The Projective Class Rings of a family of pointed Hopf algebras of Rank two

Hui-Xiang Chen Hassen Suleman Esmael Mohammed Weijun Lin Hua Sun

Abstract

In this paper, we compute the projective class rings of the tensor product $\mathcal{H}_n(q) = A_n(q) \otimes A_n(q^{-1})$ of Taft algebras $A_n(q)$ and $A_n(q^{-1})$, and its cocycle deformations $H_n(0,q)$ and $H_n(1,q)$, where n > 2 is a positive integer and q is a primitive n-th root of unity. It is shown that the projective class rings $r_p(\mathcal{H}_n(q))$, $r_p(\mathcal{H}_n(0,q))$ and $r_p(\mathcal{H}_n(1,q))$ are commutative rings generated by three elements, three elements and two elements subject to some relations, respectively. It turns out that even $\mathcal{H}_n(q)$, $H_n(0,q)$ and $H_n(1,q)$ are cocycle twist-equivalent to each other, they are of different representation types: wild, wild and tame, respectively.

1 Introduction

Let H be a Hopf algebra over a field \mathbb{K} . Doi [18] introduced a cocycle twisted Hopf algebra H^{σ} for a convolution invertible 2-cocycle σ on H. It is shown in [19, 28] that the Drinfeld double D(H) is a cocycle twisting of the tensor product Hopf algebra $H^{*cop} \otimes H$. The 2-cocycle twisting is extensively employed in various researches. For instance, Andruskiewitsch et al. [1] considered the twists of Nichols algebras associated to racks and cocycles. Guillot, Kassel and Masuoka [21] obtained some examples by twisting comodule algebras by 2-cocycles. It is well known that the monoidal category \mathcal{M}^{H} of right H-comodules is equivalent to the monoidal category $\mathcal{M}^{H^{\sigma}}$ of right H^{σ} -comodules. On the other hand, we

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 693-711

Received by the editors in December 2015.

Communicated by S. Caenepeel.

²⁰¹⁰ Mathematics Subject Classification : 16G60, 16T05.

Key words and phrases : Green ring, indecomposable module, Taft algebra.

know that the braided monoidal category ${}_{H}\mathcal{YD}^{H}$ of Yetter-Drinfeld *H*-modules is the center of the monoidal category \mathcal{M}^{H} for any Hopf algebra *H* (e.g., see [23]). Hence the monoidal equivalence from \mathcal{M}^{H} to $\mathcal{M}^{H^{\sigma}}$ gives rise to a braided monoidal equivalence from ${}_{H}\mathcal{YD}^{H}$ to ${}_{H^{\sigma}}\mathcal{YD}^{H^{\sigma}}$. Chen and Zhang [14] described a braided monoidal equivalent functor from ${}_{H}\mathcal{YD}^{H}$ to ${}_{H^{\sigma}}\mathcal{YD}^{H^{\sigma}}$. Benkart et al. [3] used a result of Majid and Oeckl [30] to give a category equivalence between Yetter-Drinfeld modules for a finite-dimensional pointed Hopf algebra *H* and those for its cocycle twisting H^{σ} . However, the Yetter-Drinfeld module category ${}_{H}\mathcal{YD}^{H}$ is also the center of the monoidal category ${}_{H}\mathcal{M}$ of left *H*-modules. This gives rise to a natural question:

Is there any relations between the two monoidal categories ${}_{H}\mathcal{M}$ and ${}_{H^{\sigma}}\mathcal{M}$ of left modules over two cocycle twist-equivalent Hopf algebras H and H^{σ} ? or how to detect the two monoidal categories ${}_{H}\mathcal{M}$ and ${}_{H^{\sigma}}\mathcal{M}$?

This article seeks to address this question through investigating the representation types and projective class rings of a family of pointed Hopf algebras of rank 2, the tensor products of two Taft algebras, and their two cocycle deformations.

In the investigation of the monoidal category of modules over a Hopf algebra H, the decomposition problem of tensor products of indecomposables is of most importance and has received enormous attentions. Our approach is to explore the representation type of H and the projective class ring of H, which is a subring of the representation ring (or Green ring) of H. Originally, the concept of the Green ring r(H) stems from the modular representations of finite groups (see [20], etc.) Since then, there have been plenty of works on the Green rings. For finite-dimensional group algebras, one can refer to [2, 4, 5, 6, 22]. For Hopf algebras and quantum groups, one can see [13, 15, 16, 25, 36, 37].

The n^4 -dimensional Hopf algebra $H_n(p,q)$ was introduced in [8], where $n \ge 2$ is an integer, $q \in \mathbb{K}$ is a primitive *n*-th root of unity and $p \in \mathbb{K}$. If $p \ne 0$, then $H_n(p,q)$ is isomorphic to the Drinfeld double $D(A_n(q^{-1}))$ of the Taft algebra $A_n(q^{-1})$. In particular, we have $H_n(p,q) \cong H_n(1,q) \cong D(A_n(q^{-1}))$ for any $p \ne 0$. Moreover, $H_n(p,q)$ is a cocycle deformation of $A_n(q) \otimes A_n(q^{-1})$. For the details, the reader is directed to [8, 9]. When n = 2 (q = -1), $A_2(-1)$ is exactly the Sweedler 4-dimensional Hopf algebra H_4 . Chen studied the finite dimensional representations of $H_n(1,q)$ in [9, 10], and the Green ring $r(D(H_4))$ in [11]. Using a different method, Li and Hu [24] also studied the finite dimensional representations of the Drinfeld double $D(H_4)$, the Green ring $r(D(H_4))$ and the projective class ring $p(D(H_4))$. They also studied two Hopf algebras which are cocycle deformations of $D(H_4)$. By [10], one knows that $D(H_4)$ is of tame representation type. By [24], the two cocycle deformations of $D(H_4)$ are also of tame representation type.

In this paper, we study the three cocycle twist-equivalent Hopf algebras $\mathcal{H}_n(q) = A_n(q) \otimes A_n(q^{-1})$, $H_n(0,q)$ and $H_n(1,q)$ by investigating their representation types and projective class rings, where $n \ge 3$. In Section 2, we introduce the Taft algebras $A_n(q)$, the tensor product $\mathcal{H}_n(q) = A_n(q) \otimes A_n(q^{-1})$ and the Hopf algebras $H_n(p,q)$. In Section 3, we first show that $\mathcal{H}_n(q)$ is of wild representation type. With a complete set of orthogonal primitive idempotents, we classify the simple modules and indecomposable projective modules over $\mathcal{H}_n(q)$, and de-

compose the tensor products of these modules. This leads the description of the projective class ring $r_v(\mathcal{H}_n(q))$, the Jacobson radical $J(R_v(\mathcal{H}_n(q)))$ of the projective class algebra $R_p(\mathcal{H}_n(q))$ and the quotient algebra $R_p(\mathcal{H}_n(q))/J(R_p(\mathcal{H}_n(q)))$. In Section 4, we first show that $H_n(0,q)$ is a symmetric algebra of wild representation type. Then we give a complete set of orthogonal primitive idempotents with the Gabriel quiver, and classify the simple modules and indecomposable projective modules over $H_n(0,q)$. We also describe the projective class ring $r_p(H_n(0,q))$, the Jacobson radical $J(R_n(H_n(0,q)))$ of the projective class algebra $R_n(H_n(0,q))$ and the quotient algebra $R_{\nu}(H_n(0,q))/J(R_{\nu}(H_n(0,q)))$. In Section 5, using the decompositions of tensor products of indecomposables over $H_n(1,q)$ given in [12], we describe the structure of the projective class ring $r_p(H_n(1,q))$. It is interesting to notice that even the Hopf algebras $\mathcal{H}_n(q)$, $H_n(0,q)$ and $H_n(1,q)$ are cocycle twist-equivalent to each other, they own the different number of blocks with 1, *n* and $\frac{n(n+1)}{2}$, respectively (see [10, Corollary 2.7] for $H_n(1,q)$). $\mathcal{H}_n(q)$ and $H_n(0,q)$ are basic algebras of wild representation type, but $H_n(1,q)$ is not basic and is of tame representation type. $H_n(0,q)$ and $H_n(1,q)$ are symmetric algebras, but $\mathcal{H}_n(q)$ is not.

2 Preliminaries

Throughout, we work over an algebraically closed field K. Unless otherwise stated, all algebras, Hopf algebras and modules are defined over K; all modules are left modules and finite dimensional; all maps are K-linear; dim and \otimes stand for dim_K and \otimes_{K} , respectively. Given an algebra *A*, *A*-mod denotes the category of finite-dimensional *A*-modules. For any *A*-module *M* and nonnegative integer *l*, let *lM* denote the direct sum of *l* copies of *M*. For the theory of Hopf algebras and quantum groups, we refer to [23, 29, 31, 34]. Let Z denote all integers, and $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

Let *H* be a Hopf algebra. The Green ring r(H) of *H* can be defined as follows. r(H) is the abelian group generated by the isomorphism classes [M] of *M* in *H*-mod modulo the relations $[M \oplus V] = [M] + [V]$. The multiplication of r(H) is given by the tensor product of *H*-modules, that is, $[M][V] = [M \otimes V]$. Then r(H) is an associative ring. The projective class ring $r_p(H)$ of *H* is the subring of r(H) generated by projective modules and simple modules (see [17]). Then the Green algebra R(H) and projective algebra $R_p(H)$ are associative K-algebras defined by $R(H) := \mathbb{K} \otimes_{\mathbb{Z}} r(H)$ and $R_p(H) := \mathbb{K} \otimes_{\mathbb{Z}} r_p(H)$, respectively. Note that r(H) is a free abelian group with a Z-basis $\{[V]|V \in ind(H)\}$, where ind(H) denotes the category of finite dimensional indecomposable *H*-modules.

