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Abstract

In this paper, we compute the projective class rings of the tensor product
Hn(q) = An(q) ⊗ An(q−1) of Taft algebras An(q) and An(q−1), and its co-
cycle deformations Hn(0, q) and Hn(1, q), where n > 2 is a positive integer
and q is a primitive n-th root of unity. It is shown that the projective class
rings rp(Hn(q)), rp(Hn(0, q)) and rp(Hn(1, q)) are commutative rings gen-
erated by three elements, three elements and two elements subject to some
relations, respectively. It turns out that even Hn(q), Hn(0, q) and Hn(1, q) are
cocycle twist-equivalent to each other, they are of different representation
types: wild, wild and tame, respectively.

1 Introduction

Let H be a Hopf algebra over a field K. Doi [18] introduced a cocycle twisted
Hopf algebra Hσ for a convolution invertible 2-cocycle σ on H. It is shown in
[19, 28] that the Drinfeld double D(H) is a cocycle twisting of the tensor product
Hopf algebra H∗cop ⊗ H. The 2-cocycle twisting is extensively employed in vari-
ous researches. For instance, Andruskiewitsch et al. [1] considered the twists of
Nichols algebras associated to racks and cocycles. Guillot, Kassel and Masuoka
[21] obtained some examples by twisting comodule algebras by 2-cocycles. It is
well known that the monoidal category MH of right H-comodules is equivalent
to the monoidal category MHσ

of right Hσ-comodules. On the other hand, we
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know that the braided monoidal category HYDH of Yetter-Drinfeld H-modules
is the center of the monoidal category MH for any Hopf algebra H (e.g., see
[23]). Hence the monoidal equivalence from MH to MHσ

gives rise to a braided

monoidal equivalence from HYDH to HσYDHσ
. Chen and Zhang [14] described

a braided monoidal equivalent functor from HYDH to HσYDHσ
. Benkart et al. [3]

used a result of Majid and Oeckl [30] to give a category equivalence between
Yetter-Drinfeld modules for a finite-dimensional pointed Hopf algebra H and
those for its cocycle twisting Hσ. However, the Yetter-Drinfeld module category

HYDH is also the center of the monoidal category HM of left H-modules. This
gives rise to a natural question:

Is there any relations between the two monoidal categories HM and HσM of
left modules over two cocycle twist-equivalent Hopf algebras H and Hσ? or how
to detect the two monoidal categories HM and HσM?

This article seeks to address this question through investigating the represen-
tation types and projective class rings of a family of pointed Hopf algebras of rank
2, the tensor products of two Taft algebras, and their two cocycle deformations.

In the investigation of the monoidal category of modules over a Hopf algebra
H, the decomposition problem of tensor products of indecomposables is of most
importance and has received enormous attentions. Our approach is to explore
the representation type of H and the projective class ring of H, which is a subring
of the representation ring (or Green ring) of H. Originally, the concept of the
Green ring r(H) stems from the modular representations of finite groups (see [20],
etc.) Since then, there have been plenty of works on the Green rings. For finite-
dimensional group algebras, one can refer to [2, 4, 5, 6, 22]. For Hopf algebras
and quantum groups, one can see [13, 15, 16, 25, 36, 37].

The n4-dimensional Hopf algebra Hn(p, q) was introduced in [8], where n > 2
is an integer, q ∈ K is a primitive n-th root of unity and p ∈ K. If p 6= 0,
then Hn(p, q) is isomorphic to the Drinfeld double D(An(q−1)) of the Taft alge-
bra An(q−1). In particular, we have Hn(p, q) ∼= Hn(1, q) ∼= D(An(q−1)) for any
p 6= 0. Moreover, Hn(p, q) is a cocycle deformation of An(q) ⊗ An(q−1). For
the details, the reader is directed to [8, 9]. When n = 2 (q = −1), A2(−1) is
exactly the Sweedler 4-dimensional Hopf algebra H4. Chen studied the finite di-
mensional representations of Hn(1, q) in [9, 10], and the Green ring r(D(H4)) in
[11]. Using a different method, Li and Hu [24] also studied the finite dimensional
representations of the Drinfeld double D(H4), the Green ring r(D(H4)) and the
projective class ring p(D(H4)). They also studied two Hopf algebras which are
cocycle deformations of D(H4). By [10], one knows that D(H4) is of tame repre-
sentation type. By [24], the two cocycle deformations of D(H4) are also of tame
representation type.

In this paper, we study the three cocycle twist-equivalent Hopf algebras
Hn(q) = An(q)⊗ An(q−1), Hn(0, q) and Hn(1, q) by investigating their represen-
tation types and projective class rings, where n > 3. In Section 2, we introduce the
Taft algebras An(q), the tensor product Hn(q) = An(q)⊗ An(q−1) and the Hopf
algebras Hn(p, q). In Section 3, we first show that Hn(q) is of wild representa-
tion type. With a complete set of orthogonal primitive idempotents, we classify
the simple modules and indecomposable projective modules over Hn(q), and de-
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compose the tensor products of these modules. This leads the description of the
projective class ring rp(Hn(q)), the Jacobson radical J(Rp(Hn(q))) of the projec-
tive class algebra Rp(Hn(q)) and the quotient algebra Rp(Hn(q))/J(Rp(Hn(q))).
In Section 4, we first show that Hn(0, q) is a symmetric algebra of wild representa-
tion type. Then we give a complete set of orthogonal primitive idempotents with
the Gabriel quiver, and classify the simple modules and indecomposable projec-
tive modules over Hn(0, q). We also describe the projective class ring rp(Hn(0, q)),
the Jacobson radical J(Rp(Hn(0, q))) of the projective class algebra Rp(Hn(0, q))
and the quotient algebra Rp(Hn(0, q))/J(Rp(Hn(0, q))). In Section 5, using the
decompositions of tensor products of indecomposables over Hn(1, q) given in
[12], we describe the structure of the projective class ring rp(Hn(1, q)). It is in-
teresting to notice that even the Hopf algebras Hn(q), Hn(0, q) and Hn(1, q) are
cocycle twist-equivalent to each other, they own the different number of blocks

with 1, n and n(n+1)
2 , respectively (see [10, Corollary 2.7] for Hn(1, q)). Hn(q) and

Hn(0, q) are basic algebras of wild representation type, but Hn(1, q) is not basic
and is of tame representation type. Hn(0, q) and Hn(1, q) are symmetric algebras,
but Hn(q) is not.

2 Preliminaries

Throughout, we work over an algebraically closed field K. Unless otherwise
stated, all algebras, Hopf algebras and modules are defined over K; all modules
are left modules and finite dimensional; all maps are K-linear; dim and ⊗ stand
for dimK and ⊗K, respectively. Given an algebra A, A-mod denotes the category
of finite-dimensional A-modules. For any A-module M and nonnegative integer
l, let lM denote the direct sum of l copies of M. For the theory of Hopf algebras
and quantum groups, we refer to [23, 29, 31, 34]. Let Z denote all integers, and
Zn = Z/nZ.

