The Projective Class Rings of a family of pointed Hopf algebras of Rank two

Hui-Xiang Chen Hassen Suleman Esmael Mohammed
Weijun Lin Hua Sun

Abstract

In this paper, we compute the projective class rings of the tensor product $\mathcal{H}_{n}(q)=A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$ of Taft algebras $A_{n}(q)$ and $A_{n}\left(q^{-1}\right)$, and its cocycle deformations $H_{n}(0, q)$ and $H_{n}(1, q)$, where $n>2$ is a positive integer and q is a primitive n-th root of unity. It is shown that the projective class rings $r_{p}\left(\mathcal{H}_{n}(q)\right), r_{p}\left(H_{n}(0, q)\right)$ and $r_{p}\left(H_{n}(1, q)\right)$ are commutative rings generated by three elements, three elements and two elements subject to some relations, respectively. It turns out that even $\mathcal{H}_{n}(q), H_{n}(0, q)$ and $H_{n}(1, q)$ are cocycle twist-equivalent to each other, they are of different representation types: wild, wild and tame, respectively.

1 Introduction

Let H be a Hopf algebra over a field \mathbb{K}. Doi [18] introduced a cocycle twisted Hopf algebra H^{σ} for a convolution invertible 2-cocycle σ on H. It is shown in $[19,28]$ that the Drinfeld double $D(H)$ is a cocycle twisting of the tensor product Hopf algebra $H^{* c o p} \otimes H$. The 2-cocycle twisting is extensively employed in various researches. For instance, Andruskiewitsch et al. [1] considered the twists of Nichols algebras associated to racks and cocycles. Guillot, Kassel and Masuoka [21] obtained some examples by twisting comodule algebras by 2-cocycles. It is well known that the monoidal category \mathcal{M}^{H} of right H-comodules is equivalent to the monoidal category $\mathcal{M}^{H^{\sigma}}$ of right H^{σ}-comodules. On the other hand, we

[^0]know that the braided monoidal category ${ }_{H} \mathcal{Y} D^{H}$ of Yetter-Drinfeld H-modules is the center of the monoidal category \mathcal{M}^{H} for any Hopf algebra H (e.g., see [23]). Hence the monoidal equivalence from \mathcal{M}^{H} to $\mathcal{M}^{H^{\sigma}}$ gives rise to a braided monoidal equivalence from ${ }_{H} \mathcal{Y} D^{H}$ to ${ }_{H^{\sigma}} \mathcal{Y} D^{H^{\sigma}}$. Chen and Zhang [14] described a braided monoidal equivalent functor from ${ }_{H} \mathcal{Y} D^{H}$ to $H_{H^{\sigma}} \mathcal{Y} D^{H^{\sigma}}$. Benkart et al. [3] used a result of Majid and Oeckl [30] to give a category equivalence between Yetter-Drinfeld modules for a finite-dimensional pointed Hopf algebra H and those for its cocycle twisting H^{σ}. However, the Yetter-Drinfeld module category ${ }_{H} \mathcal{Y} D^{H}$ is also the center of the monoidal category ${ }_{H} \mathcal{M}$ of left H-modules. This gives rise to a natural question:

Is there any relations between the two monoidal categories ${ }_{H} \mathcal{M}$ and ${ }_{H^{\sigma}} \mathcal{M}$ of left modules over two cocycle twist-equivalent Hopf algebras H and H^{σ} ? or how to detect the two monoidal categories ${ }_{H} \mathcal{M}$ and $H^{\sigma} \mathcal{M}$?

This article seeks to address this question through investigating the representation types and projective class rings of a family of pointed Hopf algebras of rank 2, the tensor products of two Taft algebras, and their two cocycle deformations.

In the investigation of the monoidal category of modules over a Hopf algebra H, the decomposition problem of tensor products of indecomposables is of most importance and has received enormous attentions. Our approach is to explore the representation type of H and the projective class ring of H, which is a subring of the representation ring (or Green ring) of H. Originally, the concept of the Green ring $r(H)$ stems from the modular representations of finite groups (see [20], etc.) Since then, there have been plenty of works on the Green rings. For finitedimensional group algebras, one can refer to [2, 4, 5, 6, 22]. For Hopf algebras and quantum groups, one can see [$13,15,16,25,36,37$].

The n^{4}-dimensional Hopf algebra $H_{n}(p, q)$ was introduced in [8], where $n \geqslant 2$ is an integer, $q \in \mathbb{K}$ is a primitive n-th root of unity and $p \in \mathbb{K}$. If $p \neq 0$, then $H_{n}(p, q)$ is isomorphic to the Drinfeld double $D\left(A_{n}\left(q^{-1}\right)\right)$ of the Taft algebra $A_{n}\left(q^{-1}\right)$. In particular, we have $H_{n}(p, q) \cong H_{n}(1, q) \cong D\left(A_{n}\left(q^{-1}\right)\right)$ for any $p \neq 0$. Moreover, $H_{n}(p, q)$ is a cocycle deformation of $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$. For the details, the reader is directed to [8,9]. When $n=2(q=-1), A_{2}(-1)$ is exactly the Sweedler 4-dimensional Hopf algebra H_{4}. Chen studied the finite dimensional representations of $H_{n}(1, q)$ in [9, 10], and the Green ring $r\left(D\left(H_{4}\right)\right)$ in [11]. Using a different method, Li and Hu [24] also studied the finite dimensional representations of the Drinfeld double $D\left(H_{4}\right)$, the Green ring $r\left(D\left(H_{4}\right)\right)$ and the projective class ring $p\left(D\left(H_{4}\right)\right)$. They also studied two Hopf algebras which are cocycle deformations of $D\left(H_{4}\right)$. By [10], one knows that $D\left(H_{4}\right)$ is of tame representation type. By [24], the two cocycle deformations of $D\left(H_{4}\right)$ are also of tame representation type.

In this paper, we study the three cocycle twist-equivalent Hopf algebras $\mathcal{H}_{n}(q)=A_{n}(q) \otimes A_{n}\left(q^{-1}\right), H_{n}(0, q)$ and $H_{n}(1, q)$ by investigating their representation types and projective class rings, where $n \geqslant 3$. In Section 2, we introduce the Taft algebras $A_{n}(q)$, the tensor product $\mathcal{H}_{n}(q)=A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$ and the Hopf algebras $H_{n}(p, q)$. In Section 3, we first show that $\mathcal{H}_{n}(q)$ is of wild representation type. With a complete set of orthogonal primitive idempotents, we classify the simple modules and indecomposable projective modules over $\mathcal{H}_{n}(q)$, and de-
compose the tensor products of these modules. This leads the description of the projective class ring $r_{p}\left(\mathcal{H}_{n}(q)\right)$, the Jacobson radical $J\left(R_{p}\left(\mathcal{H}_{n}(q)\right)\right)$ of the projective class algebra $R_{p}\left(\mathcal{H}_{n}(q)\right)$ and the quotient algebra $R_{p}\left(\mathcal{H}_{n}(q)\right) / J\left(R_{p}\left(\mathcal{H}_{n}(q)\right)\right)$. In Section 4 , we first show that $H_{n}(0, q)$ is a symmetric algebra of wild representation type. Then we give a complete set of orthogonal primitive idempotents with the Gabriel quiver, and classify the simple modules and indecomposable projective modules over $H_{n}(0, q)$. We also describe the projective class ring $r_{p}\left(H_{n}(0, q)\right)$, the Jacobson radical $J\left(R_{p}\left(H_{n}(0, q)\right)\right)$ of the projective class algebra $R_{p}\left(H_{n}(0, q)\right)$ and the quotient algebra $R_{p}\left(H_{n}(0, q)\right) / J\left(R_{p}\left(H_{n}(0, q)\right)\right)$. In Section 5 , using the decompositions of tensor products of indecomposables over $H_{n}(1, q)$ given in [12], we describe the structure of the projective class ring $r_{p}\left(H_{n}(1, q)\right)$. It is interesting to notice that even the Hopf algebras $\mathcal{H}_{n}(q), H_{n}(0, q)$ and $H_{n}(1, q)$ are cocycle twist-equivalent to each other, they own the different number of blocks with $1, n$ and $\frac{n(n+1)}{2}$, respectively (see [10, Corollary 2.7] for $H_{n}(1, q)$). $\mathcal{H}_{n}(q)$ and $H_{n}(0, q)$ are basic algebras of wild representation type, but $H_{n}(1, q)$ is not basic and is of tame representation type. $H_{n}(0, q)$ and $H_{n}(1, q)$ are symmetric algebras, but $\mathcal{H}_{n}(q)$ is not.

2 Preliminaries

Throughout, we work over an algebraically closed field \mathbb{K}. Unless otherwise stated, all algebras, Hopf algebras and modules are defined over \mathbb{K}; all modules are left modules and finite dimensional; all maps are \mathbb{K}-linear; dim and \otimes stand for $\operatorname{dim}_{\mathbb{K}}$ and $\otimes_{\mathbb{K}}$, respectively. Given an algebra A, A-mod denotes the category of finite-dimensional A-modules. For any A-module M and nonnegative integer l, let $l M$ denote the direct sum of l copies of M. For the theory of Hopf algebras and quantum groups, we refer to [23, 29, 31, 34]. Let \mathbb{Z} denote all integers, and $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.

Let H be a Hopf algebra. The Green ring $r(H)$ of H can be defined as follows. $r(H)$ is the abelian group generated by the isomorphism classes [M] of M in H-mod modulo the relations $[M \oplus V]=[M]+[V]$. The multiplication of $r(H)$ is given by the tensor product of H-modules, that is, $[M][V]=[M \otimes V]$. Then $r(H)$ is an associative ring. The projective class ring $r_{p}(H)$ of H is the subring of $r(H)$ generated by projective modules and simple modules (see [17]). Then the Green algebra $R(H)$ and projective algebra $R_{p}(H)$ are associative \mathbb{K}-algebras defined by $R(H):=\mathbb{K} \otimes_{\mathbb{Z}} r(H)$ and $R_{p}(H):=\mathbb{K} \otimes_{\mathbb{Z}} r_{p}(H)$, respectively. Note that $r(H)$ is a free abelian group with a \mathbb{Z}-basis $\{[V] \mid V \in \operatorname{ind}(H)\}$, where ind (H) denotes the category of finite dimensional indecomposable H -modules.