The Grothendieck ring $G_0(H)$ of H is defined similarly. $G_0(H)$ is the abelian group generated by the isomorphism classes [M] of M in H-mod modulo the relations [M] = [N] + [V] for any short exact sequence $0 \rightarrow N \rightarrow M \rightarrow V \rightarrow 0$ in H-mod. The multiplication of $G_0(H)$ is given by the tensor product of H-modules, that is, $[M][V] = [M \otimes V]$. Then $G_0(H)$ is also an associative ring. Moreover, there is a canonical ring epimorphism from r(H) onto $G_0(H)$.

Let $n \ge 2$ be an integer and $q \in \mathbb{K}$ a primitive *n*-th root of unity. Then the n^2 -dimensional Taft Hopf algebra $A_n(q)$ is defined as follows (see [35]): as an

algebra, $A_n(q)$ is generated by g and x with relations

$$g^n = 1$$
, $x^n = 0$, $xg = qgx$.

The coalgebra structure and antipode are given by

$$\Delta(g) = g \otimes g, \ \Delta(x) = x \otimes g + 1 \otimes x, \ \varepsilon(g) = 1, \ \varepsilon(x) = 0, \\ S(g) = g^{-1} = g^{n-1}, \ S(x) = -xg^{-1} = -q^{-1}g^{n-1}x.$$

Since q^{-1} is also a primitive *n*-th root of unity, one can define another Taft Hopf algebra $A_n(q^{-1})$, which is generated, as an algebra, by g_1 and x_1 with relations $g_1^n = 1$, $x_1^n = 0$ and $x_1g_1 = q^{-1}g_1x_1$. The coalgebra structure and antipode are given similarly to $A_n(q)$. Then $A_n(q^{-1}) \cong A_n(q)^{\text{op}}$ as Hopf algebras.

The first author Chen introduced a Hopf algebra $H_n(p,q)$ in [8], where $p,q \in \mathbb{K}$ and q is a primitive *n*-th root of unity. It was shown there that $H_n(p,q)$ is isomorphic to a cocycle deformation of the tensor product $A_n(q) \otimes A_n(q^{-1})$.

The tensor product $A_n(q) \otimes A_n(q^{-1})$ can be described as follows. Let $\mathcal{H}_n(q)$ be the algebra generated by *a*, *b*, *c* and *d* subject to the relations:

$$ba = qab, db = bd, ca = ac, dc = qcd, cb = bc, a^n = 0, b^n = 1, c^n = 1, d^n = 0, da = ad$$

Then $\mathcal{H}_n(q)$ is a Hopf algebra with the coalgebra structure and antipode given by

$$\begin{array}{ll} \triangle(a) = a \otimes b + 1 \otimes a, \quad \varepsilon(a) = 0, \quad S(a) = -ab^{-1} = -ab^{n-1}, \\ \triangle(b) = b \otimes b, \quad \varepsilon(b) = 1, \quad S(b) = b^{-1} = b^{n-1}, \\ \triangle(c) = c \otimes c, \quad \varepsilon(c) = 1, \quad S(c) = c^{-1} = c^{n-1}, \\ \triangle(d) = d \otimes c + 1 \otimes d, \quad \varepsilon(d) = 0, \quad S(d) = -dc^{-1} = -dc^{n-1}. \end{array}$$

It is straightforward to verify that there is a Hopf algebra isomorphism from $\mathcal{H}_n(q)$ to $A_n(q) \otimes A_n(q^{-1})$ via $a \mapsto 1 \otimes x_1$, $b \mapsto 1 \otimes g_1$, $c \mapsto g \otimes 1$ and $d \mapsto x \otimes 1$. Obviously, $\mathcal{H}_n(q)$ is n^4 -dimensional with a K-basis $\{a^i b^j c^l d^k | 0 \leq i, j, l, k \leq n-1\}$.

Let $p \in \mathbb{K}$. Then one can define another n^4 -dimensional Hopf algebra $H_n(p,q)$, which is generated as an algebra by a, b, c and d subject to the relations:

$$ba = qab$$
, $db = qbd$, $ca = qac$, $dc = qcd$, $bc = cb$,
 $a^n = 0$, $b^n = 1$, $c^n = 1$, $d^n = 0$, $da - qad = p(1 - bc)$.

The coalgebra structure and antipode are defined in the same way as $\mathcal{H}_n(q)$ before. $H_n(p,q)$ has a \mathbb{K} -basis $\{a^i b^j c^l d^k | 0 \leq i, j, l, k \leq n-1\}$. When $p \neq 0$, $H_n(p,q) \cong H_n(1,q) \cong D(A_n(q^{-1}))$ (see [8, 9]). If n = 2 (q = -1), then $H_2(1,-1) \cong D(H_4)$, and $H_2(0,-1)$ is exactly the Hopf algebra $\overline{\mathcal{A}}$ in [24].

By [8, Lemma 3.2], there is an invertible skew-pairing $\tau_p : A_n(q) \otimes A_n(q^{-1}) \rightarrow \mathbb{K}$ given by $\tau_p(g^i x^j, x_1^k g_1^l) = \delta_{jk} p^j q^{il}(j)!_q, 0 \leq i, j, k, l < n$. Hence one can form a double crossproduct $A_n(q) \bowtie_{\tau_p} A_n(q^{-1})$. Moreover, $A_n(q) \bowtie_{\tau_p} A_n(q^{-1})$ is isomorphic to $H_n(p,q)$ as a Hopf algebra (see [8, Theorem 3.3]). By [19], τ_p induces an invertible 2-cocycle $[\tau_p]$ on $A_n(q) \otimes A_n(q^{-1})$ such that $A_n(q) \bowtie_{\tau_p} A_n(q^{-1}) = (A_n(q) \otimes A_n(q^{-1}))^{[\tau_p]}$. Thus, there is a corresponding invertible 2-cocycle σ_p on

 $\mathcal{H}_n(q)$ such that $\mathcal{H}_n(q)^{\sigma_p} \cong H_n(p,q)$ as Hopf algebras. In particular, we have $\mathcal{H}_n(q)^{\sigma_0} \cong H_n(0,q)$ and $\mathcal{H}_n(q)^{\sigma_1} \cong H_n(1,q)$. In general, if σ is a convolution invertible 2-cocycle on a Hopf algebra H, then σ^{-1} is an invertible 2-cocycle on H^{σ} and $(H^{\sigma})^{\sigma^{-1}} = H$ (see [7, Lemma 1.2]). More generally, if σ is an invertible 2-cocycle on H and τ is an invertible 2-cocycle on H^{σ} , then $\tau * \sigma$ is an invertible 2-cocycle on H and $\mu^{\tau*\sigma} = (H^{\sigma})^{\tau}$ (see [7, Lemma 1.4]). Thus, the Hopf algebras $\mathcal{H}_n(q), \mathcal{H}_n(0,q)$ and $\mathcal{H}_n(1,q)$ are cocycle twist-equivalent to each other.

Throughout the following, fix an integer n > 2 and let $q \in \mathbb{K}$ be a primitive n-th root of unity. For any $m \in \mathbb{Z}$, denote still by m the image of m under the canonical projection $\mathbb{Z} \to \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

3 The Projective Class Ring of $\mathcal{H}_n(q)$

In this section, we investigate the representations and the projective class ring of $\mathcal{H}_n(q)$, or equivalently, of $A_n(q) \otimes A_n(q^{-1})$.

Let *A* be the subalgebra of $\mathcal{H}_n(q)$ generated by *a* and *d*. Then *A* is isomorphic to the quotient algebra $\mathbb{K}[x,y]/(x^n, y^n)$ of the polynomial algebra $\mathbb{K}[x,y]$ modulo the ideal (x^n, y^n) generated by x^n and y^n . Let $G = G(\mathcal{H}_n(q))$ be the group of group-like elements of $\mathcal{H}_n(q)$. Then $G = \{b^i c^j | i, j \in \mathbb{Z}_n\} \cong \mathbb{Z}_n \times \mathbb{Z}_n$, and $\mathbb{K}G = \mathcal{H}_n(q)_0$, the coradical of $\mathcal{H}_n(q)$. Clearly, *A* is a left $\mathbb{K}G$ -module algebra with the action given by $b \cdot a = qa$, $b \cdot d = d$, $c \cdot a = a$ and $c \cdot d = q^{-1}d$. Hence one can form a smash product algebra $A\#\mathbb{K}G$. It is easy to see that $\mathcal{H}_n(q)$ is isomorphic to $A\#\mathbb{K}G$ as an algebra. Since $n \ge 3$, it follows from [33, p.295(3.4)] that *A* is of wild representation type. Since char(\mathbb{K}) $\nmid |G|$, $\mathbb{K}G$ is a semisimple and cosemisimple Hopf algebra. It follows from [26, Theorem 4.5] that $A\#\mathbb{K}G$ is of wild representation type. As a consequence, we obtain the following result.

Proposition 3.1. $\mathcal{H}_n(q)$ is of wild representation type.

 $\mathcal{H}_n(q)$ has n^2 orthogonal primitive idempotents

$$e_{i,j} = \frac{1}{n^2} \sum_{k,l \in \mathbb{Z}_n} q^{-ik-jl} b^k c^l = \frac{1}{n^2} \sum_{k,l=0}^{n-1} q^{-ik-jl} b^k c^l, \ i, j \in \mathbb{Z}_n.$$

Lemma 3.2. Let $i, j \in \mathbb{Z}_n$. Then

$$be_{i,j} = q^i e_{i,j}, \ ce_{i,j} = q^j e_{i,j}, \ ae_{i,j} = e_{i+1,j}a, \ de_{i,j} = e_{i,j-1}d.$$

Proof. It follows from a straightforward verification.