Let H be a Hopf algebra. The Green ring r(H) of H can be defined as fol-
lows. r(H) is the abelian group generated by the isomorphism classes [M] of M in
H-mod modulo the relations [M ⊕ V] = [M] + [V]. The multiplication of r(H) is
given by the tensor product of H-modules, that is, [M][V] = [M ⊗ V]. Then r(H)
is an associative ring. The projective class ring rp(H) of H is the subring of r(H)
generated by projective modules and simple modules (see [17]). Then the Green
algebra R(H) and projective algebra Rp(H) are associative K-algebras defined by
R(H) := K ⊗Z r(H) and Rp(H) := K ⊗Z rp(H), respectively. Note that r(H) is a
free abelian group with a Z-basis {[V]|V ∈ ind(H)}, where ind(H) denotes the
category of finite dimensional indecomposable H-modules.

The Grothendieck ring G0(H) of H is defined similarly. G0(H) is the abelian
group generated by the isomorphism classes [M] of M in H-mod modulo the
relations [M] = [N] + [V] for any short exact sequence 0 → N → M → V → 0 in
H-mod. The multiplication of G0(H) is given by the tensor product of H-modules,
that is, [M][V] = [M⊗V]. Then G0(H) is also an associative ring. Moreover, there
is a canonical ring epimorphism from r(H) onto G0(H).

Let n > 2 be an integer and q ∈ K a primitive n-th root of unity. Then the
n2-dimensional Taft Hopf algebra An(q) is defined as follows (see [35]): as an
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algebra, An(q) is generated by g and x with relations

gn = 1, xn = 0, xg = qgx.

The coalgebra structure and antipode are given by

△(g) = g ⊗ g, △(x) = x ⊗ g + 1 ⊗ x, ε(g) = 1, ε(x) = 0,
S(g) = g−1 = gn−1, S(x) = −xg−1 = −q−1gn−1x.

Since q−1 is also a primitive n-th root of unity, one can define another Taft Hopf
algebra An(q

−1), which is generated, as an algebra, by g1 and x1 with relations
gn

1 = 1, xn
1 = 0 and x1g1 = q−1g1x1. The coalgebra structure and antipode are

given similarly to An(q). Then An(q−1) ∼= An(q)op as Hopf algebras.
The first author Chen introduced a Hopf algebra Hn(p, q) in [8], where

p, q ∈ K and q is a primitive n-th root of unity. It was shown there that Hn(p, q)
is isomorphic to a cocycle deformation of the tensor product An(q)⊗ An(q−1).

The tensor product An(q) ⊗ An(q−1) can be described as follows. Let Hn(q)
be the algebra generated by a, b, c and d subject to the relations:

ba = qab, db = bd, ca = ac, dc = qcd, cb = bc,
an = 0, bn = 1, cn = 1, dn = 0, da = ad.

Then Hn(q) is a Hopf algebra with the coalgebra structure and antipode given by

△(a) = a ⊗ b + 1 ⊗ a, ε(a) = 0, S(a) = −ab−1 = −abn−1,
△(b) = b ⊗ b, ε(b) = 1, S(b) = b−1 = bn−1,
△(c) = c ⊗ c, ε(c) = 1, S(c) = c−1 = cn−1,
△(d) = d ⊗ c + 1 ⊗ d, ε(d) = 0, S(d) = −dc−1 = −dcn−1.

It is straightforward to verify that there is a Hopf algebra isomorphism from
Hn(q) to An(q)⊗ An(q−1) via a 7→ 1 ⊗ x1, b 7→ 1 ⊗ g1, c 7→ g ⊗ 1 and d 7→ x ⊗ 1.
Obviously, Hn(q) is n4-dimensional with a K-basis {aibjcldk|0 6 i, j, l, k 6 n − 1}.

Let p ∈ K. Then one can define another n4-dimensional Hopf algebra Hn(p, q),
which is generated as an algebra by a, b, c and d subject to the relations:

ba = qab, db = qbd, ca = qac, dc = qcd, bc = cb,
an = 0, bn = 1, cn = 1, dn = 0, da − qad = p(1 − bc).

The coalgebra structure and antipode are defined in the same way as Hn(q)
before. Hn(p, q) has a K-basis {aibjcldk|0 6 i, j, l, k 6 n − 1}. When p 6= 0,
Hn(p, q) ∼= Hn(1, q) ∼= D(An(q

−1)) (see [8, 9]). If n = 2 (q = −1), then
H2(1,−1) ∼= D(H4), and H2(0,−1) is exactly the Hopf algebra A in [24].

By [8, Lemma 3.2], there is an invertible skew-pairing τp : An(q)⊗ An(q−1) →

K given by τp(gixj, xk
1gl

1) = δjkpjqil(j)!q, 0 6 i, j, k, l < n. Hence one can form a

double crossproduct An(q) ⊲⊳τp An(q−1). Moreover, An(q) ⊲⊳τp An(q−1) is iso-
morphic to Hn(p, q) as a Hopf algebra (see [8, Theorem 3.3]). By [19], τp induces

an invertible 2-cocycle [τp] on An(q) ⊗ An(q−1) such that An(q) ⊲⊳τp An(q−1) =

(An(q) ⊗ An(q−1))[τp ]. Thus, there is a corresponding invertible 2-cocycle σp on
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Hn(q) such that Hn(q)
σp ∼= Hn(p, q) as Hopf algebras. In particular, we have

Hn(q)σ0 ∼= Hn(0, q) and Hn(q)σ1 ∼= Hn(1, q). In general, if σ is a convolution
invertible 2-cocycle on a Hopf algebra H, then σ−1 is an invertible 2-cocycle on

Hσ and (Hσ)σ−1
= H (see [7, Lemma 1.2]). More generally, if σ is an invertible

2-cocycle on H and τ is an invertible 2-cocycle on Hσ, then τ ∗ σ is an invertible
2-cocycle on H and Hτ∗σ = (Hσ)τ (see [7, Lemma 1.4]). Thus, the Hopf algebras
Hn(q), Hn(0, q) and Hn(1, q) are cocycle twist-equivalent to each other.

Throughout the following, fix an integer n > 2 and let q ∈ K be a primitive
n-th root of unity. For any m ∈ Z, denote still by m the image of m under the
canonical projection Z → Zn = Z/nZ.

3 The Projective Class Ring of Hn(q)

In this section, we investigate the representations and the projective class ring of
Hn(q), or equivalently, of An(q)⊗ An(q−1).

Let A be the subalgebra of Hn(q) generated by a and d. Then A is isomorphic
to the quotient algebra K[x, y]/(xn, yn) of the polynomial algebra K[x, y] mod-
ulo the ideal (xn, yn) generated by xn and yn. Let G = G(Hn(q)) be the group
of group-like elements of Hn(q). Then G = {bicj|i, j ∈ Zn} ∼= Zn × Zn, and
KG = Hn(q)0, the coradical of Hn(q). Clearly, A is a left KG-module algebra
with the action given by b · a = qa, b · d = d, c · a = a and c · d = q−1d. Hence
one can form a smash product algebra A#KG. It is easy to see that Hn(q) is iso-
morphic to A#KG as an algebra. Since n > 3, it follows from [33, p.295(3.4)] that
A is of wild representation type. Since char(K) ∤ |G|, KG is a semisimple and
cosemisimple Hopf algebra. It follows from [26, Theorem 4.5] that A#KG is of
wild representation type. As a consequence, we obtain the following result.