The Grothendieck ring $G_{0}(H)$ of H is defined similarly. $G_{0}(H)$ is the abelian group generated by the isomorphism classes $[M]$ of M in H-mod modulo the relations $[M]=[N]+[V]$ for any short exact sequence $0 \rightarrow N \rightarrow M \rightarrow V \rightarrow 0$ in H-mod. The multiplication of $G_{0}(H)$ is given by the tensor product of H-modules, that is, $[M][V]=[M \otimes V]$. Then $G_{0}(H)$ is also an associative ring. Moreover, there is a canonical ring epimorphism from $r(H)$ onto $G_{0}(H)$.

Let $n \geqslant 2$ be an integer and $q \in \mathbb{K}$ a primitive n-th root of unity. Then the n^{2}-dimensional Taft Hopf algebra $A_{n}(q)$ is defined as follows (see [35]): as an
algebra, $A_{n}(q)$ is generated by g and x with relations

$$
g^{n}=1, x^{n}=0, x g=q g x .
$$

The coalgebra structure and antipode are given by

$$
\begin{gathered}
\triangle(g)=g \otimes g, \triangle(x)=x \otimes g+1 \otimes x, \varepsilon(g)=1, \varepsilon(x)=0, \\
S(g)=g^{-1}=g^{n-1}, S(x)=-x g^{-1}=-q^{-1} g^{n-1} x .
\end{gathered}
$$

Since q^{-1} is also a primitive n-th root of unity, one can define another Taft Hopf algebra $A_{n}\left(q^{-1}\right)$, which is generated, as an algebra, by g_{1} and x_{1} with relations $g_{1}^{n}=1, x_{1}^{n}=0$ and $x_{1} g_{1}=q^{-1} g_{1} x_{1}$. The coalgebra structure and antipode are given similarly to $A_{n}(q)$. Then $A_{n}\left(q^{-1}\right) \cong A_{n}(q)^{\text {op }}$ as Hopf algebras.

The first author Chen introduced a Hopf algebra $H_{n}(p, q)$ in [8], where $p, q \in \mathbb{K}$ and q is a primitive n-th root of unity. It was shown there that $H_{n}(p, q)$ is isomorphic to a cocycle deformation of the tensor product $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$.

The tensor product $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$ can be described as follows. Let $\mathcal{H}_{n}(q)$ be the algebra generated by a, b, c and d subject to the relations:

$$
\begin{array}{lllll}
b a=q a b, & d b=b d, & c a=a c, & d c=q c d, & c b=b c, \\
a^{n}=0, & b^{n}=1, & c^{n}=1, & d^{n}=0, & d a=a d .
\end{array}
$$

Then $\mathcal{H}_{n}(q)$ is a Hopf algebra with the coalgebra structure and antipode given by

$$
\begin{array}{lll}
\triangle(a)=a \otimes b+1 \otimes a, & \varepsilon(a)=0, & S(a)=-a b^{-1}=-a b^{n-1} \\
\triangle(b)=b \otimes b, & \varepsilon(b)=1, & S(b)=b^{-1}=b^{n-1} \\
\triangle(c)=c \otimes c, & \varepsilon(c)=1, & S(c)=c^{-1}=c^{n-1} \\
\triangle(d)=d \otimes c+1 \otimes d, & \varepsilon(d)=0, & S(d)=-d c^{-1}=-d c^{n-1} .
\end{array}
$$

It is straightforward to verify that there is a Hopf algebra isomorphism from $\mathcal{H}_{n}(q)$ to $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$ via $a \mapsto 1 \otimes x_{1}, b \mapsto 1 \otimes g_{1}, c \mapsto g \otimes 1$ and $d \mapsto x \otimes 1$. Obviously, $\mathcal{H}_{n}(q)$ is n^{4}-dimensional with a \mathbb{K}-basis $\left\{a^{i} b^{j} c^{l} d^{k} \mid 0 \leqslant i, j, l, k \leqslant n-1\right\}$.

Let $p \in \mathbb{K}$. Then one can define another n^{4}-dimensional Hopf algebra $H_{n}(p, q)$, which is generated as an algebra by a, b, c and d subject to the relations:

$$
\begin{array}{llll}
b a=q a b, & d b=q b d, & c a=q a c, & d c=q c d, \\
a^{n}=0, & b c=c b, \\
a^{n}=1, & c^{n}=1, & d^{n}=0, & \\
d a-q a d=p(1-b c) .
\end{array}
$$

The coalgebra structure and antipode are defined in the same way as $\mathcal{H}_{n}(q)$ before. $H_{n}(p, q)$ has a \mathbb{K}-basis $\left\{a^{i} b^{j} c^{l} d^{k} \mid 0 \leqslant i, j, l, k \leqslant n-1\right\}$. When $p \neq 0$, $H_{n}(p, q) \cong H_{n}(1, q) \cong D\left(A_{n}\left(q^{-1}\right)\right)$ (see [8, 9]). If $n=2(q=-1)$, then $H_{2}(1,-1) \cong D\left(H_{4}\right)$, and $H_{2}(0,-1)$ is exactly the Hopf algebra $\overline{\mathcal{A}}$ in [24].

By [8, Lemma 3.2], there is an invertible skew-pairing $\tau_{p}: A_{n}(q) \otimes A_{n}\left(q^{-1}\right) \rightarrow$ \mathbb{K} given by $\tau_{p}\left(g^{i} x^{j}, x_{1}^{k} g_{1}^{l}\right)=\delta_{j k} p^{j} q^{i l}(j)!q_{q}, 0 \leqslant i, j, k, l<n$. Hence one can form a double crossproduct $A_{n}(q) \bowtie_{\tau_{p}} A_{n}\left(q^{-1}\right)$. Moreover, $A_{n}(q) \bowtie_{\tau_{p}} A_{n}\left(q^{-1}\right)$ is isomorphic to $H_{n}(p, q)$ as a Hopf algebra (see [8, Theorem 3.3]). By [19], τ_{p} induces an invertible 2-cocycle $\left[\tau_{p}\right]$ on $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$ such that $A_{n}(q) \bowtie_{\tau_{p}} A_{n}\left(q^{-1}\right)=$ $\left(A_{n}(q) \otimes A_{n}\left(q^{-1}\right)\right)^{\left[\tau_{p}\right]}$. Thus, there is a corresponding invertible 2-cocycle σ_{p} on
$\mathcal{H}_{n}(q)$ such that $\mathcal{H}_{n}(q)^{\sigma_{p}} \cong H_{n}(p, q)$ as Hopf algebras. In particular, we have $\mathcal{H}_{n}(q)^{\sigma_{0}} \cong H_{n}(0, q)$ and $\mathcal{H}_{n}(q)^{\sigma_{1}} \cong H_{n}(1, q)$. In general, if σ is a convolution invertible 2-cocycle on a Hopf algebra H, then σ^{-1} is an invertible 2-cocycle on H^{σ} and $\left(H^{\sigma}\right)^{\sigma^{-1}}=H$ (see [7, Lemma 1.2]). More generally, if σ is an invertible 2-cocycle on H and τ is an invertible 2-cocycle on H^{σ}, then $\tau * \sigma$ is an invertible 2-cocycle on H and $H^{\tau * \sigma}=\left(H^{\sigma}\right)^{\tau}$ (see [7, Lemma 1.4]). Thus, the Hopf algebras $\mathcal{H}_{n}(q), H_{n}(0, q)$ and $H_{n}(1, q)$ are cocycle twist-equivalent to each other.

Throughout the following, fix an integer $n>2$ and let $q \in \mathbb{K}$ be a primitive n-th root of unity. For any $m \in \mathbb{Z}$, denote still by m the image of m under the canonical projection $\mathbb{Z} \rightarrow \mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.

3 The Projective Class Ring of $\mathcal{H}_{n}(q)$

In this section, we investigate the representations and the projective class ring of $\mathcal{H}_{n}(q)$, or equivalently, of $A_{n}(q) \otimes A_{n}\left(q^{-1}\right)$.

Let A be the subalgebra of $\mathcal{H}_{n}(q)$ generated by a and d. Then A is isomorphic to the quotient algebra $\mathbb{K}[x, y] /\left(x^{n}, y^{n}\right)$ of the polynomial algebra $\mathbb{K}[x, y]$ modulo the ideal $\left(x^{n}, y^{n}\right)$ generated by x^{n} and y^{n}. Let $G=G\left(\mathcal{H}_{n}(q)\right)$ be the group of group-like elements of $\mathcal{H}_{n}(q)$. Then $G=\left\{b^{i} c^{j} \mid i, j \in \mathbb{Z}_{n}\right\} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$, and $\mathbb{K} G=\mathcal{H}_{n}(q)_{0}$, the coradical of $\mathcal{H}_{n}(q)$. Clearly, A is a left $\mathbb{K} G$-module algebra with the action given by $b \cdot a=q a, b \cdot d=d, c \cdot a=a$ and $c \cdot d=q^{-1} d$. Hence one can form a smash product algebra $A \# \mathbb{K} G$. It is easy to see that $\mathcal{H}_{n}(q)$ is isomorphic to $A \# \mathbb{K} G$ as an algebra. Since $n \geqslant 3$, it follows from [33, p.295(3.4)] that A is of wild representation type. Since $\operatorname{char}(\mathbb{K}) \nmid|G|, \mathbb{K} G$ is a semisimple and cosemisimple Hopf algebra. It follows from [26, Theorem 4.5] that $A \# \mathbb{K} G$ is of wild representation type. As a consequence, we obtain the following result.

Proposition 3.1. $\mathcal{H}_{n}(q)$ is of wild representation type.
$\mathcal{H}_{n}(q)$ has n^{2} orthogonal primitive idempotents

$$
e_{i, j}=\frac{1}{n^{2}} \sum_{k, l \in \mathbb{Z}_{n}} q^{-i k-j l} b^{k} c^{l}=\frac{1}{n^{2}} \sum_{k, l=0}^{n-1} q^{-i k-j l} b^{k} c^{l}, \quad i, j \in \mathbb{Z}_{n}
$$

Lemma 3.2. Let $i, j \in \mathbb{Z}_{n}$. Then

$$
b e_{i, j}=q^{i} e_{i, j}, c e_{i, j}=q^{j} e_{i, j}, a e_{i, j}=e_{i+1, j} a, d e_{i, j}=e_{i, j-1} d .
$$

Proof. It follows from a straightforward verification.
For $i, j \in \mathbb{Z}_{n}$, let $S_{i, j}$ be the one dimensional $\mathcal{H}_{n}(q)$-module defined by $b v=q^{i} v, c v=q^{j} v$ and $a v=d v=0, v \in S_{i, j}$. Let $P_{i, j}=P\left(S_{i, j}\right)$ be the projective cover of $S_{i, j}$. Let $J=\operatorname{rad}\left(\mathcal{H}_{n}(q)\right)$ be the Jacobson radical of $\mathcal{H}_{n}(q)$.