For $i, j \in \mathbb{Z}_n$, let $S_{i,j}$ be the one dimensional $\mathcal{H}_n(q)$ -module defined by $bv = q^i v$, $cv = q^j v$ and av = dv = 0, $v \in S_{i,j}$. Let $P_{i,j} = P(S_{i,j})$ be the projective cover of $S_{i,j}$. Let $J = \operatorname{rad}(\mathcal{H}_n(q))$ be the Jacobson radical of $\mathcal{H}_n(q)$.

Lemma 3.3. The simple modules $S_{i,j}$, $i, j \in \mathbb{Z}_n$, exhaust all simple modules of $\mathcal{H}_n(q)$, and consequently, the projective modules $P_{i,j}$, $i, j \in \mathbb{Z}_n$, exhaust all indecomposable projective modules of $\mathcal{H}_n(q)$. Moreover, $P_{i,j} \cong \mathcal{H}_n(q)e_{i,j}$ for all $i, j \in \mathbb{Z}_n$.

Proof. Obviously, $a\mathcal{H}_n(q) = \mathcal{H}_n(q)a$ and $d\mathcal{H}_n(q) = \mathcal{H}_n(q)d$. Since $a^n = 0$ and $d^n = 0$, $\mathcal{H}_n(q)a + \mathcal{H}_n(q)d$ is a nilpotent ideal of $\mathcal{H}_n(q)$. Hence $\mathcal{H}_n(q)a + \mathcal{H}_n(q)d \subseteq J$. On the other hand, it is easy to see that the quotient algebra $\mathcal{H}_n(q) / (\mathcal{H}_n(q)a + \mathcal{H}_n(q)d)$ is isomorphic to the group algebra K*G*, where $G = G(\mathcal{H}_n(q)) = \{b^i c^j | 0 \leq i, j \leq n-1\}$, the group of all group-like elements of $\mathcal{H}_n(q)d$. Since K*G* is semisimple, $J \subseteq \mathcal{H}_n(q)a + \mathcal{H}_n(q)d$. Thus, $J = \mathcal{H}_n(q)a + \mathcal{H}_n(q)d$. Therefore, the simple modules $S_{i,j}$ exhaust all simple modules of $\mathcal{H}_n(q)$, and the projective modules $P_{i,j}$ exhaust all indecomposable projective modules of $\mathcal{H}_n(q)$, $i, j \in \mathbb{Z}_n$. The last statement of the lemma follows from Lemma 3.2.

Corollary 3.4. $\mathcal{H}_n(q)$ is a basic algebra. Moreover, J is a Hopf ideal of $\mathcal{H}_n(q)$, and the Loewy length of $\mathcal{H}_n(q)$ is 2n - 1.

Proof. It follows from Lemma 3.3 that $\mathcal{H}_n(q)$ is a basic algebra. By $J = \mathcal{H}_n(q)a + \mathcal{H}_n(q)d$, one can easily check that J is a coideal and $S(J) \subseteq J$. Hence J is a Hopf ideal. By $a^{n-1} \neq 0$ and $d^{n-1} \neq 0$, one gets $(\mathcal{H}_n(q)a + \mathcal{H}_n(q)d)^{2n-2} \neq 0$. By $a^n = d^n = 0$, one gets $(\mathcal{H}_n(q)a + \mathcal{H}_n(q)d)^{2n-1} = 0$. It follows that the Loewy length of $\mathcal{H}_n(q)$ is 2n - 1.

In the rest of this section, we regard that $P_{i,j} = \mathcal{H}_n(q)e_{i,j}$ for all $i, j \in \mathbb{Z}_n$.

Corollary 3.5. $P_{i,j}$ is n^2 -dimensional with a \mathbb{K} -basis $\{a^k d^l e_{i,j} | 0 \leq k, l \leq n-1\}$, $i, j \in \mathbb{Z}_n$. Consequently, $\mathcal{H}_n(q)$ is an indecomposable algebra.

Proof. By Lemma 3.2, $P_{i,j} = \operatorname{span}\{a^k d^l e_{i,j} | 0 \leq k, l \leq n-1\}$, and hence $\dim P_{i,j} \leq n^2$. Now it follows from $\mathcal{H}_n(q) = \bigoplus_{i,j \in \mathbb{Z}_n} \mathcal{H}_n(q) e_{i,j}$ and $\dim \mathcal{H}_n(q) = n^4$ that $P_{i,j}$ is n^2 -dimensional over \mathbb{K} with a basis $\{a^k d^l e_{i,j} | 0 \leq k, l \leq n-1\}$. Then by Lemmas 3.2-3.3, one knows that every simple module is a simple factor of $P_{i,j}$ with the multiplicity one. Consequently, $\mathcal{H}_n(q)$ is an indecomposable algebra.

Given $M \in \mathcal{H}_n(q)$ -mod, for any $\alpha \in \mathbb{K}$ and $u, v \in M$, we use $u \xrightarrow{\alpha} v$ (resp. $u \xrightarrow{\alpha} v$) to represent $a \cdot u = \alpha v$ (resp. $d \cdot u = \alpha v$). Moreover, we omit the decoration of the arrow if $\alpha = 1$.

For $i, j \in \mathbb{Z}_n$, let $e_{i,j}^{k,l} = a^k d^l e_{i,j}$ in $P_{i,j}$, $0 \le k, l \le n - 1$. Then the structure of $P_{i,j}$ can be described as follows:

Proposition 3.6. $S_{i,j} \otimes S_{k,l} \cong S_{i+k,j+l}$ and $S_{i,j} \otimes P_{k,l} \cong P_{k,l} \otimes S_{i,j} \cong P_{i+k,j+l}$ for all $i, j, k, l \in \mathbb{Z}_n$.

Proof. The first isomorphism is obvious. Note that $S_{0,0}$ is the trivial $\mathcal{H}_n(q)$ -module. Since *J* is a Hopf ideal, it follows from [27, Corollary 3.3] and the first isomorphism that $P_{k,l} \otimes S_{i,j} \cong P_{0,0} \otimes S_{k,l} \otimes S_{i,j} \cong P_{0,0} \otimes S_{i+k,j+l} \cong P_{i+k,j+l}$. Similarly, one can show that $S_{i,j} \otimes P_{k,l} \cong P_{i+k,j+l}$, which also follows from the proof of [17, Lemma 3.3].

Proposition 3.7. Let $i, j, k, l \in \mathbb{Z}_n$. Then $P_{i,j} \otimes P_{k,l} \cong \bigoplus_{r,t \in \mathbb{Z}_n} P_{r,t}$.

Proof. By Proposition 3.6, we only need to consider the case of i = j = k = l = 0. For any short exact sequence $0 \to N \to M \to L \to 0$ of modules, the exact sequence $0 \to P_{0,0} \otimes N \to P_{0,0} \otimes M \to P_{0,0} \otimes L \to 0$ is always split since $P_{0,0} \otimes L$ is projective for any module *L*. By Corollary 3.4 and the proof of Corollary 3.5, $[P_{0,0}] = \sum_{r,t \in \mathbb{Z}_n} [S_{r,t}]$ in $G_0(\mathcal{H}_n(q))$. Then it follows from Proposition 3.6 that $P_{0,0} \otimes P_{0,0} \cong \bigoplus_{r,t \in \mathbb{Z}_n} P_{0,0} \otimes S_{r,t} \cong \bigoplus_{r,t \in \mathbb{Z}_n} P_{r,t}$, which is isomorphic to the regular module $\mathcal{H}_n(q)$.

By Propositions 3.6 and 3.7, the projective class ring $r_p(\mathcal{H}_n(q))$ is a commutative ring generated by $[S_{1,0}]$, $[S_{0,1}]$ and $[P_{0,0}]$ subject to the relations $[S_{1,0}]^n = 1$, $[S_{0,1}]^n = 1$ and $[P_{0,0}]^2 = \sum_{i,j=0}^{n-1} [S_{1,0}]^i [S_{0,1}]^j [P_{0,0}]$. Hence we have the following proposition.

Theorem 3.8.
$$r_p(\mathcal{H}_n(q)) \cong \mathbb{Z}[x, y, z] / (x^n - 1, y^n - 1, z^2 - \sum_{i,j=0}^{n-1} x^i y^j z).$$