Proposition 3.1. Hn(q) is of wild representation type.

Hn(q) has n2 orthogonal primitive idempotents

ei,j =
1
n2

∑
k,l∈Zn

q−ik−jlbkcl = 1
n2

∑n−1
k,l=0 q−ik−jlbkcl , i, j ∈ Zn.

Lemma 3.2. Let i, j ∈ Zn. Then

bei,j = qiei,j, cei,j = qjei,j, aei,j = ei+1,ja, dei,j = ei,j−1d.

Proof. It follows from a straightforward verification.

For i, j ∈ Zn, let Si,j be the one dimensional Hn(q)-module defined by

bv = qiv, cv = qjv and av = dv = 0, v ∈ Si,j. Let Pi,j = P(Si,j) be the projec-
tive cover of Si,j. Let J = rad(Hn(q)) be the Jacobson radical of Hn(q).
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Lemma 3.3. The simple modules Si,j, i, j ∈ Zn, exhaust all simple modules of Hn(q),
and consequently, the projective modules Pi,j, i, j ∈ Zn, exhaust all indecomposable pro-
jective modules of Hn(q). Moreover, Pi,j

∼= Hn(q)ei,j for all i, j ∈ Zn.

Proof. Obviously, aHn(q) = Hn(q)a and dHn(q) = Hn(q)d. Since an = 0 and
dn = 0, Hn(q)a+Hn(q)d is a nilpotent ideal of Hn(q). Hence Hn(q)a+Hn(q)d ⊆
J. On the other hand, it is easy to see that the quotient algebra Hn(q)/(Hn(q)a +
Hn(q)d) is isomorphic to the group algebra KG, where G = G(Hn(q)) = {bicj|0 6

i, j 6 n − 1}, the group of all group-like elements of Hn(q). Since KG is semisim-
ple, J ⊆ Hn(q)a +Hn(q)d. Thus, J = Hn(q)a +Hn(q)d. Therefore, the simple
modules Si,j exhaust all simple modules of Hn(q), and the projective modules
Pi,j exhaust all indecomposable projective modules of Hn(q), i, j ∈ Zn. The last
statement of the lemma follows from Lemma 3.2.

Corollary 3.4. Hn(q) is a basic algebra. Moreover, J is a Hopf ideal of Hn(q), and the
Loewy length of Hn(q) is 2n − 1.

Proof. It follows from Lemma 3.3 that Hn(q) is a basic algebra. By J = Hn(q)a +
Hn(q)d, one can easily check that J is a coideal and S(J) ⊆ J. Hence J is a Hopf
ideal. By an−1 6= 0 and dn−1 6= 0, one gets (Hn(q)a + Hn(q)d)2n−2 6= 0. By
an = dn = 0, one gets (Hn(q)a +Hn(q)d)2n−1 = 0. It follows that the Loewy
length of Hn(q) is 2n − 1.

In the rest of this section, we regard that Pi,j = Hn(q)ei,j for all i, j ∈ Zn.

Corollary 3.5. Pi,j is n2-dimensional with a K-basis {akdlei,j|0 6 k, l 6 n − 1},
i, j ∈ Zn. Consequently, Hn(q) is an indecomposable algebra.

Proof. By Lemma 3.2, Pi,j = span{akdlei,j|0 6 k, l 6 n − 1}, and hence

dimPi,j 6 n2. Now it follows from Hn(q) = ⊕i,j∈Zn
Hn(q)ei,j and dimHn(q) = n4

that Pi,j is n2-dimensional over K with a basis {akdlei,j|0 6 k, l 6 n − 1}. Then
by Lemmas 3.2-3.3, one knows that every simple module is a simple factor of Pi,j

with the multiplicity one. Consequently, Hn(q) is an indecomposable algebra.

Given M ∈ Hn(q)-mod, for any α ∈ K and u, v ∈ M, we use u
α
−→ v (resp.

u
α

99K v) to represent a · u = αv (resp. d · u = αv). Moreover, we omit the
decoration of the arrow if α = 1.

For i, j ∈ Zn, let ek,l
i,j = akdlei,j in Pi,j, 0 6 k, l 6 n − 1. Then the structure of Pi,j

can be described as follows:
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e0,0
i,j

e1,0
i,j e0,1

i,j

. .. e1,1
i,j

. . .. . . . ..

en−2,0
i,j ·

. . .· ·
. . .· e0,n−2

i,j
. . . . ..

en−1,0
i,j en−2,1

i,j ·
. . .· e1,n−2

i,j e0,n−1
i,j

. .. . . .
en−1,1

i,j ·
. . .· ·

. . .· e1,n−1
i,j

. .. . . .
. . . en−2,n−2

i,j . ..

en−1,n−2
i,j en−2,n−1

i,j

en−1,n−1
i,j

Proposition 3.6. Si,j ⊗ Sk,l
∼= Si+k,j+l and Si,j ⊗ Pk,l

∼= Pk,l ⊗ Si,j
∼= Pi+k,j+l for all

i, j, k, l ∈ Zn.

Proof. The first isomorphism is obvious. Note that S0,0 is the trivial Hn(q)-module.
Since J is a Hopf ideal, it follows from [27, Corollary 3.3] and the first isomor-
phism that Pk,l ⊗ Si,j

∼= P0,0 ⊗ Sk,l ⊗ Si,j
∼= P0,0 ⊗ Si+k,j+l

∼= Pi+k,j+l. Similarly,
one can show that Si,j ⊗ Pk,l

∼= Pi+k,j+l, which also follows from the proof of
[17, Lemma 3.3].

Proposition 3.7. Let i, j, k, l ∈ Zn. Then Pi,j ⊗ Pk,l
∼= ⊕r,t∈Zn Pr,t.

Proof. By Proposition 3.6, we only need to consider the case of i = j = k =
l = 0. For any short exact sequence 0 → N → M → L → 0 of modules, the
exact sequence 0 → P0,0 ⊗ N → P0,0 ⊗ M → P0,0 ⊗ L → 0 is always split since
P0,0 ⊗ L is projective for any module L. By Corollary 3.4 and the proof of Corollary
3.5, [P0,0] =

∑
r,t∈Zn [Sr,t] in G0(Hn(q)). Then it follows from Proposition 3.6 that

P0,0 ⊗ P0,0
∼= ⊕r,t∈Zn P0,0 ⊗ Sr,t

∼= ⊕r,t∈Zn Pr,t, which is isomorphic to the regular
module Hn(q).