Lemma 3.3. The simple modules $S_{i, j}, i, j \in \mathbb{Z}_{n}$, exhaust all simple modules of $\mathcal{H}_{n}(q)$, and consequently, the projective modules $P_{i, j}, i, j \in \mathbb{Z}_{n}$, exhaust all indecomposable projective modules of $\mathcal{H}_{n}(q)$. Moreover, $P_{i, j} \cong \mathcal{H}_{n}(q) e_{i, j}$ for all $i, j \in \mathbb{Z}_{n}$.

Proof. Obviously, $a \mathcal{H}_{n}(q)=\mathcal{H}_{n}(q) a$ and $d \mathcal{H}_{n}(q)=\mathcal{H}_{n}(q) d$. Since $a^{n}=0$ and $d^{n}=0, \mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d$ is a nilpotent ideal of $\mathcal{H}_{n}(q)$. Hence $\mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d \subseteq$ J. On the other hand, it is easy to see that the quotient algebra $\mathcal{H}_{n}(q) /\left(\mathcal{H}_{n}(q) a+\right.$ $\left.\mathcal{H}_{n}(q) d\right)$ is isomorphic to the group algebra $\mathbb{K} G$, where $G=G\left(\mathcal{H}_{n}(q)\right)=\left\{b^{i} c^{j} \mid 0 \leqslant\right.$ $i, j \leqslant n-1\}$, the group of all group-like elements of $\mathcal{H}_{n}(q)$. Since $\mathbb{K} G$ is semisimple, $J \subseteq \mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d$. Thus, $J=\mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d$. Therefore, the simple modules $S_{i, j}$ exhaust all simple modules of $\mathcal{H}_{n}(q)$, and the projective modules $P_{i, j}$ exhaust all indecomposable projective modules of $\mathcal{H}_{n}(q), i, j \in \mathbb{Z}_{n}$. The last statement of the lemma follows from Lemma 3.2.

Corollary 3.4. $\mathcal{H}_{n}(q)$ is a basic algebra. Moreover, J is a Hopf ideal of $\mathcal{H}_{n}(q)$, and the Loewy length of $\mathcal{H}_{n}(q)$ is $2 n-1$.

Proof. It follows from Lemma 3.3 that $\mathcal{H}_{n}(q)$ is a basic algebra. By $J=\mathcal{H}_{n}(q) a+$ $\mathcal{H}_{n}(q) d$, one can easily check that J is a coideal and $S(J) \subseteq J$. Hence J is a Hopf ideal. By $a^{n-1} \neq 0$ and $d^{n-1} \neq 0$, one gets $\left(\mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d\right)^{2 n-2} \neq 0$. By $a^{n}=d^{n}=0$, one gets $\left(\mathcal{H}_{n}(q) a+\mathcal{H}_{n}(q) d\right)^{2 n-1}=0$. It follows that the Loewy length of $\mathcal{H}_{n}(q)$ is $2 n-1$.

$$
\text { In the rest of this section, we regard that } P_{i, j}=\mathcal{H}_{n}(q) e_{i, j} \text { for all } i, j \in \mathbb{Z}_{n} \text {. }
$$

Corollary 3.5. $P_{i, j}$ is n^{2}-dimensional with a \mathbb{K}-basis $\left\{a^{k} d^{l} e_{i, j} \mid 0 \leqslant k, l \leqslant n-1\right\}$, $i, j \in \mathbb{Z}_{n}$. Consequently, $\mathcal{H}_{n}(q)$ is an indecomposable algebra.

Proof. By Lemma 3.2, $P_{i, j}=\operatorname{span}\left\{a^{k} d^{l} e_{i, j} \mid 0 \leqslant k, l \leqslant n-1\right\}$, and hence $\operatorname{dim} P_{i, j} \leqslant n^{2}$. Now it follows from $\mathcal{H}_{n}(q)=\oplus_{i, j \in \mathbb{Z}_{n}} \mathcal{H}_{n}(q) e_{i, j}$ and $\operatorname{dim} \mathcal{H}_{n}(q)=n^{4}$ that $P_{i, j}$ is n^{2}-dimensional over \mathbb{K} with a basis $\left\{a^{k} d^{l} e_{i, j} \mid 0 \leqslant k, l \leqslant n-1\right\}$. Then by Lemmas 3.2-3.3, one knows that every simple module is a simple factor of $P_{i, j}$ with the multiplicity one. Consequently, $\mathcal{H}_{n}(q)$ is an indecomposable algebra.

Given $M \in \mathcal{H}_{n}(q)$-mod, for any $\alpha \in \mathbb{K}$ and $u, v \in M$, we use $u \xrightarrow{\alpha} v$ (resp. $u \xrightarrow{\alpha} \stackrel{v}{\square}$) to represent $a \cdot u=\alpha v$ (resp. $d \cdot u=\alpha v$). Moreover, we omit the decoration of the arrow if $\alpha=1$.

For $i, j \in \mathbb{Z}_{n}$, let $e_{i, j}^{k, l}=a^{k} d^{l} e_{i, j}$ in $P_{i, j}, 0 \leqslant k, l \leqslant n-1$. Then the structure of $P_{i, j}$ can be described as follows:

Proposition 3.6. $S_{i, j} \otimes S_{k, l} \cong S_{i+k, j+l}$ and $S_{i, j} \otimes P_{k, l} \cong P_{k, l} \otimes S_{i, j} \cong P_{i+k, j+l}$ for all $i, j, k, l \in \mathbb{Z}_{n}$.

Proof. The first isomorphism is obvious. Note that $S_{0,0}$ is the trivial $\mathcal{H}_{n}(q)$-module. Since J is a Hopf ideal, it follows from [27, Corollary 3.3] and the first isomorphism that $P_{k, l} \otimes S_{i, j} \cong P_{0,0} \otimes S_{k, l} \otimes S_{i, j} \cong P_{0,0} \otimes S_{i+k, j+l} \cong P_{i+k, j+l}$. Similarly, one can show that $S_{i, j} \otimes P_{k, l} \cong P_{i+k, j+l}$, which also follows from the proof of [17, Lemma 3.3].

Proposition 3.7. Let $i, j, k, l \in \mathbb{Z}_{n}$. Then $P_{i, j} \otimes P_{k, l} \cong \oplus_{r, t \in \mathbb{Z}_{n}} P_{r, t}$.
Proof. By Proposition 3.6, we only need to consider the case of $i=j=k=$ $l=0$. For any short exact sequence $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ of modules, the exact sequence $0 \rightarrow P_{0,0} \otimes N \rightarrow P_{0,0} \otimes M \rightarrow P_{0,0} \otimes L \rightarrow 0$ is always split since $P_{0,0} \otimes L$ is projective for any module L. By Corollary 3.4 and the proof of Corollary 3.5, $\left[P_{0,0}\right]=\sum_{r, t \in \mathbb{Z}_{n}}\left[S_{r, t}\right]$ in $G_{0}\left(\mathcal{H}_{n}(q)\right)$. Then it follows from Proposition 3.6 that $P_{0,0} \otimes P_{0,0} \cong \oplus_{r, t \in \mathbb{Z}_{n}} P_{0,0} \otimes S_{r, t} \cong \oplus_{r, t \in \mathbb{Z}_{n}} P_{r, t}$, which is isomorphic to the regular module $\mathcal{H}_{n}(q)$.