Proof. By Propositions 3.6 and 3.7, $r_p(\mathcal{H}_n(q))$ is a commutative ring. Moreover, $r_p(\mathcal{H}_n(q))$ is generated, as a \mathbb{Z} -algebra, by $[S_{1,0}]$, $[S_{0,1}]$ and $[P_{0,0}]$. Therefore, there exists a ring epimorphism $\phi : \mathbb{Z}[x, y, z] \to r_p(\mathcal{H}_n(q))$ such that $\phi(x) = [S_{1,0}]$, $\phi(y) = [S_{0,1}]$ and $\phi(z) = [P_{0,0}]$. Let $I = (x^n - 1, y^n - 1, z^2 - \sum_{i,j=0}^{n-1} x^i y^j z)$ be the

ideal of $\mathbb{Z}[x, y, z]$ generated by $x^n - 1, y^n - 1$ and $z^2 - \sum_{i,j=0}^{n-1} x^i y^j z$. Then it follows from Propositions 3.6 and 3.7 that $I \subseteq \text{Ker}(\phi)$. Hence ϕ induces a ring epimorphism $\overline{\phi} : \mathbb{Z}[x, y, z]/I \to r_p(\mathcal{H}_n(q))$ such that $\overline{\phi} \circ \pi = \phi$, where $\pi : \mathbb{Z}[x, y, z] \to \mathbb{Z}[x, y, z]/I$ is the canonical projection. Let $\overline{u} = \pi(u)$ for any $u \in \mathbb{Z}[x, y, z]$. Then $\overline{x}^n = 1, \overline{y}^n = 1$ and $\overline{z}^2 = \sum_{i,j=0}^{n-1} \overline{x}^i \overline{y}^j \overline{z}$ in $\mathbb{Z}[x, y, z]/I$. Hence $\mathbb{Z}[x, y, z]/I$ is generated, as a \mathbb{Z} -module, by $\{\overline{x}^i \overline{y}^j, \overline{x}^i \overline{y}^j \overline{z}|i, j \in \mathbb{Z}_n\}$. Since $r_p(\mathcal{H}_n(q))$ is a free \mathbb{Z} module with a \mathbb{Z} -basis $\{[S_{i,j}], [P_{i,j}]|i, j \in \mathbb{Z}_n\}$, one can define a \mathbb{Z} -module map $\psi : r_p(\mathcal{H}_n(q)) \to \mathbb{Z}[x, y, z]/I$ by $\psi([S_{i,j}]) = \overline{x}^i \overline{y}^j$ and $\psi([P_{i,j}]) = \overline{x}^i \overline{y}^j \overline{z}$ for any $i, j \in \mathbb{Z}_n$. Now for any $i, j \in \mathbb{Z}_n$, we have $\psi(\overline{\phi}(\overline{x}^i \overline{y}^j)) = \psi(\overline{\phi}(\overline{x})^i \overline{\phi}(\overline{y})^j) =$ $\psi([S_{1,0}]^i [S_{0,1}]^j) = \psi([S_{i,j}]) = \overline{x}^i \overline{y}^j \overline{z}$. This shows that $\overline{\phi}$ is injective, and so $\overline{\phi}$ is a ring isomorphism.

Now we consider the projective class algebra $R_p(\mathcal{H}_n(q))$. By Theorem 3.8, we have

$$R_p(\mathcal{H}_n(q)) \cong \mathbb{K}[x,y,z]/(x^n-1,y^n-1,z^2-\sum_{i,j=0}^{n-1}x^iy^jz).$$

Put $I = (x^n - 1, y^n - 1, z^2 - \sum_{i,j=0}^{n-1} x^i y^j z)$ and let $J(\mathbb{K}[x, y, z]/I)$ be the Jacobson radical of $\mathbb{K}[x, y, z]/I$. For any $u \in \mathbb{K}[x, y, z]$, let \overline{u} denote the image of u under the canonical projection $\mathbb{K}[x, y, z] \to \mathbb{K}[x, y, z]/I$. Then by the proof of Theorem 3.8, $\mathbb{K}[x, y, z]/I$ is of dimension $2n^2$ with a \mathbb{K} -basis $\{\overline{x}^i \overline{y}^j, \overline{x}^i \overline{y}^j \overline{z} | 0 \leq i, j \leq n-1\}$. From $\overline{x}^n = 1$, $\overline{y}^n = 1$ and $\overline{z}^2 = \sum_{i,j=0}^{n-1} \overline{x}^i \overline{y}^j \overline{z}$, one gets $(1 - \overline{x})\overline{z}^2 = (1 - \overline{y})\overline{z}^2 = 0$, and so $((1 - \overline{x})\overline{z})^2 = ((1 - \overline{y})\overline{z})^2 = 0$. Consequently, the ideal $((1 - \overline{x})\overline{z}, (1 - \overline{y})\overline{z})$ of $\mathbb{K}[x, y, z]/I$ generated by $(1 - \overline{x})\overline{z}$ and $(1 - \overline{y})\overline{z}) = n^2 + 1$ and

$$(\mathbb{K}[x,y,z]/I)/((1-\overline{x})\overline{z},(1-\overline{y})\overline{z}))$$

$$\cong \mathbb{K}[x,y,z]/(x^n-1,y^n-1,z^2-n^2z,(1-x)z,(1-y)z).$$

Let $\pi : \mathbb{K}[x, y, z] \to \mathbb{K}[x, y, z] / (x^n - 1, y^n - 1, z^2 - n^2 z, (1 - x)z, (1 - y)z)$ be the canonical projection. For any integers $k, l \ge 0$, let $f_{k,l} = \frac{1}{n^2} \sum_{i,j=0}^{n-1} q^{ki+lj} x^i y^j$ in $\mathbb{K}[x, y, z]$. Then a straightforward verification shows that

$$\{\pi(f_{k,l}), \pi(f_{0,k}), \pi(f_{0,0} - \frac{1}{n^2}z), \pi(\frac{1}{n^2}z) | 1 \le k \le n - 1, 0 \le l \le n - 1\}$$

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive idempotents in $\mathbb{K}[x, y, z]/(x^n - 1, y^n - 1, z^2 - n^2 z, (1 - x)z, (1 - y)z)$. Therefore,

$$\mathbb{K}[x,y,z]/(x^{n}-1,y^{n}-1,z^{2}-n^{2}z,(1-x)z,(1-y)z) \cong \mathbb{K}^{n^{2}+1}.$$

Thus, $J(\mathbb{K}[x, y, z]/I) \subseteq ((1 - \overline{x})\overline{z}, (1 - \overline{y})\overline{z})$, and so $J(\mathbb{K}[x, y, z]/I) = ((1 - \overline{x})\overline{z}, (1 - \overline{y})\overline{z})$. This shows the following proposition.

Proposition 3.9. Let $J(R_p(\mathcal{H}_n(q)))$ be the Jacobson radical of $R_p(\mathcal{H}_n(q))$. Then $J(R_p(\mathcal{H}_n(q))) = ((1 - [S_{1,0}])[P_{0,0}], (1 - [S_{0,1}])[P_{0,0}])$ and

$$R_{p}(\mathcal{H}_{n}(q))/J(R_{p}(\mathcal{H}_{n}(q)))$$

$$\cong \mathbb{K}[x, y, z]/(x^{n} - 1, y^{n} - 1, z^{2} - n^{2}z, (1 - x)z, (1 - y)z) \cong \mathbb{K}^{n^{2} + 1}.$$

4 The Projective Class Ring of $H_n(0,q)$

In this section, we investigate the projective class ring of $H_n(0, q)$.

Proposition 4.1. $H_n(0,q)$ is a symmetric algebra.

Proof. By [8, Proposition 3.4] and its proof, $H_n(0,q)$ is unimodular. Moreover, $S^2(a) = qa$, $S^2(b) = b$, $S^2(c) = c$ and $S^2(d) = q^{-1}d$, where *S* is the antipode of $\mathcal{H}_n(0,q)$. Hence $S^2(x) = bxb^{-1} = cxc^{-1}$ for all $x \in H_n(0,q)$. That is, S^2 is an inner automorphism of $H_n(0,q)$. It follows from [27, 32] that $H_n(0,q)$ is a symmetric algebra.

Note that $\mathcal{H}_n(q)$ is not symmetric since it is not unimodular.

Proposition 4.2. $H_n(0,q)$ is of wild representation type.

Proof. It is similar to Proposition 3.1. Let *A* be the subalgebra of $H_n(0,q)$ generated by *a* and *d*. Then *A* is a K*G*-module algebra with the action given by $b \cdot a = qa$, $b \cdot d = q^{-1}d$, $c \cdot a = qa$ and $c \cdot d = q^{-1}d$, where $G = G(H_n(0,q)) = \{b^i c^j | i, j \in \mathbb{Z}_n\} \cong \mathbb{Z}_n \times \mathbb{Z}_n$. Moreover, $A \cong \mathbb{K}\langle x, y \rangle / (x^n, y^n, yx - qxy)$ and $H_n(0,q) \cong A \# \mathbb{K} G$, as \mathbb{K} -algebras. Since $n \ge 3$, it follows from [33, p.295(3.4)] that *A* is of wild representation type. Since $\mathbb{K} G$ is a semisimple and cosemisimple Hopf algebra by char(\mathbb{K}) $\nmid |G|$, it follows from [26, Theorem 4.5] that $A \# \mathbb{K} G$ is of wild representation type.

 $H_n(0,q)$ has n^2 orthogonal primitive idempotents

$$e_{i,j} = \frac{1}{n^2} \sum_{k,l \in \mathbb{Z}_n} q^{-ik-jl} b^k c^l = \frac{1}{n^2} \sum_{k,l=0}^{n-1} q^{-ik-jl} b^k c^l, \ i,j \in \mathbb{Z}_n.$$

Lemma 4.3. Let $i, j \in \mathbb{Z}_n$. Then

$$be_{i,j} = q^i e_{i,j}, \ ce_{i,j} = q^j e_{i,j}, \ ae_{i,j} = e_{i+1,j+1}a, \ de_{i,j} = e_{i-1,j-1}d.$$

Proof. It follows from a straightforward verification.

For $i, j \in \mathbb{Z}_n$, let $S_{i,j}$ be the one dimensional $H_n(0, q)$ -module defined by $bv = q^i v$, $cv = q^j v$ and av = dv = 0, $v \in S_{i,j}$. Let $P_{i,j} = P(S_{i,j})$ be the projective cover of $S_{i,j}$. Let $J = \operatorname{rad}(H_n(0,q))$ be the Jacobson radical of $H_n(0,q)$.

Lemma 4.4. The simple modules $S_{i,j}$, $i, j \in \mathbb{Z}_n$, exhaust all simple modules of $H_n(0,q)$, and consequently, the projective modules $P_{i,j}$, $i, j \in \mathbb{Z}_n$, exhaust all indecomposable projective modules of $H_n(0,q)$. Moreover, $P_{i,j} \cong H_n(0,q)e_{i,j}$ for all $i, j \in \mathbb{Z}_n$.