By Propositions 3.6 and 3.7, the projective class ring rp(Hn(q)) is a commuta-
tive ring generated by [S1,0], [S0,1] and [P0,0] subject to the relations [S1,0]

n = 1,

[S0,1]
n = 1 and [P0,0]

2 =
∑n−1

i,j=0[S1,0]
i[S0,1]

j[P0,0]. Hence we have the following

proposition.

Theorem 3.8. rp(Hn(q)) ∼= Z[x, y, z]/(xn − 1, yn − 1, z2 −
∑n−1

i,j=0 xiyjz).

Proof. By Propositions 3.6 and 3.7, rp(Hn(q)) is a commutative ring. Moreover,
rp(Hn(q)) is generated, as a Z-algebra, by [S1,0], [S0,1] and [P0,0]. Therefore, there
exists a ring epimorphism φ : Z[x, y, z] → rp(Hn(q)) such that φ(x) = [S1,0],

φ(y) = [S0,1] and φ(z) = [P0,0]. Let I = (xn − 1, yn − 1, z2 −
∑n−1

i,j=0 xiyjz) be the
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ideal of Z[x, y, z] generated by xn − 1, yn − 1 and z2 −
∑n−1

i,j=0 xiyjz. Then it follows

from Propositions 3.6 and 3.7 that I ⊆ Ker(φ). Hence φ induces a ring epimor-
phism φ : Z[x, y, z]/I → rp(Hn(q)) such that φ ◦ π = φ, where π : Z[x, y, z] →
Z[x, y, z]/I is the canonical projection. Let u = π(u) for any u ∈ Z[x, y, z]. Then

xn = 1, yn = 1 and z2 =
∑n−1

i,j=0 xiyjz in Z[x, y, z]/I. Hence Z[x, y, z]/I is gen-

erated, as a Z-module, by {xiyj, xiyjz|i, j ∈ Zn}. Since rp(Hn(q)) is a free Z-
module with a Z-basis {[Si,j], [Pi,j]|i, j ∈ Zn}, one can define a Z-module map

ψ : rp(Hn(q)) → Z[x, y, z]/I by ψ([Si,j]) = xiyj and ψ([Pi,j]) = xiyjz for any

i, j ∈ Zn. Now for any i, j ∈ Zn, we have ψ(φ(xiyj)) = ψ(φ(x)iφ(y)j) =
ψ([S1,0]

i[S0,1]
j) = ψ([Si,j]) = xiyj and ψ(φ(xiyjz)) = ψ(φ(x)iφ(y)jφ(z)) =

ψ([S1,0]
i[S0,1]

j[P0,0]) = ψ([Pi,j]) = xiyjz. This shows that φ is injective, and so

φ is a ring isomorphism.

Now we consider the projective class algebra Rp(Hn(q)). By Theorem 3.8, we
have

Rp(Hn(q)) ∼= K[x, y, z]/(xn − 1, yn − 1, z2 −
∑n−1

i,j=0 xiyjz).

Put I = (xn − 1, yn − 1, z2 −
∑n−1

i,j=0 xiyjz) and let J(K[x, y, z]/I) be the Jacobson

radical of K[x, y, z]/I. For any u ∈ K[x, y, z], let u denote the image of u under the
canonical projection K[x, y, z] → K[x, y, z]/I. Then by the proof of Theorem 3.8,
K[x, y, z]/I is of dimension 2n2 with a K-basis {xiyj, xiyjz|0 6 i, j 6 n − 1}. From

xn = 1, yn = 1 and z2 =
∑n−1

i,j=0 xiyjz, one gets (1 − x)z2 = (1 − y)z2 = 0, and

so ((1 − x)z)2 = ((1 − y)z)2 = 0. Consequently, the ideal ((1 − x)z, (1 − y)z)
of K[x, y, z]/I generated by (1 − x)z and (1 − y)z is contained in J(K[x, y, z]/I).
Moreover, dim((K[x, y, z]/I)/((1 − x)z, (1 − y)z) = n2 + 1 and

(K[x, y, z]/I)/((1 − x)z, (1 − y)z)
∼= K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z, (1 − y)z).

Let π : K[x, y, z] → K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z, (1 − y)z) be the

canonical projection. For any integers k, l > 0, let fk,l = 1
n2

∑n−1
i,j=0 qki+l jxiyj in

K[x, y, z]. Then a straightforward verification shows that

{π( fk,l), π( f0,k), π( f0,0 −
1

n2 z), π( 1
n2 z)|1 6 k 6 n − 1, 0 6 l 6 n − 1}

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive
idempotents in K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z, (1 − y)z). Therefore,

K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z, (1 − y)z) ∼= K
n2+1.

Thus, J(K[x, y, z]/I) ⊆ ((1 − x)z, (1 − y)z), and so J(K[x, y, z]/I) = ((1 − x)z,
(1 − y)z). This shows the following proposition.

Proposition 3.9. Let J(Rp(Hn(q))) be the Jacobson radical of Rp(Hn(q)). Then
J(Rp(Hn(q))) = ((1 − [S1,0])[P0,0], (1 − [S0,1])[P0,0]) and

Rp(Hn(q))/J(Rp(Hn(q)))
∼= K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z, (1 − y)z) ∼= K

n2+1.
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4 The Projective Class Ring of Hn(0, q)

In this section, we investigate the projective class ring of Hn(0, q).

Proposition 4.1. Hn(0, q) is a symmetric algebra.

Proof. By [8, Proposition 3.4] and its proof, Hn(0, q) is unimodular. Moreover,
S2(a) = qa, S2(b) = b, S2(c) = c and S2(d) = q−1d, where S is the antipode
of Hn(0, q). Hence S2(x) = bxb−1 = cxc−1 for all x ∈ Hn(0, q). That is, S2

is an inner automorphism of Hn(0, q). It follows from [27, 32] that Hn(0, q) is a
symmetric algebra.

Note that Hn(q) is not symmetric since it is not unimodular.

Proposition 4.2. Hn(0, q) is of wild representation type.

Proof. It is similar to Proposition 3.1. Let A be the subalgebra of Hn(0, q) gen-
erated by a and d. Then A is a KG-module algebra with the action given by
b · a = qa, b · d = q−1d, c · a = qa and c · d = q−1d, where G = G(Hn(0, q)) =
{bicj|i, j ∈ Zn} ∼= Zn × Zn. Moreover, A ∼= K〈x, y〉/(xn , yn, yx − qxy) and
Hn(0, q) ∼= A#KG, as K-algebras. Since n > 3, it follows from [33, p.295(3.4)]
that A is of wild representation type. Since KG is a semisimple and cosemisim-
ple Hopf algebra by char(K) ∤ |G|, it follows from [26, Theorem 4.5] that A#KG
is of wild representation type.

Hn(0, q) has n2 orthogonal primitive idempotents

ei,j =
1
n2

∑
k,l∈Zn

q−ik−jlbkcl = 1
n2

∑n−1
k,l=0 q−ik−jlbkcl , i, j ∈ Zn.

Lemma 4.3. Let i, j ∈ Zn. Then

bei,j = qiei,j, cei,j = qjei,j, aei,j = ei+1,j+1a, dei,j = ei−1,j−1d.