By Propositions 3.6 and 3.7, the projective class ring $r_{p}\left(\mathcal{H}_{n}(q)\right)$ is a commutative ring generated by $\left[S_{1,0}\right],\left[S_{0,1}\right]$ and $\left[P_{0,0}\right]$ subject to the relations $\left[S_{1,0}\right]^{n}=1$, $\left[S_{0,1}\right]^{n}=1$ and $\left[P_{0,0}\right]^{2}=\sum_{i, j=0}^{n-1}\left[S_{1,0}\right]^{i}\left[S_{0,1}\right]^{j}\left[P_{0,0}\right]$. Hence we have the following proposition.
Theorem 3.8. $r_{p}\left(\mathcal{H}_{n}(q)\right) \cong \mathbb{Z}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-\sum_{i, j=0}^{n-1} x^{i} y^{j} z\right)$.
Proof. By Propositions 3.6 and $3.7, r_{p}\left(\mathcal{H}_{n}(q)\right)$ is a commutative ring. Moreover, $r_{p}\left(\mathcal{H}_{n}(q)\right)$ is generated, as a \mathbb{Z}-algebra, by $\left[S_{1,0}\right],\left[S_{0,1}\right]$ and $\left[P_{0,0}\right]$. Therefore, there exists a ring epimorphism $\phi: \mathbb{Z}[x, y, z] \rightarrow r_{p}\left(\mathcal{H}_{n}(q)\right)$ such that $\phi(x)=\left[S_{1,0}\right]$, $\phi(y)=\left[S_{0,1}\right]$ and $\phi(z)=\left[P_{0,0}\right]$. Let $I=\left(x^{n}-1, y^{n}-1, z^{2}-\sum_{i, j=0}^{n-1} x^{i} y^{j} z\right)$ be the
ideal of $\mathbb{Z}[x, y, z]$ generated by $x^{n}-1, y^{n}-1$ and $z^{2}-\sum_{i, j=0}^{n-1} x^{i} y^{j} z$. Then it follows from Propositions 3.6 and 3.7 that $I \subseteq \operatorname{Ker}(\phi)$. Hence ϕ induces a ring epimorphism $\bar{\phi}: \mathbb{Z}[x, y, z] / I \rightarrow r_{p}\left(\mathcal{H}_{n}(q)\right)$ such that $\bar{\phi} \circ \pi=\phi$, where $\pi: \mathbb{Z}[x, y, z] \rightarrow$ $\mathbb{Z}[x, y, z] / I$ is the canonical projection. Let $\bar{u}=\pi(u)$ for any $u \in \mathbb{Z}[x, y, z]$. Then $\bar{x}^{n}=1, \bar{y}^{n}=1$ and $\bar{z}^{2}=\sum_{i, j=0}^{n-1} \bar{x}^{i} \bar{y}^{j} \bar{z}$ in $\mathbb{Z}[x, y, z] / I$. Hence $\mathbb{Z}[x, y, z] / I$ is generated, as a \mathbb{Z}-module, by $\left\{\bar{x}^{i} \bar{y}^{j}, \bar{x}^{i} \bar{y} j \bar{z} \mid i, j \in \mathbb{Z}_{n}\right\}$. Since $r_{p}\left(\mathcal{H}_{n}(q)\right)$ is a free \mathbb{Z} module with a \mathbb{Z}-basis $\left\{\left[S_{i, j}\right],\left[P_{i, j}\right] \mid i, j \in \mathbb{Z}_{n}\right\}$, one can define a \mathbb{Z}-module map $\psi: r_{p}\left(\mathcal{H}_{n}(q)\right) \rightarrow \mathbb{Z}[x, y, z] / I$ by $\psi\left(\left[S_{i, j}\right]\right)=\bar{x}^{i} \bar{y}^{j}$ and $\psi\left(\left[P_{i, j}\right]\right)=\bar{x}^{i} \bar{y}^{j} \bar{z}$ for any $i, j \in \mathbb{Z}_{n}$. Now for any $i, j \in \mathbb{Z}_{n}$, we have $\psi\left(\bar{\phi}\left(\bar{x}^{i} \bar{y}^{j}\right)\right)=\psi\left(\bar{\phi}(\bar{x})^{i} \bar{\phi}(\bar{y})^{j}\right)=$ $\psi\left(\left[S_{1,0}\right]^{i}\left[S_{0,1}\right]^{j}\right)=\psi\left(\left[S_{i, j}\right]\right)=\bar{x}^{i} \bar{y}^{j}$ and $\psi\left(\bar{\phi}\left(\bar{x}^{i} \bar{y}^{j} \bar{z}\right)\right)=\psi\left(\bar{\phi}(\bar{x})^{i} \bar{\phi}(\bar{y})^{j} \bar{\phi}(\bar{z})\right)=$ $\psi\left(\left[S_{1,0}\right]^{i}\left[S_{0,1}\right]^{j}\left[P_{0,0}\right]\right)=\psi\left(\left[P_{i, j}\right]\right)=\bar{x}^{i} \bar{y}^{j} \bar{z}$. This shows that $\bar{\phi}$ is injective, and so $\bar{\phi}$ is a ring isomorphism.

Now we consider the projective class algebra $R_{p}\left(\mathcal{H}_{n}(q)\right)$. By Theorem 3.8, we have

$$
R_{p}\left(\mathcal{H}_{n}(q)\right) \cong \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-\sum_{i, j=0}^{n-1} x^{i} y^{j} z\right) .
$$

Put $I=\left(x^{n}-1, y^{n}-1, z^{2}-\sum_{i, j=0}^{n-1} x^{i} y^{j} z\right)$ and let $J(\mathbb{K}[x, y, z] / I)$ be the Jacobson radical of $\mathbb{K}[x, y, z] / I$. For any $u \in \mathbb{K}[x, y, z]$, let \bar{u} denote the image of u under the canonical projection $\mathbb{K}[x, y, z] \rightarrow \mathbb{K}[x, y, z] / I$. Then by the proof of Theorem 3.8, $\mathbb{K}[x, y, z] / I$ is of dimension $2 n^{2}$ with a \mathbb{K}-basis $\left\{\bar{x}^{i} \bar{y}^{j}, \bar{x}^{i} \bar{y}^{j} \bar{z} \mid 0 \leqslant i, j \leqslant n-1\right\}$. From $\bar{x}^{n}=1, \bar{y}^{n}=1$ and $\bar{z}^{2}=\sum_{i, j=0}^{n-1} \bar{x}^{i} \bar{y}^{j} \bar{z}$, one gets $(1-\bar{x}) \bar{z}^{2}=(1-\bar{y}) \bar{z}^{2}=0$, and so $((1-\bar{x}) \bar{z})^{2}=((1-\bar{y}) \bar{z})^{2}=0$. Consequently, the ideal $((1-\bar{x}) \bar{z},(1-\bar{y}) \bar{z})$ of $\mathbb{K}[x, y, z] / I$ generated by $(1-\bar{x}) \bar{z}$ and $(1-\bar{y}) \bar{z}$ is contained in $J(\mathbb{K}[x, y, z] / I)$. Moreover, $\operatorname{dim}\left((\mathbb{K}[x, y, z] / I) /((1-\bar{x}) \bar{z},(1-\bar{y}) \bar{z})=n^{2}+1\right.$ and

$$
\begin{aligned}
& (\mathbb{K}[x, y, z] / I) /((1-\bar{x}) \bar{z},(1-\bar{y}) \bar{z}) \\
\cong & \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z,(1-y) z\right) .
\end{aligned}
$$

Let $\pi: \mathbb{K}[x, y, z] \rightarrow \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z,(1-y) z\right)$ be the canonical projection. For any integers $k, l \geqslant 0$, let $f_{k, l}=\frac{1}{n^{2}} \sum_{i, j=0}^{n-1} q^{k i+l j} x^{i} y^{j}$ in $\mathbb{K}[x, y, z]$. Then a straightforward verification shows that

$$
\left\{\pi\left(f_{k, l}\right), \pi\left(f_{0, k}\right), \pi\left(f_{0,0}-\frac{1}{n^{2}} z\right), \left.\pi\left(\frac{1}{n^{2}} z\right) \right\rvert\, 1 \leqslant k \leqslant n-1,0 \leqslant l \leqslant n-1\right\}
$$

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive idempotents in $\mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z,(1-y) z\right)$. Therefore,

$$
\mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z,(1-y) z\right) \cong \mathbb{K}^{n^{2}+1}
$$

Thus, $J(\mathbb{K}[x, y, z] / I) \subseteq((1-\bar{x}) \bar{z},(1-\bar{y}) \bar{z})$, and so $J(\mathbb{K}[x, y, z] / I)=((1-\bar{x}) \bar{z}$, $(1-\bar{y}) \bar{z})$. This shows the following proposition.

Proposition 3.9. Let $J\left(R_{p}\left(\mathcal{H}_{n}(q)\right)\right)$ be the Jacobson radical of $R_{p}\left(\mathcal{H}_{n}(q)\right)$. Then $J\left(R_{p}\left(\mathcal{H}_{n}(q)\right)\right)=\left(\left(1-\left[S_{1,0}\right]\right)\left[P_{0,0}\right],\left(1-\left[S_{0,1}\right]\right)\left[P_{0,0}\right]\right)$ and

$$
\begin{aligned}
& R_{p}\left(\mathcal{H}_{n}(q)\right) / J\left(R_{p}\left(\mathcal{H}_{n}(q)\right)\right) \\
\cong & \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z,(1-y) z\right) \cong \mathbb{K}^{n^{2}+1} .
\end{aligned}
$$

4 The Projective Class Ring of $H_{n}(0, q)$

In this section, we investigate the projective class ring of $H_{n}(0, q)$.
Proposition 4.1. $H_{n}(0, q)$ is a symmetric algebra.
Proof. By [8, Proposition 3.4] and its proof, $H_{n}(0, q)$ is unimodular. Moreover, $S^{2}(a)=q a, S^{2}(b)=b, S^{2}(c)=c$ and $S^{2}(d)=q^{-1} d$, where S is the antipode of $\mathcal{H}_{n}(0, q)$. Hence $S^{2}(x)=b x b^{-1}=c x c^{-1}$ for all $x \in H_{n}(0, q)$. That is, S^{2} is an inner automorphism of $H_{n}(0, q)$. It follows from [27,32] that $H_{n}(0, q)$ is a symmetric algebra.

Note that $\mathcal{H}_{n}(q)$ is not symmetric since it is not unimodular.
Proposition 4.2. $H_{n}(0, q)$ is of wild representation type.
Proof. It is similar to Proposition 3.1. Let A be the subalgebra of $H_{n}(0, q)$ generated by a and d. Then A is a $\mathbb{K} G$-module algebra with the action given by $b \cdot a=q a, b \cdot d=q^{-1} d, c \cdot a=q a$ and $c \cdot d=q^{-1} d$, where $G=G\left(H_{n}(0, q)\right)=$ $\left\{b^{i} c^{j} \mid i, j \in \mathbb{Z}_{n}\right\} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$. Moreover, $A \cong \mathbb{K}\langle x, y\rangle /\left(x^{n}, y^{n}, y x-q x y\right)$ and $H_{n}(0, q) \cong A \# \mathbb{K} G$, as \mathbb{K}-algebras. Since $n \geqslant 3$, it follows from [33, p.295(3.4)] that A is of wild representation type. Since $\mathbb{K} G$ is a semisimple and cosemisimple Hopf algebra by char $(\mathbb{K}) \nmid|G|$, it follows from [26, Theorem 4.5] that $A \# \mathbb{K} G$ is of wild representation type.
$H_{n}(0, q)$ has n^{2} orthogonal primitive idempotents

$$
e_{i, j}=\frac{1}{n^{2}} \sum_{k, l \in \mathbb{Z}_{n}} q^{-i k-j l} b^{k} c^{l}=\frac{1}{n^{2}} \sum_{k, l=0}^{n-1} q^{-i k-j l} b^{k} c^{l}, \quad i, j \in \mathbb{Z}_{n} .
$$

Lemma 4.3. Let $i, j \in \mathbb{Z}_{n}$. Then

$$
b e_{i, j}=q^{i} e_{i, j}, c e_{i, j}=q^{j} e_{i, j}, a e_{i, j}=e_{i+1, j+1} a, d e_{i, j}=e_{i-1, j-1} d .
$$

Proof. It follows from a straightforward verification.
For $i, j \in \mathbb{Z}_{n}$, let $S_{i, j}$ be the one dimensional $H_{n}(0, q)$-module defined by $b v=$ $q^{i} v, c v=q^{j} v$ and $a v=d v=0, v \in S_{i, j}$. Let $P_{i, j}=P\left(S_{i, j}\right)$ be the projective cover of $S_{i, j}$. Let $J=\operatorname{rad}\left(H_{n}(0, q)\right)$ be the Jacobson radical of $H_{n}(0, q)$.