Proof. It is similar to Lemma 3.3.

Corollary 4.5. $H_n(0,q)$ is a basic algebra. Moreover, J is a Hopf ideal of $H_n(0,q)$, and the Loewy length of $H_n(0,q)$ is 2n - 1.

Proof. It is similar to Corollary 3.4.

Let $e_i = \sum_{j=0}^{n-1} e_{i+j,j} = \frac{1}{n} \sum_{j=0}^{n-1} q^{-ij} b^j c^{-j}$, $i \in \mathbb{Z}_n$. Then by Lemmas 4.3 and 4.4, $\{e_i | i \in \mathbb{Z}_n\}$ is a full set of central primitive idempotents of $H_n(0,q)$. Hence $H_n(0,q)$ decomposes into *n* blocks $H_n(0,q)e_i$, $i \in \mathbb{Z}_n$.

In the rest of this section, we regard that $P_{i,j} = H_n(0,q)e_{i,j}$ for all $i, j \in \mathbb{Z}_n$.

Corollary 4.6. $P_{i,j}$ is n^2 -dimensional with a \mathbb{K} -basis $\{a^k d^l e_{i,j} | 0 \leq k, l \leq n-1\},\$ $i, j \in \mathbb{Z}_n$.

Proof. It is similar to Corollary 3.5.

For $i, j \in \mathbb{Z}_n$, let $e_{i,j}^{k,l} = a^k d^l e_{i,j}$ in $P_{i,j}$. Using the same symbols as in the last section, the structure of $P_{i,i}$ can be described as follows:

Proposition 4.7. The *n* blocks $H_n(0,q)e_i$, $i \in \mathbb{Z}_n$, are isomorphic to each other.

Proof. Let $i \in \mathbb{Z}_n$. Since $e_i = \sum_{j=0}^{n-1} e_{i+j,j}$, $H_n(0,q)e_i = \bigoplus_{j=0}^{n-1} H_n(0,q)e_{i+j,j}$ as $H_n(0,q)$ -modules. Then by Corollary 4.6, dim $(H_n(0,q)e_i) = n^3$. By Lemma 4.3, one gets $be_i = q^i ce_i$. It follows that $H_n(0,q)e_i = \text{span}\{a^j d^k b^l e_i | 0 \leq j,k,l\}$, and so $\{a^{j}d^{k}b^{l}e_{i}|0 \leq j,k,l\}$ is a K-basis of $H_{n}(0,q)e_{i}$. Let B be the subalgebra of $H_{n}(q)$ generated by a, b and d. Then one can easily check that the block $H_n(0,q)e_i$ is isomorphic, as an algebra, to the subalgebra *B* of $H_n(0, q)$. Thus, the proposition follows.

Let $i \in \mathbb{Z}_n$ be fixed. For any $j \in \mathbb{Z}_n$, let $\overline{e}_j = e_{i+j,j}$. Then the Gabriel quiver $Q = (Q_0, Q_1)$ of the block $H_n(0, q)e_i$ is given by

where for $j \in \mathbb{Z}_n$, the arrows α_j , β_j correspond to $a\overline{e}_j$, $d\overline{e}_{j+1}$, respectively. The admissible ideal *I* has the following relations:

$$\beta_j \alpha_j - q \alpha_{j-1} \beta_{j-1} = 0, \ \alpha_{j+(n-1)} \cdots \alpha_{j+1} \alpha_j = 0, \ \beta_{j-(n-1)} \cdots \beta_{j-1} \beta_j = 0, \ j \in \mathbb{Z}_n.$$

Proposition 4.8. $S_{i,j} \otimes S_{k,l} \cong S_{i+k,j+l}$ and $S_{i,j} \otimes P_{k,l} \cong P_{k,l} \otimes S_{i,j} \cong P_{i+k,j+l}$ for all $i, j, k, l \in \mathbb{Z}_n$.

Proof. It is similar to Proposition 3.6.

Proposition 4.9. Let $i, j, k, l \in \mathbb{Z}_n$. Then $P_{i,j} \otimes P_{k,l} \cong \bigoplus_{t \in \mathbb{Z}_n} nP_{i+k+t,j+l+t}$.

Proof. It is similar to Proposition 3.7. Note that $[P_{0,0}] = \sum_{t=0}^{n-1} n[S_{t,t}]$ in $G_0(H_n(0,q))$ by Corollaries 4.5 and 4.6.

Theorem 4.10. $r_p(H_n(0,q)) \cong \mathbb{Z}[x,y,z]/(x^n-1,y^n-1,z^2-n\sum_{i=0}^{n-1}x^iz).$

Proof. It is similar to Theorem 3.8. Note that $r_p(H_n(0,q))$ is a commutative ring generated by $[S_{1,1}]$, $[S_{0,1}]$ and $[P_{0,0}]$.

Now we consider the projective class algebra $R_p(H_n(0,q))$. By Theorem 4.10, we have

$$R_p(H_n(0,q)) \cong \mathbb{K}[x,y,z]/(x^n-1,y^n-1,z^2-n\sum_{i=0}^{n-1}x^iz).$$

Put $I = (x^n - 1, y^n - 1, z^2 - n \sum_{i=0}^{n-1} x^i z)$ and let $J(\mathbb{K}[x, y, z]/I)$ be the Jacobson radical of $\mathbb{K}[x, y, z]/I$. For any $u \in \mathbb{K}[x, y, z]$, let \overline{u} denote the image of u under the canonical projection $\mathbb{K}[x, y, z] \to \mathbb{K}[x, y, z]/I$. Then by Theorem 4.10, $\mathbb{K}[x, y, z]/I$ is of dimension $2n^2$ with a \mathbb{K} -basis $\{\overline{x}^i \overline{y}^j, \overline{x}^i \overline{y}^j \overline{z} | i, j \in \mathbb{Z}_n\}$. Since $\overline{x}^n = 1$ and $\overline{z}^2 = n \sum_{i=0}^{n-1} \overline{x}^i \overline{z}$, one gets $(1 - \overline{x})\overline{z}^2 = 0$, and so $((1 - \overline{x})\overline{z})^2 = 0$. Consequently, the ideal $((1 - \overline{x})\overline{z})$ of $\mathbb{K}[x, y, z]/I$ generated by $(1 - \overline{x})\overline{z}$ is contained in $J(\mathbb{K}[x, y, z]/I)$. Moreover, dim $((\mathbb{K}[x, y, z]/I)/(((1 - \overline{x})\overline{z})) = n(n + 1)$ and

$$(\mathbb{K}[x,y,z]/I)/((1-\overline{x})\overline{z}) \cong \mathbb{K}[x,y,z]/(x^n-1,y^n-1,z^2-n^2z,(1-x)z).$$

Let $\pi : \mathbb{K}[x, y, z] \to \mathbb{K}[x, y, z] / (x^n - 1, y^n - 1, z^2 - n^2 z, (1 - x)z)$ be the canonical projection. For any integer $k \ge 0$, let $f_k = \frac{1}{n} \sum_{i=0}^{n-1} q^{ki} x^i$ and $g_k = \frac{1}{n} \sum_{i=0}^{n-1} q^{ki} y^i$ in $\mathbb{K}[x, y, z]$. Then a straightforward verification shows that

$$\{\pi(f_k g_l), \pi((f_0 - \frac{1}{n^2} z)g_l), \pi(\frac{1}{n^2} zg_l) | 1 \le k \le n - 1, 0 \le l \le n - 1\}$$

is a set of orthogonal idempotents, and so it is a full set of orthogonal primitive idempotents in $\mathbb{K}[x, y, z]/(x^n - 1, y^n - 1, z^2 - n^2 z, (1 - x)z)$. Therefore,

$$\mathbb{K}[x, y, z] / (x^{n} - 1, y^{n} - 1, z^{2} - n^{2}z, (1 - x)z) \cong \mathbb{K}^{n(n+1)}.$$

It follows that $J(\mathbb{K}[x, y, z]/I) \subseteq ((1 - \overline{x})\overline{z})$, and so $J(\mathbb{K}[x, y, z]/I) = ((1 - \overline{x})\overline{z})$. This shows the following proposition.

Proposition 4.11. Let $J(R_p(H_n(0,q)))$ be the Jacobson radical of $R_p(H_n(0,q))$. Then $J(R_p(H_n(0,q))) = ((1 - [S_{1,1}])[P_{0,0}])$ and

$$\mathbb{R}_p(H_n(0,q))/J(\mathbb{R}_p(H_n(0,q))) \\ \cong \mathbb{K}[x,y,z]/(x^n-1,y^n-1,z^2-n^2z,(1-x)z) \cong \mathbb{K}^{n(n+1)}.$$

5 The Projective Class Ring of $H_n(1,q)$

In this section, we will study the projective class ring of $H_n(1,q)$. The finite dimensional indecomposable $H_n(1,q)$ -modules are classified in [9, 10]. There are n^2 simple modules V(l,r) over $H_n(1,q)$, where $1 \le l \le n$ and $r \in \mathbb{Z}_n$. The simple modules V(n,r) are both projective and injective. Let P(l,r) be the projective cover of V(l,r). Then P(l,r) is the injective envelope of V(l,r) as well. Moreover, $P(n,r) \cong V(n,r)$.

Note that $M \otimes N \cong N \otimes M$ for any modules M and N since $H_n(1,q)$ is a quasitriangular Hopf algebra. For any $t \in \mathbb{Z}$, let $c(t) := [\frac{t+1}{2}]$ be the integer part of $\frac{t+1}{2}$. That is, c(t) is the maximal integer with respect to $c(t) \leq \frac{t+1}{2}$. Then c(t) + c(t-1) = t.

