shamonov, Numerical Solution of the
Thomas-Fermi Equation for the Centrally Symmetric Atom, Russ. Micro-
electronics, 33 (2004) 303-309.

[54] M. Desaix, D. Anderson, M. Lisak, Variational approach to the Thomas-
Fermi equation, Eur. J. Phys., 25 (2004) 699-705.

[55] H. Khan, H. Xu, Series solution to the Thomas-Fermi equation, Phys. Let.
A, 365 (2007) 111-115.

[56] A. El-Nahhas, Analytic Approximations for Thomas-Fermi Equation, Acta
Phys. Pol. A, 114(4) (2008) 913-918.

[57] R. Iacono, An exact result for the Thomas-Fermi equation: a priori bounds
for the potential slope at the origin, J. Phys. A: Math. Theor., 41 (2008)
455204 (7pp).

[58] B. Yao, A series solution to the Thomas-Fermi equation, Appl. Math. Com-
put., 203 (2008) 396-401.

[59] K. Parand, M. Shahini, Rational Chebyshev pseudoSpectral approach for
solving Thomas-Fermi equation,Phys. Let. A, 373 (2009) 210-213.

[60] A. Ebaid, A new analytical and numerical treatment for singular two-point
boundary value problems via the Adomian decomposition method, J. Com-
put. Appl. Math., 235 (2011) 1914-1924.

[61] V. Marinca, N. Herisanu ,An optimal iteration method with application to
the Thomas-Fermi equation, Cent. Eur. J. Phys., 9 (2011) 891-895.

[62] M. Oulne, Variation and series approach to the Thomas-Fermi equation,
Appl. Math. Comput., 218 (2011) 303-307.

[63] S. Abbasbandy, C. Bervillier, Analytic continuation of Taylor series and the
boundary value problems of some nonlinear ordinary differential equa-
tions, Appl. Math. Comput., 218 (2011) 2178-2199.

[64] J.P. Dong, Applications of density matrix in the fractional quantum me-
chanics: Thomas-Fermi model and Hohenberg-Kohn theorems revisited,
Phys. Let. A, 375 (2011) 2787-2792.



474 K. Parand – M. Delkhosh

[65] C. Caetano, J.L. Reis JR., J. Amorim, M. Ruvlemes, A. Dal Pino JR., Using
Neural Networks to Solve Nonlinear Differential Equations in Atomic and
Molecular Physics, Int. J. Quantum Chem., 111 (2011) 2732-2740.

[66] F.M. Fernandez, Rational approximation to the Thomas-Fermi equations,
Appl. Math. Comput., 217 (2011) 6433-6436.

[67] N. Fewster-Young, C.C. Tisdell, The existence of solutions to second-order
singular boundary value problems, Nonlinear Anal., 75 (2012) 4798-4806.

[68] T. Kusano, V. Maric, T. Tanigawa, An asymptotic analysis of positive so-
lutions of generalized Thomas-Fermi differential equations - The sub-half-
linear case, Nonlinear Anal., 75 (2012) 2474-2485.

[69] T. Kusano, J. Manojlovic, Positive Solutions of Fourth Order Thomas-Fermi
Type Differential Equations in the Framework of Regular Variation, Acta
Appl. Math., 121 (2012) 81-103.

[70] S. Zhu, H. Zhu, Q. Wu, Y. Khan, An adaptive algorithm for the Thomas-
Fermi equation, Numer. Algor., 59 (2012) 359-372.

[71] M. Turkyilmazoglu, Solution of the Thomas-Fermi equation with a conver-
gent approach, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012) 4097-
4103.

[72] Y. Zhao, Z. Lin, Z. Liu, S. Liao, The improved homotopy analysis method
for the Thomas-Fermi equation, Appl. Math. Comput., 218 (2012) 8363-
8369.

[73] K. Ourabah, M. Tribeche, Relativistic formulation of the generalized non-
extensive Thomas-Fermi model, Phys. A: Static. Mech. Appl., 393 (2014)
470-474.

[74] J.P. Boyd, Rational Chebyshev series for the Thomas-Fermi function: End-
point singularities and Spectral methods, J. Comput. Appl. Math., 244
(2013) 90-101.

[75] K. Parand, M. Dehghanb, A. Pirkhedri, The Sinc-collocation method for
solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237 (2013)
244-252.

[76] V. Marinca, R.D. Ene, Analytical approximate solutions to the Thomas-
Fermi equation, Cent. Eur. J. Phys., 12(7) (2014) 503-510.

[77] J. Jaros, T. Kusano, Decreasing Regularly Varying Solutions of Sublinearly
Perturbed Superlinear Thomas-Fermi Equation, Results. Math., 66 (2014),
273-289.

[78] T. Kusano, J.V. Manojlovic, V. Maric, Increasing solutions of Thomas-Fermi
type differential equations - The superlinear case, Nonlinear Anal., 108
(2014) 114-127.