Lemma 4.4. The simple modules $S_{i, j}, i, j \in \mathbb{Z}_{n}$, exhaust all simple modules of $H_{n}(0, q)$, and consequently, the projective modules $P_{i, j}, i, j \in \mathbb{Z}_{n}$, exhaust all indecomposable projective modules of $H_{n}(0, q)$. Moreover, $P_{i, j} \cong H_{n}(0, q) e_{i, j}$ for all $i, j \in \mathbb{Z}_{n}$.

Proof. It is similar to Lemma 3.3.
Corollary 4.5. $H_{n}(0, q)$ is a basic algebra. Moreover, J is a Hopf ideal of $H_{n}(0, q)$, and the Loewy length of $H_{n}(0, q)$ is $2 n-1$.

Proof. It is similar to Corollary 3.4.

Let $e_{i}=\sum_{j=0}^{n-1} e_{i+j, j}=\frac{1}{n} \sum_{j=0}^{n-1} q^{-i j} b^{j} \mathcal{c}^{-j}, i \in \mathbb{Z}_{n}$. Then by Lemmas 4.3 and 4.4, $\left\{e_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is a full set of central primitive idempotents of $H_{n}(0, q)$. Hence $H_{n}(0, q)$ decomposes into n blocks $H_{n}(0, q) e_{i}, i \in \mathbb{Z}_{n}$.

In the rest of this section, we regard that $P_{i, j}=H_{n}(0, q) e_{i, j}$ for all $i, j \in \mathbb{Z}_{n}$.
Corollary 4.6. $P_{i, j}$ is n^{2}-dimensional with a \mathbb{K}-basis $\left\{a^{k} d^{l} e_{i, j} \mid 0 \leqslant k, l \leqslant n-1\right\}$, $i, j \in \mathbb{Z}_{n}$.

Proof. It is similar to Corollary 3.5.
For $i, j \in \mathbb{Z}_{n}$, let $e_{i, j}^{k, l}=a^{k} d^{l} e_{i, j}$ in $P_{i, j}$. Using the same symbols as in the last section, the structure of $P_{i, j}$ can be described as follows:

Proposition 4.7. The n blocks $H_{n}(0, q) e_{i}, i \in \mathbb{Z}_{n}$, are isomorphic to each other.
Proof. Let $i \in \mathbb{Z}_{n}$. Since $e_{i}=\sum_{j=0}^{n-1} e_{i+j, j}, H_{n}(0, q) e_{i}=\oplus_{j=0}^{n-1} H_{n}(0, q) e_{i+j, j}$ as $H_{n}(0, q)$-modules. Then by Corollary 4.6, $\operatorname{dim}\left(H_{n}(0, q) e_{i}\right)=n^{3}$. By Lemma 4.3, one gets $b e_{i}=q^{i} c e_{i}$. It follows that $H_{n}(0, q) e_{i}=\operatorname{span}\left\{a^{j} d^{k} b^{l} e_{i} \mid 0 \leqslant j, k, l\right\}$, and so $\left\{a^{j} d^{k} b^{l} e_{i} \mid 0 \leqslant j, k, l\right\}$ is a \mathbb{K}-basis of $H_{n}(0, q) e_{i}$. Let B be the subalgebra of $H_{n}(q)$ generated by a, b and d. Then one can easily check that the block $H_{n}(0, q) e_{i}$ is isomorphic, as an algebra, to the subalgebra B of $H_{n}(0, q)$. Thus, the proposition follows.

Let $i \in \mathbb{Z}_{n}$ be fixed. For any $j \in \mathbb{Z}_{n}$, let $\bar{e}_{j}=e_{i+j, j}$. Then the Gabriel quiver $Q=\left(Q_{0}, Q_{1}\right)$ of the block $H_{n}(0, q) e_{i}$ is given by

where for $j \in \mathbb{Z}_{n}$, the arrows α_{j}, β_{j} correspond to $a \bar{e}_{j}, d \bar{e}_{j+1}$, respectively. The admissible ideal I has the following relations:

$$
\beta_{j} \alpha_{j}-q \alpha_{j-1} \beta_{j-1}=0, \alpha_{j+(n-1)} \cdots \alpha_{j+1} \alpha_{j}=0, \beta_{j-(n-1)} \cdots \beta_{j-1} \beta_{j}=0, j \in \mathbb{Z}_{n} .
$$

Proposition 4.8. $S_{i, j} \otimes S_{k, l} \cong S_{i+k, j+l}$ and $S_{i, j} \otimes P_{k, l} \cong P_{k, l} \otimes S_{i, j} \cong P_{i+k, j+l}$ for all $i, j, k, l \in \mathbb{Z}_{n}$.

Proof. It is similar to Proposition 3.6.
Proposition 4.9. Let $i, j, k, l \in \mathbb{Z}_{n}$. Then $P_{i, j} \otimes P_{k, l} \cong \oplus_{t \in \mathbb{Z}_{n}} n P_{i+k+t, j+l+t}$.
Proof. It is similar to Proposition 3.7. Note that $\left[P_{0,0}\right]=\sum_{t=0}^{n-1} n\left[S_{t, t}\right]$ in $G_{0}\left(H_{n}(0, q)\right)$ by Corollaries 4.5 and 4.6.

Theorem 4.10. $r_{p}\left(H_{n}(0, q)\right) \cong \mathbb{Z}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n \sum_{i=0}^{n-1} x^{i} z\right)$.
Proof. It is similar to Theorem 3.8. Note that $r_{p}\left(H_{n}(0, q)\right)$ is a commutative ring generated by $\left[S_{1,1}\right],\left[S_{0,1}\right]$ and $\left[P_{0,0}\right]$.

Now we consider the projective class algebra $R_{p}\left(H_{n}(0, q)\right)$. By Theorem 4.10, we have

$$
R_{p}\left(H_{n}(0, q)\right) \cong \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n \sum_{i=0}^{n-1} x^{i} z\right) .
$$

Put $I=\left(x^{n}-1, y^{n}-1, z^{2}-n \sum_{i=0}^{n-1} x^{i} z\right)$ and let $J(\mathbb{K}[x, y, z] / I)$ be the Jacobson radical of $\mathbb{K}[x, y, z] / I$. For any $u \in \mathbb{K}[x, y, z]$, let \bar{u} denote the image of u under the canonical projection $\mathbb{K}[x, y, z] \rightarrow \mathbb{K}[x, y, z] / I$. Then by Theorem 4.10, $\mathbb{K}[x, y, z] / I$ is of dimension $2 n^{2}$ with a \mathbb{K}-basis $\left\{\bar{x}^{i} \bar{y}^{j}, \bar{x}^{i} \bar{y}^{j} \bar{z} \mid i, j \in \mathbb{Z}_{n}\right\}$. Since $\bar{x}^{n}=1$ and $\bar{z}^{2}=n \sum_{i=0}^{n-1} \bar{x}^{i} \bar{z}$, one gets $(1-\bar{x}) \bar{z}^{2}=0$, and so $((1-\bar{x}) \bar{z})^{2}=0$. Consequently, the ideal $((1-\bar{x}) \bar{z})$ of $\mathbb{K}[x, y, z] / I$ generated by $(1-\bar{x}) \bar{z}$ is contained in $J(\mathbb{K}[x, y, z] / I)$. Moreover, $\operatorname{dim}((\mathbb{K}[x, y, z] / I) /((1-\bar{x}) \bar{z}))=n(n+1)$ and

$$
(\mathbb{K}[x, y, z] / I) /((1-\bar{x}) \bar{z}) \cong \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z\right) .
$$

Let $\pi: \mathbb{K}[x, y, z] \rightarrow \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z\right)$ be the canonical projection. For any integer $k \geqslant 0$, let $f_{k}=\frac{1}{n} \sum_{i=0}^{n-1} q^{k i} x^{i}$ and $g_{k}=\frac{1}{n} \sum_{i=0}^{n-1} q^{k i} y^{i}$ in $\mathbb{K}[x, y, z]$. Then a straightforward verification shows that

$$
\left\{\pi\left(f_{k} g_{l}\right), \pi\left(\left(f_{0}-\frac{1}{n^{2}} z\right) g_{l}\right), \left.\pi\left(\frac{1}{n^{2}} z g_{l}\right) \right\rvert\, 1 \leqslant k \leqslant n-1,0 \leqslant l \leqslant n-1\right\}
$$

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive idempotents in $\mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z\right)$. Therefore,

$$
\mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z\right) \cong \mathbb{K}^{n(n+1)} .
$$

It follows that $J(\mathbb{K}[x, y, z] / I) \subseteq((1-\bar{x}) \bar{z})$, and so $J(\mathbb{K}[x, y, z] / I)=((1-\bar{x}) \bar{z})$. This shows the following proposition.
Proposition 4.11. Let $J\left(R_{p}\left(H_{n}(0, q)\right)\right)$ be the Jacobson radical of $R_{p}\left(H_{n}(0, q)\right)$. Then $J\left(R_{p}\left(H_{n}(0, q)\right)\right)=\left(\left(1-\left[S_{1,1}\right]\right)\left[P_{0,0}\right]\right)$ and

$$
\begin{aligned}
& R_{p}\left(H_{n}(0, q)\right) / J\left(R_{p}\left(H_{n}(0, q)\right)\right) \\
\cong & \mathbb{K}[x, y, z] /\left(x^{n}-1, y^{n}-1, z^{2}-n^{2} z,(1-x) z\right) \cong \mathbb{K}^{n(n+1)} .
\end{aligned}
$$

5 The Projective Class Ring of $H_{n}(1, q)$

In this section, we will study the projective class ring of $H_{n}(1, q)$. The finite dimensional indecomposable $H_{n}(1, q)$-modules are classified in [9, 10]. There are n^{2} simple modules $V(l, r)$ over $H_{n}(1, q)$, where $1 \leqslant l \leqslant n$ and $r \in \mathbb{Z}_{n}$. The simple modules $V(n, r)$ are both projective and injective. Let $P(l, r)$ be the projective cover of $V(l, r)$. Then $P(l, r)$ is the injective envelope of $V(l, r)$ as well. Moreover, $P(n, r) \cong V(n, r)$.