Proof. It follows from a straightforward verification.

For i, j ∈ Zn, let Si,j be the one dimensional Hn(0, q)-module defined by bv =

qiv, cv = qjv and av = dv = 0, v ∈ Si,j. Let Pi,j = P(Si,j) be the projective cover of
Si,j. Let J = rad(Hn(0, q)) be the Jacobson radical of Hn(0, q).

Lemma 4.4. The simple modules Si,j, i, j ∈ Zn, exhaust all simple modules of Hn(0, q),
and consequently, the projective modules Pi,j, i, j ∈ Zn, exhaust all indecomposable pro-
jective modules of Hn(0, q). Moreover, Pi,j

∼= Hn(0, q)ei,j for all i, j ∈ Zn.

Proof. It is similar to Lemma 3.3.

Corollary 4.5. Hn(0, q) is a basic algebra. Moreover, J is a Hopf ideal of Hn(0, q), and
the Loewy length of Hn(0, q) is 2n − 1.

Proof. It is similar to Corollary 3.4.
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Let ei =
∑n−1

j=0 ei+j,j = 1
n

∑n−1
j=0 q−ijbjc−j, i ∈ Zn. Then by Lemmas 4.3 and

4.4, {ei|i ∈ Zn} is a full set of central primitive idempotents of Hn(0, q). Hence
Hn(0, q) decomposes into n blocks Hn(0, q)ei, i ∈ Zn.

In the rest of this section, we regard that Pi,j = Hn(0, q)ei,j for all i, j ∈ Zn.

Corollary 4.6. Pi,j is n2-dimensional with a K-basis {akdlei,j|0 6 k, l 6 n − 1},
i, j ∈ Zn.

Proof. It is similar to Corollary 3.5.

For i, j ∈ Zn, let ek,l
i,j = akdlei,j in Pi,j. Using the same symbols as in the last

section, the structure of Pi,j can be described as follows:

e0,0
i,j

e1,0
i,j e0,1

i,jq

. .. e1,1
i,j

. . .q. . . . ..

en−2,0
i,j ·

. . .· ·
. . .· e0,n−2

i,jqn−2
. . . . ..

q

en−1,0
i,j en−2,1

i,j ·
. . .· e1,n−2

i,j e0,n−1
i,jqn−1 qn−2

. .. . . .
q

en−1,1
i,j ·

. . .· ·
. . .· e1,n−1

i,jqn−1

. ..
qn−2

. . .
. . . en−2,n−2

i,j . ..qn−1 qn−2

en−1,n−2
i,j en−2,n−1

i,jqn−1

en−1,n−1
i,j

Proposition 4.7. The n blocks Hn(0, q)ei, i ∈ Zn, are isomorphic to each other.

Proof. Let i ∈ Zn. Since ei =
∑n−1

j=0 ei+j,j, Hn(0, q)ei = ⊕n−1
j=0 Hn(0, q)ei+j,j as

Hn(0, q)-modules. Then by Corollary 4.6, dim(Hn(0, q)ei) = n3. By Lemma 4.3,
one gets bei = qicei. It follows that Hn(0, q)ei = span{ajdkblei|0 6 j, k, l}, and so
{ajdkblei|0 6 j, k, l} is a K-basis of Hn(0, q)ei. Let B be the subalgebra of Hn(q)
generated by a, b and d. Then one can easily check that the block Hn(0, q)ei is
isomorphic, as an algebra, to the subalgebra B of Hn(0, q). Thus, the proposition
follows.
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Let i ∈ Zn be fixed. For any j ∈ Zn, let ej = ei+j,j. Then the Gabriel quiver
Q = (Q0, Q1) of the block Hn(0, q)ei is given by

e0

e1

e2

en−1

en−2

ej+1

ej

ej−1

β0

α0

β1

α1

βn−1

αn−1

βn−2

αn−2
β0

α0

αj−1

β j−1

αj

β j

where for j ∈ Zn, the arrows αj, β j correspond to ae j, dej+1, respectively. The
admissible ideal I has the following relations:

β jαj − qαj−1β j−1 = 0, αj+(n−1) · · · αj+1αj = 0, β j−(n−1) · · · β j−1β j = 0, j ∈ Zn.

Proposition 4.8. Si,j ⊗ Sk,l
∼= Si+k,j+l and Si,j ⊗ Pk,l

∼= Pk,l ⊗ Si,j
∼= Pi+k,j+l for all

i, j, k, l ∈ Zn.

Proof. It is similar to Proposition 3.6.

Proposition 4.9. Let i, j, k, l ∈ Zn. Then Pi,j ⊗ Pk,l
∼= ⊕t∈ZnnPi+k+t,j+l+t.

Proof. It is similar to Proposition 3.7. Note that [P0,0] =
∑n−1

t=0 n[St,t] in G0(Hn(0, q))
by Corollaries 4.5 and 4.6.

Theorem 4.10. rp(Hn(0, q)) ∼= Z[x, y, z]/(xn − 1, yn − 1, z2 − n
∑n−1

i=0 xiz).

Proof. It is similar to Theorem 3.8. Note that rp(Hn(0, q)) is a commutative ring
generated by [S1,1], [S0,1] and [P0,0].

Now we consider the projective class algebra Rp(Hn(0, q)). By Theorem 4.10,
we have

Rp(Hn(0, q)) ∼= K[x, y, z]/(xn − 1, yn − 1, z2 − n
∑n−1

i=0 xiz).

Put I = (xn − 1, yn − 1, z2 − n
∑n−1

i=0 xiz) and let J(K[x, y, z]/I) be the Jacob-
son radical of K[x, y, z]/I. For any u ∈ K[x, y, z], let u denote the image of u
under the canonical projection K[x, y, z] → K[x, y, z]/I. Then by Theorem 4.10,
K[x, y, z]/I is of dimension 2n2 with a K-basis {xiyj, xiyjz|i, j ∈ Zn}. Since xn = 1

and z2 = n
∑n−1

i=0 xiz, one gets (1 − x)z2 = 0, and so ((1 − x)z)2 = 0. Conse-
quently, the ideal ((1 − x)z) of K[x, y, z]/I generated by (1 − x)z is contained in
J(K[x, y, z]/I). Moreover, dim((K[x, y, z]/I)/((1 − x)z)) = n(n + 1) and

(K[x, y, z]/I)/((1 − x)z) ∼= K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z).
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Let π : K[x, y, z] → K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z) be the canonical

projection. For any integer k > 0, let fk = 1
n

∑n−1
i=0 qkixi and gk = 1

n

∑n−1
i=0 qkiyi in

K[x, y, z]. Then a straightforward verification shows that

{π( fkgl), π(( f0 −
1
n2 z)gl), π( 1

n2 zgl)|1 6 k 6 n − 1, 0 6 l 6 n − 1}

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive
idempotents in K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z). Therefore,

K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z) ∼= K
n(n+1).

It follows that J(K[x, y, z]/I) ⊆ ((1 − x)z), and so J(K[x, y, z]/I) = ((1 − x)z).
This shows the following proposition.