Convention: If $\bigoplus_{l \le i \le m} M_i$ is a term in a decomposition of a module, then it disappears when l > m.

Lemma 5.1. Let $1 \le l, l' \le n$ and $r, r' \in \mathbb{Z}_n$. (1) $V(1,r) \otimes V(l,r') \cong V(l,r+r')$. (2) $V(1,r) \otimes P(l,r') \cong P(l,r+r')$. (3) If $l \le l'$ and $l + l' \le n + 1$, then $V(l,r) \otimes V(l',r') \cong \bigoplus_{i=0}^{l-1} V(l+l'-1-2i, r+r'+i)$. (4) If $l \le l'$ and t = l + l' - (n + 1) > 0, then $V(l,r) \otimes V(l',r') \cong (\bigoplus_{i=c(t)}^{t} P(l+l'-1-2i, r+r'+i)) \oplus (\bigoplus_{t+1 \le i \le l-1} V(l+l'-1-2i, r+r'+i))$. (5) If $l \le l' < n$ and $l + l' \le n$, then $V(l,r) \otimes P(l',r') \cong \bigoplus_{i=0}^{l-1} P(l+l'-1-2i, r+r'+i)$. (6) If $l \le l' < n$ and $t = l + l' - (n + 1) \ge 0$, then

$$V(l,r) \otimes P(l',r') \cong (\bigoplus_{i=c(t)}^{t} 2P(l+l'-1-2i,r+r'+i)) \\ \oplus (\bigoplus_{i=t+1}^{l-1} P(l+l'-1-2i,r+r'+i)).$$

(7) If l' < l < n and $l + l' \leq n$, then

$$V(l,r) \otimes P(l',r') \cong (\bigoplus_{i=0}^{l'-1} P(l+l'-1-2i,r+r'+i)) \\ \oplus (\bigoplus_{i=c(l+l'-1)}^{l-1} 2P(n+l+l'-1-2i,r+r'+i)).$$

(8) If l' < l < n and $t = l + l' - (n + 1) \ge 0$, then

$$\begin{split} V(l,r)\otimes P(l',r') &\cong \quad (\oplus_{i=c(t)}^{t}2P(l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{i=t+1}^{l'-1}P(l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{i=c(l+l'-1)}^{l-1}2P(n+l+l'-1-2i,r+r'+i)). \end{split}$$

(9) *If* l < n, then

$$V(n,r) \otimes P(l,r') \cong (\bigoplus_{i=c(l-1)}^{l-1} 2P(n+l-1-2i,r+r'+i)) \\ \oplus (\bigoplus_{i=1}^{c(n-l)} 2P(l-1+2i,r+r'-i)).$$

(10) If $l \leq l' < n$ and $l + l' \leq n$, then

$$\begin{split} P(l,r) \otimes P(l',r') &\cong \quad (\oplus_{i=0}^{l-1} 2P(l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{i=l'}^{l'+l-1} 2P(n+l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{c(l'+l-1) \leqslant i \leqslant l'-1} 4P(n+l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{1 \leqslant i \leqslant c(n-l-l')} 4P(l+l'-1+2i,r+r'-i)). \end{split}$$

(11) If $l \leq l' < n$ and $t = l + l' - (n + 1) \geq 0$, then

$$\begin{split} P(l,r)\otimes P(l',r') &\cong \quad (\oplus_{i=c(t)}^{t}4P(l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{i=t+1}^{l-1}2P(l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{i=l'}^{n-1}2P(n+l+l'-1-2i,r+r'+i)) \\ &\oplus (\oplus_{c(l'+l-1)\leqslant i\leqslant l'-1}4P(n+l+l'-1-2i,r+r'+i)). \end{split}$$

Proof. It follows from [9, 12].

By Lemma 5.1 or [12, Corollary 3.2], the category consisting of semisimple modules and projective modules in $H_n(1,q)$ -mod is a monoidal subcategory of $H_n(1,q)$ -mod. Therefore, we have the following corollary.

Corollary 5.2. $r_p(H_n(1,q))$ *is a free* \mathbb{Z} *-module with a* \mathbb{Z} *-basis* $\{[V(k,r)], [P(l,r)]| 1 \le k \le n, 1 \le l \le n-1, r \in \mathbb{Z}_n\}$.

Lemma 5.3. Let $2 \leq m \leq n - 1$. Then

$$V(2,0)^{\otimes m} \cong \bigoplus_{i=0}^{\left[\frac{m}{2}\right]} \frac{m-2i+1}{m-i+1} {m \choose i} V(m+1-2i,i).$$

Proof. By Lemma 5.1(3), one can easily check that the isomorphism in the lemma holds for m = 2 and m = 3. Now let $3 < m \le n - 1$ and assume

$$V(2,0)^{\otimes (m-1)} \cong \bigoplus_{i=0}^{\left[\frac{m-1}{2}\right]} \frac{m-2i}{m-i} {m-1 \choose i} V(m-2i,i).$$

If m = 2l is even, then by the induction hypothesis and Lemma 5.1(3), we have

$$\begin{split} V(2,0)^{\otimes m} &= V(2,0) \otimes V(2,0)^{\otimes (m-1)} \\ &\cong \oplus_{i=0}^{l-1} \frac{2l-2i}{2l-i} \binom{2l-1}{i} V(2,0) \otimes V(2l-2i,i) \\ &\cong \oplus_{i=0}^{l-1} \frac{2l-2i}{2l-i} \binom{2l-1}{i} (V(2l+1-2i,i) \oplus V(2l-1-2i,i+1)) \\ &\cong V(2l+1,0) \oplus \frac{2}{l+1} \binom{2l-1}{l-1} V(1,l) \\ &\oplus (\oplus_{i=1}^{l-1} \binom{2l-2i}{2l-i} \binom{2l-1}{i} + \frac{2l-2i+2}{2l-i+1} \binom{2l-1}{i-1}) V(2l+1-2i,i)) \\ &\cong V(2l+1,0) \oplus \frac{2}{l+1} \binom{2l-1}{l-1} V(1,l) \\ &\oplus (\oplus_{i=1}^{l-1} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l+1-2i,i)) \\ &\cong \oplus_{i=0}^{l} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l+1-2i,i)) \\ &\cong \oplus_{i=0}^{\lfloor \frac{m}{2} \rfloor} \frac{m+1-2i}{m+1-i} \binom{m}{i} V(m+1-2i,i). \end{split}$$

If m = 2l + 1 is odd, then by the same reason as above, we have

$$\begin{array}{l} V(2,0)^{\otimes m} \\ = & V(2,0) \otimes V(2,0)^{\otimes (m-1)} \\ \cong & \oplus_{i=0}^{l} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2,0) \otimes V(2l+1-2i,i) \\ \cong & (\oplus_{i=0}^{l-1} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l+2-2i,i) \oplus V(2l-2i,i+1)) \oplus \frac{1}{l+1} \binom{2l}{l} V(2,l) \\ \cong & (\oplus_{i=0}^{l} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l+2-2i,i)) \oplus (\oplus_{i=0}^{l-1} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l-2i,i+1)) \\ \cong & (\oplus_{i=0}^{l} \frac{2l+1-2i}{2l+1-i} \binom{2l}{i} V(2l+2-2i,i)) \oplus (\oplus_{i=1}^{l} \frac{2l+3-2i}{2l+2-i} \binom{2l}{i-1} V(2l+2-2i,i)) \\ \cong & V(2l+2,0) \oplus (\oplus_{i=1}^{l} \frac{2l+2-2i}{2l+2-i} \binom{2l+1}{i} V(2l+2-2i,i)) \\ \cong & \Psi_{i=0}^{l} \frac{2l+2-2i}{2l+2-i} \binom{2l+1}{i} V(2l+2-2i,i) \\ \cong & \oplus_{i=0}^{l} \frac{2l+2-2i}{2l+2-i} \binom{2l+1}{i} V(2l+2-2i,i). \end{array}$$

Throughout the following, let x = [V(1,1)] and y = [V(2,0)] in $r_p(H_n(1,q))$.

Corollary 5.4. The following equations hold in $r_p(H_n(1,q))$ (or $r(H_n(1,q))$): (1) $x^n = 1$ and $[V(m,i)] = x^i[V(m,0)]$ for all $1 \le m \le n$ and $i \in \mathbb{Z}$; (2) $[P(m,i)] = x^i[P(m,0)]$ for all $1 \le m < n$ and $i \in \mathbb{Z}$; (3) y[V(n,0)] = x[P(n-1,0)]; (4) y[P(1,0)] = [P(2,0)] + 2x[V(n,0)]; (5) y[P(n-1,0)] = 2[V(n,0)] + x[P(n-2,0)]; (6) y[P(m,0)] = [P(m+1,0)] + x[P(m-1,0)] for all $2 \le m \le n-2$; (7) $[V(m+1,0)] = y^m - \sum_{i=1}^{[\frac{m}{2}]} \frac{m+1-2i}{m+1-i} {m \choose i} x^i [V(m+1-2i,0)]$ for all $2 \le m < n$.

Proof. It follows from Lemmas 5.1 and 5.3.

Proposition 5.5. The commutative ring $r_p(H_n(1,q))$ is generated by x and y.