New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi ... 475

[79] A. Kilicman, I. Hashimb, M. Tavassoli Kajani, M. Maleki, On the ratio-
nal second kind Chebyshev pseudoSpectral method for the solution of the
Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math.,
257 (2014) 79-85.

[80] R. Jovanovic, S. Kais, F.H. Alharbi, Spectral Method for Solving the Non-
linear Thomas-Fermi Equation Based on Exponential Functions, J. App.
Math., (2014) Article ID 168568, 8 pages.

[81] F. Bayatbabolghani, K. Parand, Using Hermite Function for Solving
Thomas-Fermi Equation, Int. J. Math. Comput. Phys. Elect. Comp. Eng.,
8(1) (2014) 123-126.

[82] P. Amore, J.P. Boyd, F.M. Fernandez, Accurate calculation of the solutions
to the Thomas-Fermi equations, Appl. Math. Comput., 232 (2014) 929-943.

[83] W. Feng, S. Sun, Y. Sun, Existence of positive solutions for a generalized
and fractional ordered Thomas-Fermi theory of neutral atoms, Adv. Diff.
Equ., (2015) 2015:350 (16pp).

[84] Z. Dahmani, A. Anber, Two Numerical Methods for Solving the Fractional
Thomas-Fermi Equation, J. Interdisciplinary Math., 18 (2015) 35-41.

[85] C. Liu, S. Zhu, Laguerre pseudoSpectral approximation to the Thomas-
Fermi equation, J. Comput. Appl. Math., 282 (2015) 251-261.

[86] K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, A Novel Numerical Tech-
nique to Obtain an Accurate Solution of the Thomas-Fermi Equation, Eur.
Phys. J. Plus, 131 (2016) 228.

[87] K Parand, A Ghaderi, H Yousefi, M Delkhosh, A new approach for solv-
ing nonlinear Thomas-Fermi equation based on fractional order of rational
Bessel functions, Electron. J. Differential Equations, 2016 (2016) 331.

[88] K. Parand, M. Delkhosh, Accurate solution of the Thomas-Fermi equa-
tion using the fractional order of rational Chebyshev functions, J. Comput.
Appl. Math., 317 (2017) 624-642.

[89] M.R. Eslahchi, M. Dehghan, S. Amani, Chebyshev polynomials and best
approximation of some classes of functions, J. Numer. Math., 23 (1) (2015)
41-50.

[90] E. H. Doha, A.H. Bhrawy, S. S. Ezz-Eldien , A Chebyshev Spectral method
based on operational matrix for initial and boundary value problems of
fractional order, Comput. Math. Appl., 62 (2011) 2364-2373.

[91] K. Parand, A.R. Rezaei, A. Taghavi, Numerical approximations for pop-
ulation growth model by rational Chebyshev and Hermite functions col-
location approach: a comparison, Math. Method. Appl. Sci., 33(17) (2010)
2076-2086.



476 K. Parand – M. Delkhosh

[92] K. Parand, S. Khaleqi, The rational Chebyshev of Second Kind Collocation
Method for Solving a Class of Astrophysics Problems, Eur. Phys. J. Plus,
131 (2016) 24.

[93] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Second Edition, Dover
Publications, Mineola, New York, (2000).

[94] J.C. Mason, D.C. Handscomb, Chebyshev polynomials, CRC Press Com-
pany, ISBN 0-8493-0355-9.

[95] K. Parand, M. Delkhosh, Solving Volterra’s population growth model of ar-
bitrary order using the generalized fractional order of the Chebyshev func-
tions, Ricerche Mat., 65(1) (2016) 307-328.

[96] G. Adomian, Solving Frontier problems of Physics: The decomposition
method, Kluwer Academic Publishers, 1994.

[97] S.J. Liao, The proposed homotopy analysis technique for the solution of
nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.

[98] K. Parand, M. Nikarya, J. A. Rad, F. Baharifard, A new Reliable Numerical
Algorithm Based on the First Kind of Bessel Functions to Solve Prandtl-
Blasius Laminar Viscous Flow over a Semi-Infinite Flat Plate, Z. Natur-
forsch. 67a (2012) 665-673.

[99] S. A. Yousefi, D. Lesnic, Z. Barikbin, Satisfier function in Ritz-Galerkin
method for the identification of a time-dependent diffusivity, J. Inverse Ill-
Posed Probl. 20 (2012) 701-722.

[100] S. Liao, Beyond Perturbation-Introduction to the Homotopy Analysis
Method, Chapman and Hall/CRC, Boca Raton, 2003.

Department of Computer Sciences,
Shahid Beheshti University, G.C.,
Tehran, Iran.
Department of Cognitive Modelling,
Institute for Cognitive and Brain Sciences,
Shahid Beheshti University, Tehran, Iran,
email: k parand@sbu.ac.ir

Department of Computer Sciences,
Shahid Beheshti University, G.C.,
Tehran, Iran.
emails: m delkhosh@sbu.ac.ir & mehdidelkhosh@yahoo.com