Note that $M \otimes N \cong N \otimes M$ for any modules M and N since $H_{n}(1, q)$ is a quasitriangular Hopf algebra. For any $t \in \mathbb{Z}$, let $c(t):=\left[\frac{t+1}{2}\right]$ be the integer part of $\frac{t+1}{2}$. That is, $c(t)$ is the maximal integer with respect to $c(t) \leqslant \frac{t+1}{2}$. Then $c(t)+c(t-1)=t$.

Convention: If $\oplus_{l \leqslant i \leqslant m} M_{i}$ is a term in a decomposition of a module, then it disappears when $l>m$.
Lemma 5.1. Let $1 \leqslant l, l^{\prime} \leqslant n$ and $r, r^{\prime} \in \mathbb{Z}_{n}$.
(1) $V(1, r) \otimes V\left(l, r^{\prime}\right) \cong V\left(l, r+r^{\prime}\right)$.
(2) $V(1, r) \otimes P\left(l, r^{\prime}\right) \cong P\left(l, r+r^{\prime}\right)$.
(3) If $l \leqslant l^{\prime}$ and $l+l^{\prime} \leqslant n+1$, then $V(l, r) \otimes V\left(l^{\prime}, r^{\prime}\right) \cong \oplus_{i=0}^{l-1} V\left(l+l^{\prime}-1-2 i\right.$, $\left.r+r^{\prime}+i\right)$.
(4) If $l \leqslant l^{\prime}$ and $t=l+l^{\prime}-(n+1)>0$, then

$$
\begin{aligned}
V(l, r) \otimes V\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=c(t)}^{t} P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{t+1 \leqslant i \leqslant l-1} V\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) .
\end{aligned}
$$

(5) If $l \leqslant l^{\prime}<n$ and $l+l^{\prime} \leqslant n$, then $V(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong \oplus_{i=0}^{l-1} P\left(l+l^{\prime}-1-2 i\right.$, $\left.r+r^{\prime}+i\right)$.
(6) If $l \leqslant l^{\prime}<n$ and $t=l+l^{\prime}-(n+1) \geqslant 0$, then

$$
\begin{aligned}
V(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=c(t)}^{t} 2 P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=t+1}^{l-1} P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) .
\end{aligned}
$$

(7) If $l^{\prime}<l<n$ and $l+l^{\prime} \leqslant n$, then

$$
\begin{aligned}
V(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=0}^{l^{\prime}-1} P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=c\left(l+l^{\prime}-1\right)}^{l-1} 2 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) .
\end{aligned}
$$

(8) If $l^{\prime}<l<n$ and $t=l+l^{\prime}-(n+1) \geqslant 0$, then

$$
\begin{aligned}
V(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=c(t)}^{t} 2 P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=1}^{\prime^{\prime}=1} P P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=c\left(l+l^{\prime}-1\right)}^{l-1} 2 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) .
\end{aligned}
$$

(9) If $l<n$, then

$$
\begin{aligned}
V(n, r) \otimes P\left(l, r^{\prime}\right) \cong & \left(\oplus_{i=c(l-1)}^{l-1} 2 P\left(n+l-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=1}^{c(n-l)} 2 P\left(l-1+2 i, r+r^{\prime}-i\right)\right) .
\end{aligned}
$$

(10) If $l \leqslant l^{\prime}<n$ and $l+l^{\prime} \leqslant n$, then

$$
\begin{aligned}
P(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=0}^{l-1} 2 P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=l^{\prime}}^{l^{\prime}+l-1} 2 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{c}\left(l^{\prime}+l-1\right) \leqslant i \leqslant l^{\prime}-14 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{1 \leqslant i \leqslant c\left(n-l-l^{\prime}\right)} 4 P\left(l+l^{\prime}-1+2 i, r+r^{\prime}-i\right)\right) .
\end{aligned}
$$

(11) If $l \leqslant l^{\prime}<n$ and $t=l+l^{\prime}-(n+1) \geqslant 0$, then

$$
\begin{aligned}
P(l, r) \otimes P\left(l^{\prime}, r^{\prime}\right) \cong & \left(\oplus_{i=c(t)}^{t} 4 P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=1}^{l-1} 2 P\left(l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{i=l^{\prime}}^{n-1} 2 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) \\
& \oplus\left(\oplus_{c\left(l^{\prime}+l-1\right) \leqslant i \leqslant l^{\prime}-1} 4 P\left(n+l+l^{\prime}-1-2 i, r+r^{\prime}+i\right)\right) .
\end{aligned}
$$

Proof. It follows from [9, 12].
By Lemma 5.1 or [12, Corollary 3.2], the category consisting of semisimple modules and projective modules in $H_{n}(1, q)$-mod is a monoidal subcategory of $H_{n}(1, q)$-mod. Therefore, we have the following corollary.

Corollary 5.2. $r_{p}\left(H_{n}(1, q)\right)$ is a free \mathbb{Z}-module with a \mathbb{Z}-basis $\{[V(k, r)],[P(l, r)] \mid 1 \leqslant$ $\left.k \leqslant n, 1 \leqslant l \leqslant n-1, r \in \mathbb{Z}_{n}\right\}$.

Lemma 5.3. Let $2 \leqslant m \leqslant n-1$. Then

$$
V(2,0)^{\otimes m} \cong \oplus_{i=0}^{\left[\frac{m}{2}\right]} \frac{m-2 i+1}{m-i+1}\binom{m}{i} V(m+1-2 i, i) .
$$

Proof. By Lemma 5.1(3), one can easily check that the isomorphism in the lemma holds for $m=2$ and $m=3$. Now let $3<m \leqslant n-1$ and assume

$$
V(2,0)^{\otimes(m-1)} \cong \oplus_{i=0}^{\left[\frac{m-1}{2}\right]} \frac{m-2 i}{m-i}\binom{m-1}{i} V(m-2 i, i) .
$$

If $m=2 l$ is even, then by the induction hypothesis and Lemma 5.1(3), we have

$$
\begin{aligned}
& V(2,0)^{\otimes m}=V(2,0) \otimes V(2,0)^{\otimes(m-1)} \\
& \cong \oplus_{i=0}^{l-1} \frac{2 l-2 i}{2 l-i}\binom{2 l-1}{i} V(2,0) \otimes V(2 l-2 i, i) \\
& \cong \oplus_{i=0}^{l-1} \frac{2 l-2 i}{2 l-i}\binom{2 l-1}{i}(V(2 l+1-2 i, i) \oplus V(2 l-1-2 i, i+1)) \\
& \cong V(2 l+1,0) \oplus \frac{2}{l+1}\binom{2 l-1}{l-1} V(1, l) \\
& \oplus\left(\oplus_{i=1}^{l-1}\left(\frac{2 l-2 i}{2 l-i}\binom{2 l-1}{i}+\frac{2 l-2 i+2}{2 l-i+1}\binom{2 l-1}{i-1}\right) V(2 l+1-2 i, i)\right) \\
& \cong V(2 l+1,0) \oplus \frac{2}{l+1}\binom{2 l-1}{l-1} V(1, l) \\
& \oplus\left(\oplus_{i=1}^{l-1} \frac{12 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l+1-2 i, i)\right) \\
& \left.\cong \oplus_{i=0}^{l} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l+1-2 i, i)\right) \\
& \cong \oplus_{i=0}^{\left[\frac{m}{2}\right]} \frac{m+1-2 i}{m+1-i}\binom{m}{i} V(m+1-2 i, i) \text {. }
\end{aligned}
$$

If $m=2 l+1$ is odd, then by the same reason as above, we have

$$
\begin{aligned}
& V(2,0)^{\otimes m} \\
& =V(2,0) \otimes V(2,0)^{\otimes(m-1)} \\
& \cong \oplus_{i=0}^{l} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2,0) \otimes V(2 l+1-2 i, i) \\
& \cong\left(\oplus_{i=0}^{l-1} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l+2-2 i, i) \oplus V(2 l-2 i, i+1)\right) \oplus \frac{1}{l+1}\binom{2 l}{l} V(2, l) \\
& \cong\left(\oplus_{i=0}^{l} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l+2-2 i, i)\right) \oplus\left(\oplus_{i=0}^{l-1} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l-2 i, i+1)\right) \\
& \cong\left(\oplus_{i=0}^{l} \frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i} V(2 l+2-2 i, i)\right) \oplus\left(\oplus_{i=1}^{l} \frac{2 l+3-2 i}{2 l+2-i}\left({ }_{i}^{2 l-1}\right) V(2 l+2-2 i, i)\right) \\
& \cong V(2 l+2,0) \oplus\left(\oplus_{i=1}^{l}\left(\frac{2 l+1-2 i}{2 l+1-i}\binom{2 l}{i}+\frac{2 l+3-2 i}{2 l+2-i}\left({ }_{i-1}^{2 l}\right)\right) V(2 l+2-2 i, i)\right) \\
& \cong V(2 l+2,0) \oplus\left(\oplus_{i=1}^{l} \frac{2 l+2-2 i}{2 l+2-i}\binom{2 l+1}{i} V(2 l+2-2 i, i)\right) \\
& \cong \oplus_{i=0}^{l} \frac{2 l+2-2 i}{2 l+2-i}\left({ }_{i}^{2 l+1}\right) V(2 l+2-2 i, i) \\
& \cong \oplus_{i=0}^{\left[\frac{m}{2}\right]} \frac{m+1-2 i}{m+1-i}\binom{m}{i} V(m+1-2 i, i) \text {. }
\end{aligned}
$$

Throughout the following, let $x=[V(1,1)]$ and $y=[V(2,0)]$ in $r_{p}\left(H_{n}(1, q)\right)$.
Corollary 5.4. The following equations hold in $r_{p}\left(H_{n}(1, q)\right)$ (or $r\left(H_{n}(1, q)\right)$):
(1) $x^{n}=1$ and $[V(m, i)]=x^{i}[V(m, 0)]$ for all $1 \leqslant m \leqslant n$ and $i \in \mathbb{Z}$;
(2) $[P(m, i)]=x^{i}[P(m, 0)]$ for all $1 \leqslant m<n$ and $i \in \mathbb{Z}$;
(3) $y[V(n, 0)]=x[P(n-1,0)]$;
(4) $y[P(1,0)]=[P(2,0)]+2 x[V(n, 0)]$;
(5) $y[P(n-1,0)]=2[V(n, 0)]+x[P(n-2,0)]$;
(6) $y[P(m, 0)]=[P(m+1,0)]+x[P(m-1,0)]$ for all $2 \leqslant m \leqslant n-2$;
(7) $[V(m+1,0)]=y^{m}-\sum_{i=1}^{\left[\frac{m}{2}\right]} \frac{m+1-2 i}{m+1-i}\binom{m}{i} x^{i}[V(m+1-2 i, 0)]$ for all $2 \leqslant m<n$.