Proof. Let *R* be the subring of $r(H_n(1,q))$ generated by *x* and *y*. Then $R \subseteq r_p(H_n(1,q))$. By Corollary 5.4(1), one gets that $[V(1,i)] = x^i \in R$ and $[V(2,i)] = x^i y \in R$ for all $i \in \mathbb{Z}_n$. Now let $2 \leq m < n$ and assume $[V(l,i)] \in R$ for all $1 \leq l \leq m$ and $i \in \mathbb{Z}_n$. Then by Corollary 5.4(1) and (7), one gets that $[V(m+1,i)] = x^i [V(m+1,0)] = x^i y^m - \sum_{j=1}^{\lfloor \frac{m}{m+1-j} \rfloor} \frac{m+1-2j}{m+1-j} {m \choose j} x^{i+j} [V(m+1-2j,0)] \in$

R for all $i \in \mathbb{Z}_n$. Thus, we have proven that $[V(m, i)] \in R$ for all $1 \leq m \leq n$ and $i \in \mathbb{Z}_n$. In particular, $[V(n, i)] \in R$ for all $i \in \mathbb{Z}_n$.

By Corollary 5.4(2) and (3), $[P(n-1,i)] = x^i[P(n-1,0)] = x^{i-1}y[V(n,0)] \in R$ for all $i \in \mathbb{Z}_n$. Then by Corollary 5.4(2) and (5), $[P(n-2,i)] = x^i[P(n-2,0)] = x^{i-1}(y[P(n-1,0)] - 2[V(n,0)]) \in R$ for any $i \in \mathbb{Z}_n$. Now let $1 < m \leq n-2$ and assume that $[P(l,i)] \in R$ for all $m \leq l < n$ and $i \in \mathbb{Z}_n$. Then by Corollary 5.4(2) and (6), we have $[P(m-1,i)] = x^i[P(m-1,0)] = x^{i-1}(y[P(m,0)] - [P(m+1,0)]) \in R$. Thus, we have shown that $[P(m,i)] \in R$ for all $1 \leq m < n$ and $i \in \mathbb{Z}_n$. Then it follows from Corollary 5.2 that $R = r_p(H_n(1,q))$. This completes the proof.

Lemma 5.6. (1) $[V(m,0)] = \sum_{i=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} (-1)^i {\binom{m-1-i}{i}} x^i y^{m-1-2i}$ for all $1 \le m \le n$. (2) Let $1 \le m \le n-1$. Then

$$[P(m,0)] = \left(\sum_{i=0}^{\left\lfloor\frac{n-m}{2}\right\rfloor} (-1)^{i} \frac{n-m}{n-m-i} \binom{n-m-i}{i} x^{m+i} y^{n-m-2i}\right) [V(n,0)].$$

Proof. (1) It is similar to [38, Lemma 3.2].

(2) Note that $\frac{n-m}{n-m-i}\binom{n-m-i}{i}$ is a positive integer for any $1 \le m \le n-1$ and $0 \le i \le \lfloor \frac{n-m}{2} \rfloor$. We prove the equality by induction on n-m. If m = n-1, then by Corollary 5.4(1) and (3), $\lfloor P(n-1,0) \rfloor = x^{-1}y[V(n,0)] = x^{n-1}y[V(n,0)]$, as desired. If m = n-2, then by Corollary 5.4(1) and (5), we have $\lfloor P(n-2,0) \rfloor = x^{-1}y[P(n-1,0)] - 2x^{-1}[V(n,0)] = (x^{n-2}y^2 - 2x^{n-1})[V(n,0)]$, as desired. Now let $1 \le m < n-2$. Then by Corollary 5.4(1) and (6), and the induction hypotheses, we have

$$\begin{split} [P(m,0)] &= x^{-1}y[P(m+1,0)] - x^{-1}[P(m+2,0)] \\ &= x^{-1}y(\sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i}\frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i}x^{m+1+i}y^{n-m-1-2i})[V(n,0)] \\ &\quad -x^{-1}(\sum_{i=0}^{\left[\frac{n-m-2}{2}\right]}(-1)^{i}\frac{n-m-2}{n-m-2-i}\binom{n-m-2-i}{i}x^{m+2+i}y^{n-m-2-2i})[V(n,0)] \\ &= (\sum_{i=0}^{\left[\frac{n-m-1}{2}\right]}(-1)^{i}\frac{n-m-1}{n-m-1-i}\binom{n-m-1-i}{i}x^{m+i}y^{n-m-2i})[V(n,0)] \\ &\quad + (\sum_{i=1}^{\left[\frac{n-m}{2}\right]}(-1)^{i}\frac{n-m-2}{n-m-1-i}\binom{n-m-1-i}{i-1}x^{m+i}y^{n-m-2i})[V(n,0)]. \end{split}$$

If n - m is odd, then $[\frac{n-m-1}{2}] = \frac{n-m-1}{2} = [\frac{n-m}{2}]$, and hence

$$\sum_{i=0}^{\left[\frac{n-m-1}{2}\right]} (-1)^{i} \frac{n-m-1}{n-m-1-i} \binom{n-m-1-i}{i} x^{m+i} y^{n-m-2i} \\ + \sum_{i=1}^{\left[\frac{n-m}{2}\right]} (-1)^{i} \frac{n-m-2}{n-m-1-i} \binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2i} \\ = x^{m} y^{n-m} + \sum_{i=1}^{\left[\frac{n-m}{2}\right]} (-1)^{i} (\frac{n-m-1}{n-m-1-i} \binom{n-m-1-i}{i}) \\ + \frac{n-m-2}{n-m-1-i} \binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2i} \\ = \sum_{i=0}^{\left[\frac{n-m}{2}\right]} (-1)^{i} \frac{n-m}{n-m-i} \binom{n-m-i}{i} x^{m+i} y^{n-m-2i}.$$

If n - m is even, then $[\frac{n-m-1}{2}] = \frac{n-m-2}{2} = [\frac{n-m}{2}] - 1$, and hence

$$\begin{split} & \sum_{i=0}^{\left[\frac{n-m-1}{2}\right]} (-1)^{i} \frac{n-m-1}{n-m-1-i} \binom{n-m-1-i}{i} x^{m+i} y^{n-m-2i} \\ & + \sum_{i=1}^{\left[\frac{n-m}{2}\right]} (-1)^{i} \frac{n-m-2}{n-m-1-i} \binom{n-m-1-i}{i-1} x^{m+i} y^{n-m-2i} \\ & = x^{m} y^{n-m} + \sum_{i=1}^{\left[\frac{n-m}{2}\right]-1} (-1)^{i} (\frac{n-m-1}{n-m-1-i} \binom{n-m-1-i}{i}) \\ & + \frac{n-m-2}{n-m-1-i} \binom{n-m-1-i}{i-1}) x^{m+i} y^{n-m-2i} + (-1)^{\frac{n-m}{2}} 2x^{\frac{n+m}{2}} \\ & = \sum_{i=0}^{\left[\frac{n-m}{2}\right]} (-1)^{i} \frac{n-m}{n-m-i} \binom{n-m-i}{i} x^{m+i} y^{n-m-2i}. \end{split}$$

Therefore, $[P(m,0)] = (\sum_{i=0}^{\left[\frac{n-m}{2}\right]} (-1)^i \frac{n-m}{n-m-i} {n-m-i \choose i} x^{m+i} y^{n-m-2i}) [V(n,0)].$

Proposition 5.7. In $r_p(H_n(1,q))$ (or $r(H_n(1,q))$), we have

$$\left(\sum_{i=0}^{\left[\frac{n}{2}\right]} (-1)^{i} \frac{n}{n-i} {\binom{n-i}{i}} x^{i} y^{n-2i} - 2\right) \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} {\binom{n-1-i}{i}} x^{i} y^{n-1-2i}\right) = 0.$$

Proof. By Lemma 5.6(2), we have

$$x^{-1}y[P(1,0)] = \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \frac{n-1}{n-1-i} \binom{n-1-i}{i} x^{i} y^{n-2i}\right) [V(n,0)]$$

On the other hand, by Corollary 5.4(4) and Lemma 5.6(2), we have

$$\begin{aligned} x^{-1}y[P(1,0)] &= x^{-1}[P(2,0)] + 2[V(n,0)] \\ &= (\sum_{i=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} (-1)^{i} \frac{n-2}{n-2-i} {n-2-i \choose i} x^{i+1} y^{n-2-2i} + 2)[V(n,0)] \\ &= (\sum_{i=1}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^{i-1} \frac{n-2}{n-1-i} {n-1-i \choose i-1} x^{i} y^{n-2i} + 2)[V(n,0)]. \end{aligned}$$

Therefore, one gets

$$\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \frac{n-1}{n-1-i} {n-1-i \choose i} x^{i} y^{n-2i} [V(n,0)]$$

= $(\sum_{i=1}^{\left[\frac{n}{2}\right]} (-1)^{i-1} \frac{n-2}{n-1-i} {n-1-i \choose i-1} x^{i} y^{n-2i} + 2) [V(n,0)],$

which is equivalent to

$$\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \frac{n-1}{n-1-i} {n-1-i \choose i} x^{i} y^{n-2i} - \sum_{i=1}^{\left[\frac{n}{2}\right]} (-1)^{i-1} \frac{n-2}{n-1-i} {n-1-i \choose i-1} x^{i} y^{n-2i} - 2 \left[V(n,0) \right] = 0.$$

Then a computation similar to the proof of Lemma 5.6 shows that

$$\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \frac{n-1}{n-1-i} {n-1-i \choose i} x^{i} y^{n-2i} - \sum_{i=1}^{\left[\frac{n}{2}\right]} (-1)^{i-1} \frac{n-2}{n-1-i} {n-1-i \choose i-1} x^{i} y^{n-2i} - 2$$

$$= \sum_{i=0}^{\left[\frac{n}{2}\right]} (-1)^{i} \frac{n}{n-i} {n-i \choose i} x^{i} y^{n-2i} - 2.$$

Thus, the proposition follows from Lemma 5.6(1).

Corollary 5.8. $\{x^l y^m | 0 \le l \le n - 1, 0 \le m \le 2n - 2\}$ is a \mathbb{Z} -basis of $r_p(H_n(1,q))$.