Proposition 4.11. Let J(Rp(Hn(0, q))) be the Jacobson radical of Rp(Hn(0, q)). Then
J(Rp(Hn(0, q))) = ((1 − [S1,1])[P0,0]) and

Rp(Hn(0, q))/J(Rp(Hn(0, q)))
∼= K[x, y, z]/(xn − 1, yn − 1, z2 − n2z, (1 − x)z) ∼= K

n(n+1).

5 The Projective Class Ring of Hn(1, q)

In this section, we will study the projective class ring of Hn(1, q). The finite
dimensional indecomposable Hn(1, q)-modules are classified in [9, 10]. There are
n2 simple modules V(l, r) over Hn(1, q), where 1 6 l 6 n and r ∈ Zn. The sim-
ple modules V(n, r) are both projective and injective. Let P(l, r) be the projective
cover of V(l, r). Then P(l, r) is the injective envelope of V(l, r) as well. Moreover,
P(n, r) ∼= V(n, r).

Note that M ⊗ N ∼= N ⊗ M for any modules M and N since Hn(1, q) is a
quasitriangular Hopf algebra. For any t ∈ Z, let c(t) := [ t+1

2 ] be the integer

part of t+1
2 . That is, c(t) is the maximal integer with respect to c(t) 6 t+1

2 . Then
c(t) + c(t − 1) = t.

Convention: If ⊕l6i6mMi is a term in a decomposition of a module, then it
disappears when l > m.

Lemma 5.1. Let 1 6 l, l′ 6 n and r, r′ ∈ Zn.
(1) V(1, r)⊗ V(l, r′) ∼= V(l, r + r′).
(2) V(1, r)⊗ P(l, r′) ∼= P(l, r + r′).

(3) If l 6 l′ and l + l′ 6 n + 1, then V(l, r) ⊗ V(l′, r′) ∼= ⊕l−1
i=0V(l + l′ − 1 − 2i,

r + r′ + i).
(4) If l 6 l′ and t = l + l′ − (n + 1) > 0, then

V(l, r)⊗ V(l′, r′) ∼= (⊕t
i=c(t)P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕t+16i6l−1V(l + l′ − 1 − 2i, r + r′ + i)).

(5) If l 6 l′ < n and l + l′ 6 n, then V(l, r) ⊗ P(l′, r′) ∼= ⊕l−1
i=0P(l + l′ − 1 − 2i,

r + r′ + i).
(6) If l 6 l′ < n and t = l + l′ − (n + 1) > 0, then

V(l, r)⊗ P(l′, r′) ∼= (⊕t
i=c(t)2P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l−1
i=t+1P(l + l′ − 1 − 2i, r + r′ + i)).
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(7) If l′ < l < n and l + l′ 6 n, then

V(l, r)⊗ P(l′, r′) ∼= (⊕l ′−1
i=0 P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l−1
i=c(l+l ′−1)2P(n + l + l′ − 1 − 2i, r + r′ + i)).

(8) If l′ < l < n and t = l + l′ − (n + 1) > 0, then

V(l, r)⊗ P(l′, r′) ∼= (⊕t
i=c(t)2P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l ′−1
i=t+1P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l−1
i=c(l+l ′−1)2P(n + l + l′ − 1 − 2i, r + r′ + i)).

(9) If l < n, then

V(n, r)⊗ P(l, r′) ∼= (⊕l−1
i=c(l−1)2P(n + l − 1 − 2i, r + r′ + i))

⊕(⊕
c(n−l)
i=1 2P(l − 1 + 2i, r + r′ − i)).

(10) If l 6 l′ < n and l + l′ 6 n, then

P(l, r)⊗ P(l′, r′) ∼= (⊕l−1
i=02P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l ′+l−1
i=l ′ 2P(n + l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕c(l ′+l−1)6i6l ′−14P(n + l + l′ − 1 − 2i, r + r′ + i))
⊕(⊕16i6c(n−l−l ′)4P(l + l′ − 1 + 2i, r + r′ − i)).

(11) If l 6 l′ < n and t = l + l′ − (n + 1) > 0, then

P(l, r)⊗ P(l′, r′) ∼= (⊕t
i=c(t)4P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕l−1
i=t+12P(l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕n−1
i=l ′ 2P(n + l + l′ − 1 − 2i, r + r′ + i))

⊕(⊕c(l ′+l−1)6i6l ′−14P(n + l + l′ − 1 − 2i, r + r′ + i)).

Proof. It follows from [9, 12].

By Lemma 5.1 or [12, Corollary 3.2], the category consisting of semisimple
modules and projective modules in Hn(1, q)-mod is a monoidal subcategory of
Hn(1, q)-mod. Therefore, we have the following corollary.

Corollary 5.2. rp(Hn(1, q)) is a free Z-module with a Z-basis {[V(k, r)], [P(l, r)]|1 6

k 6 n, 1 6 l 6 n − 1, r ∈ Zn}.

Lemma 5.3. Let 2 6 m 6 n − 1. Then

V(2, 0)⊗m ∼= ⊕
[m

2 ]
i=0

m−2i+1
m−i+1 (

m
i )V(m + 1 − 2i, i).

Proof. By Lemma 5.1(3), one can easily check that the isomorphism in the lemma
holds for m = 2 and m = 3. Now let 3 < m 6 n − 1 and assume

V(2, 0)⊗(m−1) ∼= ⊕
[m−1

2 ]
i=0

m−2i
m−i (

m−1
i )V(m − 2i, i).
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If m = 2l is even, then by the induction hypothesis and Lemma 5.1(3), we have

V(2, 0)⊗m = V(2, 0)⊗ V(2, 0)⊗(m−1)

∼= ⊕l−1
i=0

2l−2i
2l−i (

2l−1
i )V(2, 0)⊗ V(2l − 2i, i)

∼= ⊕l−1
i=0

2l−2i
2l−i (

2l−1
i )(V(2l + 1 − 2i, i)⊕ V(2l − 1 − 2i, i + 1))

∼= V(2l + 1, 0)⊕ 2
l+1(

2l−1
l−1 )V(1, l)

⊕(⊕l−1
i=1(

2l−2i
2l−i (

2l−1
i ) + 2l−2i+2

2l−i+1 (
2l−1
i−1 ))V(2l + 1 − 2i, i))

∼= V(2l + 1, 0)⊕ 2
l+1(

2l−1
l−1 )V(1, l)

⊕(⊕l−1
i=1

2l+1−2i
2l+1−i (

2l
i )V(2l + 1 − 2i, i))

∼= ⊕l
i=0

2l+1−2i
2l+1−i (

2l
i )V(2l + 1 − 2i, i))

∼= ⊕
[m

2 ]
i=0

m+1−2i
m+1−i (

m
i )V(m + 1 − 2i, i).