Proof. It follows from Lemmas 5.1 and 5.3.
Proposition 5.5. The commutative ring $r_{p}\left(H_{n}(1, q)\right)$ is generated by x and y.
Proof. Let R be the subring of $r\left(H_{n}(1, q)\right)$ generated by x and y. Then $R \subseteq r_{p}\left(H_{n}(1, q)\right)$. By Corollary 5.4(1), one gets that $[V(1, i)]=x^{i} \in R$ and $[V(2, i)]=x^{i} y \in R$ for all $i \in \mathbb{Z}_{n}$. Now let $2 \leqslant m<n$ and assume $[V(l, i)] \in R$ for all $1 \leqslant l \leqslant m$ and $i \in \mathbb{Z}_{n}$. Then by Corollary 5.4(1) and (7), one gets that $[V(m+1, i)]=x^{i}[V(m+1,0)]=x^{i} y^{m}-\sum_{j=1}^{\left[\frac{m}{2}\right]} \frac{m+1-2 j}{m+1-j}\binom{m}{j} x^{i+j}[V(m+1-2 j, 0)] \in$
R for all $i \in \mathbb{Z}_{n}$. Thus, we have proven that $[V(m, i)] \in R$ for all $1 \leqslant m \leqslant n$ and $i \in \mathbb{Z}_{n}$. In particular, $[V(n, i)] \in R$ for all $i \in \mathbb{Z}_{n}$.

By Corollary 5.4(2) and (3), $[P(n-1, i)]=x^{i}[P(n-1,0)]=x^{i-1} y[V(n, 0)] \in R$ for all $i \in \mathbb{Z}_{n}$. Then by Corollary 5.4(2) and (5), $[P(n-2, i)]=x^{i}[P(n-2,0)]=$ $x^{i-1}(y[P(n-1,0)]-2[V(n, 0)]) \in R$ for any $i \in \mathbb{Z}_{n}$. Now let $1<m \leqslant n-2$ and assume that $[P(l, i)] \in R$ for all $m \leqslant l<n$ and $i \in \mathbb{Z}_{n}$. Then by Corollary 5.4(2) and (6), we have $[P(m-1, i)]=x^{i}[P(m-1,0)]=x^{i-1}(y[P(m, 0)]-[P(m+$ $1,0)]) \in R$. Thus, we have shown that $[P(m, i)] \in R$ for all $1 \leqslant m<n$ and $i \in \mathbb{Z}_{n}$. Then it follows from Corollary 5.2 that $R=r_{p}\left(H_{n}(1, q)\right)$. This completes the proof.
Lemma 5.6. (1) $[V(m, 0)]=\sum_{i=0}^{\left[\frac{m-1}{2}\right]}(-1)^{i}\binom{m-1-i}{i} x^{i} y^{m-1-2 i}$ for all $1 \leqslant m \leqslant n$.
(2) Let $1 \leqslant m \leqslant n-1$. Then

$$
[P(m, 0)]=\left(\sum_{i=0}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m}{n-m-i}\left({ }_{i}^{n-m-i}\right) x^{m+i} y^{n-m-2 i}\right)[V(n, 0)] .
$$

Proof. (1) It is similar to [38, Lemma 3.2].
(2) Note that $\frac{n-m}{n-m-i}\binom{n-m-i}{i}$ is a positive integer for any $1 \leqslant m \leqslant n-1$ and $0 \leqslant i \leqslant\left[\frac{n-m}{2}\right]$. We prove the equality by induction on $n-m$. If $m=n-1$, then by Corollary 5.4(1) and (3), $[P(n-1,0)]=x^{-1} y[V(n, 0)]=x^{n-1} y[V(n, 0)]$, as desired. If $m=n-2$, then by Corollary 5.4(1) and (5), we have $[P(n-2,0)]=$ $x^{-1} y[P(n-1,0)]-2 x^{-1}[V(n, 0)]=\left(x^{n-2} y^{2}-2 x^{n-1}\right)[V(n, 0)]$, as desired. Now let $1 \leqslant m<n-2$. Then by Corollary $5.4(1)$ and (6), and the induction hypotheses, we have

$$
\begin{aligned}
{[P(m, 0)]=} & x^{-1} y[P(m+1,0)]-x^{-1}[P(m+2,0)] \\
= & x^{-1} y\left(\sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i} \frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i} x^{m+1+i} y^{n-m-1-2 i}\right)[V(n, 0)] \\
& -x^{-1}\left(\sum_{i=0}^{\left[\frac{n-m-2}{2}\right]}(-1)^{i} \frac{n-m-2}{n-m-2-i}\binom{n-m-2-i}{i} x^{m+2+i} y^{n-m-2-2 i}\right)[V(n, 0)] \\
= & \left(\sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i} \frac{n-m-1}{n-m-1-i}\binom{n-m-i-i}{i} x^{m+i} y^{n-m-2 i}\right)[V(n, 0)] \\
& +\left(\sum_{i=1}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m-2}{n-m-1-i}\binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2 i}\right)[V(n, 0)] .
\end{aligned}
$$

If $n-m$ is odd, then $\left[\frac{n-m-1}{2}\right]=\frac{n-m-1}{2}=\left[\frac{n-m}{2}\right]$, and hence

$$
\begin{aligned}
& \sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i} \frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i} x^{m+i} y^{n-m-2 i} \\
& +\sum_{i=1}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m-2}{n-m-1-i}\binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2 i} \\
= & x^{m} y^{n-m}+\sum_{i=1}^{\left[\frac{n-m}{2}\right]}(-1)^{i}\left(\frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i}\right. \\
& +\frac{n-m-2}{n-m-1-i}\binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2 i} \\
= & \sum_{i=0}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m}{n-m-i}\binom{n-m-i}{i} x^{m+i} y^{n-m-2 i} .
\end{aligned}
$$

If $n-m$ is even, then $\left[\frac{n-m-1}{2}\right]=\frac{n-m-2}{2}=\left[\frac{n-m}{2}\right]-1$, and hence

$$
\begin{aligned}
& \sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i} \frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i} x^{m+i} y^{n-m-2 i} \\
& +\sum_{i=1}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m-2}{n-m-1-i}\binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2 i} \\
= & x^{m} y^{n-m}+\sum_{i=1}^{\left[\begin{array}{l}
n-m \\
2
\end{array}\right]-1}(-1)^{i}\left(\frac{n-m-1}{n-m-1-i} i\right. \\
& \left.+\frac{n-m-1-i}{n-m-1} \begin{array}{c}
n \\
n-m-1-i
\end{array}\binom{n-m-1-i}{i-1}\right) x^{m+i} y^{n-m-2 i}+(-1)^{\frac{n-m}{2}} 2 x^{\frac{n+m}{2}} \\
= & \sum_{i=0}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m}{n-m-i}\binom{n-m-i}{i} x^{m+i} y^{n-m-2 i} .
\end{aligned}
$$

Therefore, $[P(m, 0)]=\left(\sum_{i=0}^{\left[\frac{n-m}{2}\right]}(-1)^{i} \frac{n-m}{n-m-i}\binom{n-m-i}{i} x^{m+i} y^{n-m-2 i}\right)[V(n, 0)]$.
Proposition 5.7. In $r_{p}\left(H_{n}(1, q)\right)$ (or $\left.r\left(H_{n}(1, q)\right)\right)$, we have

$$
\left(\sum_{i=0}^{\left[\frac{n}{2}\right]}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i} x^{i} y^{n-2 i}-2\right)\left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i}\binom{n-1-i}{i} x^{i} y^{n-1-2 i}\right)=0 .
$$

Proof. By Lemma 5.6(2), we have

$$
x^{-1} y[P(1,0)]=\left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i} \frac{n-1}{n-1-i}(\underset{i}{n-1-i}) x^{i} y^{n-2 i}\right)[V(n, 0)] .
$$

On the other hand, by Corollary 5.4(4) and Lemma 5.6(2), we have

$$
\begin{aligned}
x^{-1} y[P(1,0)] & =x^{-1}[P(2,0)]+2[V(n, 0)] \\
& =\left(\sum_{i=0}^{\left[\frac{n-2}{2}\right]}(-1)^{i} \frac{n-2}{n-2-i}\binom{n-2-i}{i} x^{i+1} y^{n-2-2 i}+2\right)[V(n, 0)] \\
& =\left(\sum_{i=1}^{\left[\frac{n}{2}\right]}(-1)^{i-1} \frac{n-2}{n-1-i}\binom{n-1-i}{i-1} x^{i} y^{n-2 i}+2\right)[V(n, 0)] .
\end{aligned}
$$

Therefore, one gets

$$
\begin{aligned}
& \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i} \frac{n-1}{n-1-i}\binom{n-1-i}{i} x^{i} y^{n-2 i}\right)[V(n, 0)] \\
= & \left(\sum_{i=1}^{\left[\frac{\square}{2}\right]}(-1)^{i-1} \frac{n-2}{n-1-i}\binom{n-1-i}{i-1} x^{i} y^{n-2 i}+2\right)[V(n, 0)],
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i} \frac{n-1}{n-1-i}\binom{n-1-i}{i} x^{i} y^{n-2 i}\right. \\
& \left.-\sum_{i=1}^{\left[\frac{n}{2}\right]}(-1)^{i-1} \frac{n-2}{n-1-i}\binom{n-1-i}{i-1} x^{i} y^{n-2 i}-2\right)[V(n, 0)]=0 .
\end{aligned}
$$

Then a computation similar to the proof of Lemma 5.6 shows that

$$
\begin{aligned}
& \sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i} \frac{n-1}{n-1-i}\binom{n-1-i}{i} x^{i} y^{n-2 i}-\sum_{i=1}^{\left[\frac{n}{2}\right]}(-1)^{i-1} \frac{n-2}{n-1-i}\binom{n-1-i}{i-1} x^{i} y^{n-2 i}-2 \\
= & \sum_{i=0}^{\left[\frac{n}{2}\right]}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i} x^{i} y^{n-2 i}-2 .
\end{aligned}
$$