Proof. By Corollary 5.4(1), $x^n = 1$. By Proposition 5.7, we have

$$y^{2n-1} = -\sum_{i=1}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \binom{n-1-i}{i} x^{i} y^{2n-1-2i} -\sum_{i=1}^{\left[\frac{n}{2}\right]} (-1)^{i} \frac{n}{n-i} \binom{n-i}{i} x^{i} y^{2n-1-2i} + 2y^{n-1} -(\sum_{i=1}^{\left[\frac{n}{2}\right]} (-1)^{i} \frac{n}{n-i} \binom{n-i}{i} x^{i} y^{n-2i} - 2) (\sum_{i=1}^{\left[\frac{n-1}{2}\right]} (-1)^{i} \binom{n-1-i}{i} x^{i} y^{n-1-2i}).$$

Then it follows from Proposition 5.5 that $r_p(H_n(1,q))$ is generated, as a \mathbb{Z} -module, by $\{x^l y^m | 0 \le l \le n-1, 0 \le m \le 2n-2\}$. By Corollary 5.2, $r_p(H_n(1,q))$ is a free \mathbb{Z} -module of rank n(2n-1), and hence $\{x^l y^m | 0 \le l \le n-1, 0 \le m \le 2n-2\}$ is a \mathbb{Z} -basis of $r_p(H_n(1,q))$.

Theorem 5.9. Let $\mathbb{Z}[x, y]$ be the polynomial ring in two variables x and y, and I the ideal of $\mathbb{Z}[x, y]$ generated by $x^n - 1$ and

$$\left(\sum_{i=0}^{\left[\frac{n}{2}\right]} (-1)^{i} \frac{n}{n-i} {n-i \choose i} x^{i} y^{n-2i} - 2\right) \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]} (-1)^{i} {n-1-i \choose i} x^{i} y^{n-1-2i}\right).$$

Then $r_p(H_n(1,q))$ *is isomorphic to the quotient ring* $\mathbb{Z}[x,y]/I$.

Proof. By Proposition 5.5, there is a ring epimorphism $\phi : \mathbb{Z}[x, y] \to r_p(H_n(1, q))$ given by $\phi(x) = [V(1, 1)]$ and $\phi(y) = [V(2, 0)]$. By Corollary 5.4(1) and Proposition 5.7, $\phi(I) = 0$. Hence ϕ induces a ring epimorphism $\overline{\phi} : \mathbb{Z}[x, y]/I \to r_p(H_n(1, q))$ such that $\phi = \overline{\phi} \circ \pi$, where $\pi : \mathbb{Z}[x, y] \to \mathbb{Z}[x, y]/I$ is the canonical projection. Let $\overline{u} = \pi(u)$ for any $u \in \mathbb{Z}[x, y]$. Then by the definition of I and the proof of Corollary 5.8, one knows that $\mathbb{Z}[x, y]/I$ is generated, as a \mathbb{Z} -module, by $\{\overline{x}^l \overline{y}^m | 0 \leq l \leq n-1, 0 \leq m \leq 2n-2\}$. For any $0 \leq l \leq n-1$ and $0 \leq m \leq 2n-2$, we have $\overline{\phi}(\overline{x}^l \overline{y}^m) = \overline{\phi}(\overline{x})^l \overline{\phi}(\overline{y})^m = \phi(x)^l \phi(y)^m = [V(1,1)]^l [V(2,0)]^m$. By Corollary 5.8, $\{[V(1,1)]^l [V(2,0)]^m | 0 \leq l \leq n-1, 0 \leq m \leq 2n-2\}$ is a linearly independent set over \mathbb{Z} , which implies that $\{\overline{x}^l \overline{y}^m | 0 \leq l \leq n-1, 0 \leq m \leq 2n-2\}$ is also a linearly independent set over \mathbb{Z} . It follows that $\{\overline{x}^l \overline{y}^m | 0 \leq l \leq n-1, 0 \leq m \leq 2n-2\}$ is a \mathbb{Z} -basis of $\mathbb{Z}[x, y]/I$. Consequently, $\overline{\phi}$ is a \mathbb{Z} -module isomorphism, and so it is a ring isomorphism.

Acknowledgment

This work is supported by NSF of China (No. 11571298) and TAPP of Jiangsu Higher Education Institutions (No. PPZY2015B109).

References

- N. Andruskiewitsch, F. Fantino, G. A. Garcia and L. Vendramin, On Nichols algebras associated to simple racks, in: Groups, Algebras and Applications, in: Contemp. Math., vol.537, Amer. Math. Soc., 2011, pp.31C56.
- [2] L. Archer, On certain quotients of the Green rings of dihedral 2-groups, J. Pure & Appl. Algebra 212 (2008), 1888-1897.
- [3] G. Benkart, M. Pereira and S. Witherspoon, Yetter-Drinfeld modules under cocycle twists, J. Algebra 324 (2010), 2990-3006.
- [4] D. J. Benson and J. F. Carlson, Nilpotent elements in the Green ring, J. Algebra 104 (1986), 329-350.
- [5] D. J. Benson and R. A. Parker, The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
- [6] R. M. Bryant and M. Johnson, Periodicity of Adams operations on the Green ring of a finite group, J. Pure Appl. Algebra 215 (2011), 989-1002.
- [7] H. X. Chen, Skew pairing, cocycle deformations and double crossproducts, Acta Math. Sinica, English Ser. 15 (1999), 225-234.

- [8] H. X. Chen, A class of noncommutative and noncocommutative Hopf algebras-the quantum version, Comm. Algebra 27 (1999), 5011-5023.
- [9] H. X. Chen, Irreducible representations of a class of quantum doubles, J. Algebra 225 (2000), 391-409.
- [10] H. X. Chen, Representations of a class of Drinfeld's doubles, Comm. Algebra 33 (2005), 2809-2825.
- [11] H. X. Chen, The Green ring of Drinfeld double $D(H_4)$, Algebr. Represent. Theor. 17 (2014), 1457-1483.
- [12] H. X. Chen, H. E. S. Mohammed and H. Sun, Indecomposable decomposition of tensor products of modules over Drinfeld Doubles of Taft algebras, arXiv.org:1503.04393v3[math.RT].
- [13] H. X. Chen, F. Van Oystaeyen and Y. H. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc. 142 (2014), 765-775.
- [14] H. X. Chen and Y. H. Zhang, Cocycle deformations and Brauer Groups, Comm. Algebra 35 (2007), 399-433.
- [15] W. Chin, Special biserial coalgebras and representations of quantum SL(2), J. Algebra 353 (2012), 1-21.
- [16] C. Cibils, A quiver quantum group, Commun. Math. Phys. 157 (1993), 459-477.
- [17] C. Cibils, The projective class ring of basic and split Hopf algebras, K-Theory 17 (1999), 385-393.
- [18] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), 1731-1749.
- [19] Y. Doi and M. Takeuchi, Multiplication alteration by two-cocycles-the quantum version, Comm. Algebra 22 (1994), 5715-5732.
- [20] J. A. Green, The modular representation algebra of a finite group, Ill. J. Math. 6(4) (1962), 607-619.
- [21] P. Guillot, C.Kassel and A. Masuoka, Twisting algebras using noncommutative torsors: explicitcom-putations, Math. Z. 271 (2012), 789C818.
- [22] I. Hambleton, L. R. Taylor and E. B. Williams, Dress induction and Burnside quotient Green ring, Algebra Number Theory 3 (2009), 511-541.
- [23] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
- [24] Y. Li and N. Hu, The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra 410 (2014), 1-35.
- [25] L. B. Li and Y. H. Zhang, The Green rings of the generalized Taft Hopf algebras, Contemporary Mathematics 585 (2013), 275-288.

- [26] G. Liu, On the structure of tame graded basic Hopf algebras, J. Algebra 299 (2006), 841-853.
- [27] M. Lorenz, Representations of finite-dimensional Hopf algebras, J. Algebra 188 (1997), 476-505.
- [28] S. Majid, Algebras and Hopf algebras in braided categories, in: Advances in Hopf Algebras, Chicago, IL, 1992, in: Lect. Notes Pure Appl. Math., vol.158, Dekker, New York, 1994, pp.55C105.
- [29] S. Majid, Foundations of quantum group theory, Cambridge Univ. Press, Cambridge, 1995.
- [30] S. Majid and R. Oeckl, Twisting of quantum differentials and the Planck scale Hopf algebra, Comm. Math. Phys. 205 (1999), 617-655.
- [31] S. Montgomery, Hopf Algebras and their actions on rings, CBMS Series in Math., Vol. 82, Amer. Math. Soc., Providence, 1993.
- [32] U. Oberst and H.-J. Schneider, Uber untergruppen endlicher algebraischer gruppen, Manuscripta Math. 8 (1973), 217-241.
- [33] C. M. Ringel, The representation type of local algebras, in: Representation of Algebra, in: Lecture Notes in Math., Vol. 488, Springer, 1975, pp. 282-305.
- [34] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [35] E. J. Taft, The order of the antipode of a finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA 68 (1971), 2631-2633.
- [36] M. Wakui, Various structures associated to the representation categories of eight dimensional non-semisimple Hopf algebras, Algebr. Represent. Theory 7 (2004), 491-515.
- [37] S. J. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra 179 (1996), 305-329.
- [38] Y. Zhang, F. Wu, L. Liu and H. X. Chen, Grothendieck groups of a class of quantum doubles, Algebra Colloq. 15 (2008), 431-448.

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China emails: hxchen@yzu.edu.cn, esmailhassan313@yahoo.com, wjlin@yzu.edu.cn, 997749901@qq.com