If m = 2l + 1 is odd, then by the same reason as above, we have

V(2, 0)⊗m

= V(2, 0)⊗ V(2, 0)⊗(m−1)

∼= ⊕l
i=0

2l+1−2i
2l+1−i (

2l
i )V(2, 0)⊗ V(2l + 1 − 2i, i)

∼= (⊕l−1
i=0

2l+1−2i
2l+1−i (

2l
i )V(2l + 2 − 2i, i)⊕ V(2l − 2i, i + 1))⊕ 1

l+1(
2l
l )V(2, l)

∼= (⊕l
i=0

2l+1−2i
2l+1−i (

2l
i )V(2l + 2 − 2i, i))⊕ (⊕l−1

i=0
2l+1−2i
2l+1−i (

2l
i )V(2l − 2i, i + 1))

∼= (⊕l
i=0

2l+1−2i
2l+1−i (

2l
i )V(2l + 2 − 2i, i))⊕ (⊕l

i=1
2l+3−2i
2l+2−i (

2l
i−1)V(2l + 2 − 2i, i))

∼= V(2l + 2, 0)⊕ (⊕l
i=1(

2l+1−2i
2l+1−i (

2l
i ) +

2l+3−2i
2l+2−i (

2l
i−1))V(2l + 2 − 2i, i))

∼= V(2l + 2, 0)⊕ (⊕l
i=1

2l+2−2i
2l+2−i (

2l+1
i )V(2l + 2 − 2i, i))

∼= ⊕l
i=0

2l+2−2i
2l+2−i (

2l+1
i )V(2l + 2 − 2i, i)

∼= ⊕
[m

2 ]
i=0

m+1−2i
m+1−i (

m
i )V(m + 1 − 2i, i).

Throughout the following, let x = [V(1, 1)] and y = [V(2, 0)] in rp(Hn(1, q)).

Corollary 5.4. The following equations hold in rp(Hn(1, q)) (or r(Hn(1, q))):

(1) xn = 1 and [V(m, i)] = xi[V(m, 0)] for all 1 6 m 6 n and i ∈ Z;
(2) [P(m, i)] = xi[P(m, 0)] for all 1 6 m < n and i ∈ Z;
(3) y[V(n, 0)] = x[P(n − 1, 0)];
(4) y[P(1, 0)] = [P(2, 0)] + 2x[V(n, 0)];
(5) y[P(n − 1, 0)] = 2[V(n, 0)] + x[P(n − 2, 0)];
(6) y[P(m, 0)] = [P(m + 1, 0)] + x[P(m − 1, 0)] for all 2 6 m 6 n − 2;

(7) [V(m + 1, 0)] = ym −
∑[m

2 ]
i=1

m+1−2i
m+1−i (

m
i )xi[V(m + 1 − 2i, 0)] for all 2 6 m < n.

Proof. It follows from Lemmas 5.1 and 5.3.

Proposition 5.5. The commutative ring rp(Hn(1, q)) is generated by x and y.

Proof. Let R be the subring of r(Hn(1, q)) generated by x and y. Then
R ⊆ rp(Hn(1, q)). By Corollary 5.4(1), one gets that [V(1, i)] = xi ∈ R and

[V(2, i)] = xiy ∈ R for all i ∈ Zn. Now let 2 6 m < n and assume [V(l, i)] ∈ R
for all 1 6 l 6 m and i ∈ Zn. Then by Corollary 5.4(1) and (7), one gets that

[V(m + 1, i)] = xi[V(m + 1, 0)] = xiym −
∑[m

2 ]
j=1

m+1−2j
m+1−j (

m
j )xi+j[V(m + 1 − 2j, 0)] ∈
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R for all i ∈ Zn. Thus, we have proven that [V(m, i)] ∈ R for all 1 6 m 6 n and
i ∈ Zn. In particular, [V(n, i)] ∈ R for all i ∈ Zn.

By Corollary 5.4(2) and (3), [P(n− 1, i)] = xi[P(n− 1, 0)] = xi−1y[V(n, 0)] ∈ R
for all i ∈ Zn. Then by Corollary 5.4(2) and (5), [P(n − 2, i)] = xi[P(n − 2, 0)] =
xi−1(y[P(n − 1, 0)] − 2[V(n, 0)]) ∈ R for any i ∈ Zn. Now let 1 < m 6 n − 2
and assume that [P(l, i)] ∈ R for all m 6 l < n and i ∈ Zn. Then by Corollary
5.4(2) and (6), we have [P(m − 1, i)] = xi[P(m − 1, 0)] = xi−1(y[P(m, 0)]− [P(m +
1, 0)]) ∈ R. Thus, we have shown that [P(m, i)] ∈ R for all 1 6 m < n and
i ∈ Zn. Then it follows from Corollary 5.2 that R = rp(Hn(1, q)). This completes
the proof.

Lemma 5.6. (1) [V(m, 0)] =
∑[m−1

2 ]
i=0 (−1)i(m−1−i

i )xiym−1−2i for all 1 6 m 6 n.
(2) Let 1 6 m 6 n − 1. Then

[P(m, 0)] = (
∑[ n−m

2 ]
i=0 (−1)i n−m

n−m−i(
n−m−i

i )xm+iyn−m−2i)[V(n, 0)].

Proof. (1) It is similar to [38, Lemma 3.2].

(2) Note that n−m
n−m−i(

n−m−i
i ) is a positive integer for any 1 6 m 6 n − 1 and

0 6 i 6 [n−m
2 ]. We prove the equality by induction on n − m. If m = n − 1,

then by Corollary 5.4(1) and (3), [P(n − 1, 0)] = x−1y[V(n, 0)] = xn−1y[V(n, 0)],
as desired. If m = n − 2, then by Corollary 5.4(1) and (5), we have [P(n − 2, 0)] =
x−1y[P(n − 1, 0)]− 2x−1[V(n, 0)] = (xn−2y2 − 2xn−1)[V(n, 0)], as desired. Now
let 1 6 m < n− 2. Then by Corollary 5.4(1) and (6), and the induction hypotheses,
we have

[P(m, 0)] = x−1y[P(m + 1, 0)]− x−1[P(m + 2, 0)]

= x−1y(
∑[ n−m−1

2 ]
i=0 (−1)i n−m−1

n−m−1−i(
n−m−1−i

i )xm+1+iyn−m−1−2i)[V(n, 0)]

−x−1(
∑[ n−m−2

2 ]
i=0 (−1)i n−m−2

n−m−2−i(
n−m−2−i

i )xm+2+iyn−m−2−2i)[V(n, 0)]

= (
∑[ n−m−1

2 ]
i=0 (−1)i n−m−1

n−m−1−i(
n−m−1−i

i )xm+iyn−m−2i)[V(n, 0)]

+(
∑[ n−m

2 ]
i=1 (−1)i n−m−2

n−m−1−i(
n−m−1−i

i−1 )xm+iyn−m−2i)[V(n, 0)].