Thus, the proposition follows from Lemma 5.6(1).
Corollary 5.8. $\left\{x^{l} y^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$ is a \mathbb{Z}-basis of $r_{p}\left(H_{n}(1, q)\right)$.
Proof. By Corollary 5.4(1), $x^{n}=1$. By Proposition 5.7, we have

$$
\begin{aligned}
y^{2 n-1}= & -\sum_{i=\left[\frac{n-1}{2}\right]}^{\left[\frac{n-1}{1}\right]}(-1)^{i}\binom{n-1-i}{i} x^{i} y^{2 n-1-2 i} \\
& -\sum_{i=1}^{\left[\frac{2}{2}\right]}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i} x^{i} y^{2 n-1-2 i}+2 y^{n-1} \\
& -\left(\sum_{i=1}^{\left[\frac{n}{2}\right]}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i} x^{i} y^{n-2 i}-2\right)\left(\sum_{i=1}^{\left[\frac{n-1}{2}\right]}(-1)^{i}\binom{n-1-i}{i} x^{i} y^{n-1-2 i}\right) .
\end{aligned}
$$

Then it follows from Proposition 5.5 that $r_{p}\left(H_{n}(1, q)\right)$ is generated, as a \mathbb{Z}-module, by $\left\{x^{l} y^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$. By Corollary $5.2, r_{p}\left(H_{n}(1, q)\right)$ is a free \mathbb{Z}-module of rank $n(2 n-1)$, and hence $\left\{x^{l} y^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$ is a \mathbb{Z}-basis of $r_{p}\left(H_{n}(1, q)\right)$.

Theorem 5.9. Let $\mathbb{Z}[x, y]$ be the polynomial ring in two variables x and y, and I the ideal of $\mathbb{Z}[x, y]$ generated by $x^{n}-1$ and

$$
\left(\sum_{i=0}^{\left[\frac{n}{2}\right]}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i} x^{i} y^{n-2 i}-2\right)\left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]}(-1)^{i}\binom{n-1-i}{i} x^{i} y^{n-1-2 i}\right) .
$$

Then $r_{p}\left(H_{n}(1, q)\right)$ is isomorphic to the quotient ring $\mathbb{Z}[x, y] / I$.
Proof. By Proposition 5.5, there is a ring epimorphism $\phi: \mathbb{Z}[x, y] \rightarrow r_{p}\left(H_{n}(1, q)\right)$ given by $\phi(x)=[V(1,1)]$ and $\phi(y)=[V(2,0)]$. By Corollary 5.4(1) and Proposition 5.7, $\phi(I)=0$. Hence ϕ induces a ring epimorphism $\bar{\phi}: \mathbb{Z}[x, y] / I \rightarrow$ $r_{p}\left(H_{n}(1, q)\right)$ such that $\phi=\bar{\phi} \circ \pi$, where $\pi: \mathbb{Z}[x, y] \rightarrow \mathbb{Z}[x, y] / I$ is the canonical projection. Let $\bar{u}=\pi(u)$ for any $u \in \mathbb{Z}[x, y]$. Then by the definition of I and the proof of Corollary 5.8 , one knows that $\mathbb{Z}[x, y] / I$ is generated, as a \mathbb{Z}-module, by $\left\{\bar{x}^{l} \bar{y}^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$. For any $0 \leqslant l \leqslant n-1$ and $0 \leqslant m \leqslant 2 n-2$, we have $\bar{\phi}\left(\bar{x}^{l} \bar{y}^{m}\right)=\bar{\phi}(\bar{x})^{l} \bar{\phi}(\bar{y})^{m}=\phi(x)^{l} \phi(y)^{m}=[V(1,1)]^{l}[V(2,0)]^{m}$. By Corollary $5.8,\left\{[V(1,1)]^{l}[V(2,0)]^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$ is a linearly independent set over \mathbb{Z}, which implies that $\left\{\bar{x}^{l} \bar{y}^{m} \mid 0 \leqslant l \leqslant n-1,0 \leqslant m \leqslant 2 n-2\right\}$ is also a linearly independent set over \mathbb{Z}. It follows that $\left\{\bar{x}^{l} \bar{y}^{m} \mid 0 \leqslant l \leqslant n-1\right.$, $0 \leqslant m \leqslant 2 n-2\}$ is a \mathbb{Z}-basis of $\mathbb{Z}[x, y] / I$. Consequently, $\bar{\phi}$ is a \mathbb{Z}-module isomorphism, and so it is a ring isomorphism.

Acknowledgment

This work is supported by NSF of China (No. 11571298) and TAPP of Jiangsu Higher Education Institutions (No. PPZY2015B109).

References

[1] N. Andruskiewitsch, F. Fantino, G. A. Garcia and L. Vendramin, On Nichols algebras associated to simple racks, in: Groups, Algebras and Applications, in: Contemp. Math., vol.537, Amer. Math. Soc., 2011, pp.31C56.
[2] L. Archer, On certain quotients of the Green rings of dihedral 2-groups, J. Pure \& Appl. Algebra 212 (2008), 1888-1897.
[3] G. Benkart, M. Pereira and S. Witherspoon, Yetter-Drinfeld modules under cocycle twists, J. Algebra 324 (2010), 2990-3006.
[4] D. J. Benson and J. F. Carlson, Nilpotent elements in the Green ring, J. Algebra 104 (1986), 329-350.
[5] D. J. Benson and R. A. Parker, The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
[6] R. M. Bryant and M. Johnson, Periodicity of Adams operations on the Green ring of a finite group, J. Pure Appl. Algebra 215 (2011), 989-1002.
[7] H. X. Chen, Skew pairing, cocycle deformations and double crossproducts, Acta Math. Sinica, English Ser. 15 (1999), 225-234.
[8] H. X. Chen, A class of noncommutative and noncocommutative Hopf algebras-the quantum version, Comm. Algebra 27 (1999), 5011-5023.
[9] H. X. Chen, Irreducible representations of a class of quantum doubles, J. Algebra 225 (2000), 391-409.
[10] H. X. Chen, Representations of a class of Drinfeld's doubles, Comm. Algebra 33 (2005), 2809-2825.
[11] H. X. Chen, The Green ring of Drinfeld double $D\left(H_{4}\right)$, Algebr. Represent. Theor. 17 (2014), 1457-1483.
[12] H. X. Chen, H. E. S. Mohammed and H. Sun, Indecomposable decomposition of tensor products of modules over Drinfeld Doubles of Taft algebras, arXiv.org:1503.04393v3[math.RT].
[13] H. X. Chen, F. Van Oystaeyen and Y. H. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc. 142 (2014), 765-775.
[14] H. X. Chen and Y. H. Zhang, Cocycle deformations and Brauer Groups, Comm. Algebra 35 (2007), 399-433.
[15] W. Chin, Special biserial coalgebras and representations of quantum SL(2), J. Algebra 353 (2012), 1-21.
[16] C. Cibils, A quiver quantum group, Commun. Math. Phys. 157 (1993), 459477.
[17] C. Cibils, The projective class ring of basic and split Hopf algebras, K-Theory 17 (1999), 385-393.
[18] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), 1731-1749.
[19] Y. Doi and M. Takeuchi, Multiplication alteration by two-cocycles-the quantum version, Comm. Algebra 22 (1994), 5715-5732.
[20] J. A. Green, The modular representation algebra of a finite group, Ill. J. Math. 6(4) (1962), 607-619.
[21] P. Guillot, C.Kassel and A. Masuoka, Twisting algebras using noncommutative torsors: explicitcom-putations, Math. Z. 271 (2012), 789C818.
[22] I. Hambleton, L. R. Taylor and E. B. Williams, Dress induction and Burnside quotient Green ring, Algebra Number Theory 3 (2009), 511-541.
[23] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
[24] Y. Li and N. Hu, The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra 410 (2014), 1-35.
[25] L. B. Li and Y. H. Zhang, The Green rings of the generalized Taft Hopf algebras, Contemporary Mathematics 585 (2013), 275-288.
[26] G. Liu, On the structure of tame graded basic Hopf algebras, J. Algebra 299 (2006), 841-853.
[27] M. Lorenz, Representations of finite-dimensional Hopf algebras, J. Algebra 188 (1997), 476-505.
[28] S. Majid, Algebras and Hopf algebras in braided categories, in: Advances in Hopf Algebras, Chicago, IL, 1992, in: Lect. Notes Pure Appl. Math., vol.158, Dekker, New York, 1994, pp.55C105.
[29] S. Majid, Foundations of quantum group theory, Cambridge Univ. Press, Cambridge, 1995.
[30] S. Majid and R. Oeckl, Twisting of quantum differentials and the Planck scale Hopf algebra, Comm. Math. Phys. 205 (1999), 617-655.
[31] S. Montgomery, Hopf Algebras and their actions on rings, CBMS Series in Math., Vol. 82, Amer. Math. Soc., Providence, 1993.
[32] U. Oberst and H.-J. Schneider, Uber untergruppen endlicher algebraischer gruppen, Manuscripta Math. 8 (1973), 217-241.
[33] C. M. Ringel, The representation type of local algebras, in: Representation of Algebra, in: Lecture Notes in Math., Vol. 488, Springer, 1975, pp. 282-305.
[34] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[35] E. J. Taft, The order of the antipode of a finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA 68 (1971), 2631-2633.
[36] M. Wakui, Various structures associated to the representation categories of eight dimensional non-semisimple Hopf algebras, Algebr. Represent. Theory 7 (2004), 491-515.
[37] S. J. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra 179 (1996), 305-329.
[38] Y. Zhang, F. Wu, L. Liu and H. X. Chen, Grothendieck groups of a class of quantum doubles, Algebra Colloq. 15 (2008), 431-448.

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China emails: hxchen@yzu.edu.cn, esmailhassan313@yahoo.com, wjlin@yzu.edu.cn, 997749901@qq.com

[^0]: Received by the editors in December 2015.
 Communicated by S. Caenepeel.
 2010 Mathematics Subject Classification : 16G60, 16T05.
 Key words and phrases : Green ring, indecomposable module, Taft algebra.