If n − m is odd, then [n−m−1
2 ] = n−m−1

2 = [n−m
2 ], and hence

∑[ n−m−1
2 ]

i=0 (−1)i n−m−1
n−m−1−i(

n−m−1−i
i )xm+iyn−m−2i

+
∑[ n−m

2 ]
i=1 (−1)i n−m−2

n−m−1−i(
n−m−1−i

i−1 )xm+iyn−m−2i

= xmyn−m +
∑[ n−m

2 ]
i=1 (−1)i( n−m−1

n−m−1−i(
n−m−1−i

i )

+ n−m−2
n−m−1−i(

n−m−1−i
i−1 ))xm+iyn−m−2i

=
∑[ n−m

2 ]
i=0 (−1)i n−m

n−m−i(
n−m−i

i )xm+iyn−m−2i.

If n − m is even, then [n−m−1
2 ] = n−m−2

2 = [n−m
2 ]− 1, and hence

∑[ n−m−1
2 ]

i=0 (−1)i n−m−1
n−m−1−i(

n−m−1−i
i )xm+iyn−m−2i

+
∑[ n−m

2 ]
i=1 (−1)i n−m−2

n−m−1−i(
n−m−1−i

i−1 )xm+iyn−m−2i

= xmyn−m +
∑[ n−m

2 ]−1
i=1 (−1)i( n−m−1

n−m−1−i(
n−m−1−i

i )

+ n−m−2
n−m−1−i(

n−m−1−i
i−1 ))xm+iyn−m−2i + (−1)

n−m
2 2x

n+m
2

=
∑[ n−m

2 ]
i=0 (−1)i n−m

n−m−i(
n−m−i

i )xm+iyn−m−2i.
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Therefore, [P(m, 0)] = (
∑[ n−m

2 ]
i=0 (−1)i n−m

n−m−i(
n−m−i

i )xm+iyn−m−2i)[V(n, 0)].

Proposition 5.7. In rp(Hn(1, q)) (or r(Hn(1, q))), we have

(
∑[ n

2 ]
i=0(−1)i n

n−i(
n−i

i )xiyn−2i − 2)(
∑[ n−1

2 ]
i=0 (−1)i(n−1−i

i )xiyn−1−2i) = 0.

Proof. By Lemma 5.6(2), we have

x−1y[P(1, 0)] = (
∑[ n−1

2 ]
i=0 (−1)i n−1

n−1−i(
n−1−i

i )xiyn−2i)[V(n, 0)].

On the other hand, by Corollary 5.4(4) and Lemma 5.6(2), we have

x−1y[P(1, 0)] = x−1[P(2, 0)] + 2[V(n, 0)]

= (
∑[ n−2

2 ]
i=0 (−1)i n−2

n−2−i (
n−2−i

i )xi+1yn−2−2i + 2)[V(n, 0)]

= (
∑[ n

2 ]
i=1(−1)i−1 n−2

n−1−i (
n−1−i

i−1 )xiyn−2i + 2)[V(n, 0)].

Therefore, one gets

(
∑[ n−1

2 ]
i=0 (−1)i n−1

n−1−i(
n−1−i

i )xiyn−2i)[V(n, 0)]

= (
∑[ n

2 ]
i=1(−1)i−1 n−2

n−1−i(
n−1−i

i−1 )xiyn−2i + 2)[V(n, 0)],

which is equivalent to

(
∑[ n−1

2 ]
i=0 (−1)i n−1

n−1−i(
n−1−i

i )xiyn−2i

−
∑[ n

2 ]
i=1(−1)i−1 n−2

n−1−i(
n−1−i

i−1 )xiyn−2i − 2)[V(n, 0)] = 0.

Then a computation similar to the proof of Lemma 5.6 shows that

∑[ n−1
2 ]

i=0 (−1)i n−1
n−1−i (

n−1−i
i )xiyn−2i −

∑[ n
2 ]

i=1(−1)i−1 n−2
n−1−i (

n−1−i
i−1 )xiyn−2i − 2

=
∑[ n

2 ]
i=0(−1)i n

n−i(
n−i

i )xiyn−2i − 2.

Thus, the proposition follows from Lemma 5.6(1).

Corollary 5.8. {xlym|0 6 l 6 n − 1, 0 6 m 6 2n − 2} is a Z-basis of rp(Hn(1, q)).

Proof. By Corollary 5.4(1), xn = 1. By Proposition 5.7, we have

y2n−1 = −
∑[ n−1

2 ]
i=1 (−1)i(n−1−i

i )xiy2n−1−2i

−
∑[ n

2 ]
i=1(−1)i n

n−i(
n−i

i )xiy2n−1−2i + 2yn−1

−(
∑[ n

2 ]
i=1(−1)i n

n−i (
n−i

i )xiyn−2i − 2)(
∑[ n−1

2 ]
i=1 (−1)i(n−1−i

i )xiyn−1−2i).

Then it follows from Proposition 5.5 that rp(Hn(1, q)) is generated, as a Z-module,

by {xlym|0 6 l 6 n − 1, 0 6 m 6 2n − 2}. By Corollary 5.2, rp(Hn(1, q)) is a free

Z-module of rank n(2n − 1), and hence {xlym|0 6 l 6 n − 1, 0 6 m 6 2n − 2} is
a Z-basis of rp(Hn(1, q)).
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Theorem 5.9. Let Z[x, y] be the polynomial ring in two variables x and y, and I the
ideal of Z[x, y] generated by xn − 1 and

(
∑[ n

2 ]
i=0(−1)i n

n−i(
n−i

i )xiyn−2i − 2)(
∑[ n−1

2 ]
i=0 (−1)i(n−1−i

i )xiyn−1−2i).

Then rp(Hn(1, q)) is isomorphic to the quotient ring Z[x, y]/I.

Proof. By Proposition 5.5, there is a ring epimorphism φ : Z[x, y] → rp(Hn(1, q))
given by φ(x) = [V(1, 1)] and φ(y) = [V(2, 0)]. By Corollary 5.4(1) and Propo-
sition 5.7, φ(I) = 0. Hence φ induces a ring epimorphism φ : Z[x, y]/I →
rp(Hn(1, q)) such that φ = φ ◦ π, where π : Z[x, y] → Z[x, y]/I is the canonical
projection. Let u = π(u) for any u ∈ Z[x, y]. Then by the definition of I and the
proof of Corollary 5.8, one knows that Z[x, y]/I is generated, as a Z-module, by
{xlym|0 6 l 6 n − 1, 0 6 m 6 2n − 2}. For any 0 6 l 6 n − 1 and 0 6 m 6 2n− 2,
we have φ(xlym) = φ(x)lφ(y)m = φ(x)lφ(y)m = [V(1, 1)]l [V(2, 0)]m. By Corol-
lary 5.8, {[V(1, 1)]l [V(2, 0)]m|0 6 l 6 n − 1, 0 6 m 6 2n − 2} is a linearly inde-
pendent set over Z, which implies that {xlym|0 6 l 6 n − 1, 0 6 m 6 2n − 2}
is also a linearly independent set over Z. It follows that {xlym|0 6 l 6 n − 1,
0 6 m 6 2n − 2} is a Z-basis of Z[x, y]/I. Consequently, φ is a Z-module iso-
morphism, and so it is a ring isomorphism.
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