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Abstract

We give a formula for a Frobenius vector of a Gorenstein simplicial affine
semigroup S, and when the semigroup is Cohen-Macaulay we give an algo-
rithm computing the set of minimal Frobenius vectors of S for a special class
of semigroups.

1 Introduction and basic notions

The set of nonnegative integers will be denoted by N. An affine semigroup
is a finitely generated submonoid of Nr for some positive integer r. Let S =
〈a1, . . . , ar+m〉 be an affine semigroup generated by A = {a1, . . . , ar+m} ⊂ Nr,
that is to say, S = Na1 +Na2 + · · ·+Nar+m. In such a case, A will be said to be a
system of generators of S. Moreover, if no proper subset of A generates S, the set
A is a minimal system of generators of S. Every affine semigroup has a unique
minimal system of generators (see [9, Chapter 3]). Let K be a field. The ring K[S] is
defined as the subalgebra of K[y1, . . . , yr] generated by ya1 , ya2 , . . . and yar+m with
yα := yα1

1 yα2
2 · · · yαr

r where α = (α1, . . . , αr) ∈ Nr. The semigroup S is said to be
Cohen-Macaulay (Gorenstein) if K[S] is. Let IS, called the semigroup ideal of S,
be the kernel of K-algebra homomorphism from K[x1, . . . , xr+m] to K[S] defined
by xi 7→ yai . For u = (u1, . . . , ur+m) ∈ Nr+m, we define the S-degree of the
monomial xu by ∑

r+m
i=1 uiai and denote by degS(x

u). The semigroup S is said to be
complete intersection if IS is a complete intersection ideal. It is well-known that

∗Corresponding author.
Received by the editors in February 2016 - In revised form in June 2016.
Communicated by S. Caenepeel.
2010 Mathematics Subject Classification : 20M05, 20M25, 11D07.
Key words and phrases : Frobenius vector, simplicial affine semigroup.

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 573–582



574 A. Mahdavi – F. Rahmati

IS is a binomial prime ideal ([5, Proposition 1.4]). When r = 1 and a1, . . . , am+1 are
relatively prime positive integers, the semigroup is called numerical semigroup.
In this case N \ S is a finite set. For a numerical semigroup S the largest integer
f ∗(S) in N \S is called the Frobenius number of S, and the problem of finding this
number is called the Frobenius problem. The Frobenius number occurs in many
branches of mathematics and is one of the most studied invariants in the theory
of numerical semigroups. This problem has attracted substantial attention in the
last 100+ years (see [4], [7], [8]). There is no general formula for the Frobenius
number for m greater than one. Sylvester in [14] proved that for m = 1, f ∗(S) =
a1a2 − a1 − a2.

The Frobenius problem is generalized to the higher dimensional cases (see [1],
[2], [15], [16]). The vector Frobenius problem of Cohen-Macaulay and Gorenstein
simplicial affine semigroup is studied in the next section. It is shown that every
simplicial affine semigroup has at least one minimal Frobenius vector and an
algorithm is presented for computing minimal Frobenius vectors of some Cohen-
Macaulay simplicial affine semigroup.

2 Frobenius vector

Let S be the affine semigroup generated by A = {a1, . . . , ar+m} in Nr and G(S)
be the group generated by S in Zr, that is, G(S) = {a − b |a, b ∈ S} . We use
G(a1, . . . , an) to denote the group generated by {a1, . . . , an}.

Definition 1. The affine semigroup S is called simplicial if there exist ai1 , . . . , air ∈ A
such that
(1) ai1 , . . . , air are linearly independent over Q and
(2) for every a ∈ S, there exists 0 6= n ∈ N such that na ∈ Nai1 + · · ·+ Nair .

If r is lesser than three, every affine semigroup is simplicial. From now on,
we will suppose that S is a simplicial affine semigroup. Assume without loss of
generality that {i1, . . . , ir} = {1, . . . , r}. The Apéry set of a 6= 0 in S is defined as
Ap(S, a) = {x ∈ S |x − a /∈ S} . Let ki be the smallest natural number such that
kiar+i ∈ ∑

r
i=1 Nai, for i = 1, . . . m. By definition,

r
∩

i=1
Ap(S, ai) ⊆

{
m

∑
i=1

tiar+i |0 ≤ ti < ki

}

,

so ∩r
i=1Ap(S, ai) is finite. The set ∩r

i=1Ap(S, ai) is also called the Apéry set of S
relative to E := {a1, . . . , ar}. Observe that Ap(S, E) := {s ∈ S | s − e /∈ S, ∀e ∈

E} = ∩r
i=1Ap(S, ai). The set

{
xα
∣
∣degS(x

α) ∈ Ap(S, E)
}

is a basis for
K[x1,...,xr+m]
〈IS,x1,...,xr〉

as a K−vector space.
The following proposition gives a useful criterion for determining whether or

not a simplicial affine semigroup is Cohen-Macaulay (see [11, Corollary 1.6]).

Proposition 1. If S is a simplicial affine semigroup, the following statements are equiv-
alent:
• K[S] is Cohen-Macaulay;
• For all ω1, ω2 ∈ Ap(S, E), if ω1 6= ω2, then ω1 − ω2 /∈ G (a1, . . . , ar).
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By definition, every element a ∈ S can be written as a = ∑
r
i=1 αiai + ω, with

ω ∈ Ap(S, E) and αi ∈ N, i = 1, . . . , r. Let a = ∑
r+m
i=1 ziai ∈ G(S) and zk < 0

for some k ∈ {r + 1, . . . , r + m}. Since S is simplicial, there exists nk ∈ N such
that (nk − zk)ak ∈ Na1 + · · · + Nar. So a = ∑

r+m
i=1,i 6=k ziai + (zk − nk)ak + nkak

and (zk − nk)ak ∈ G(a1, . . . , ar). Repeating this process, we see that a can be
written as ∑

r
i=1 z′iai+∑

r+m
i=r+1 niai, ni ∈ N. Without loss of generality one may

assume ∑
r+m
i=r+1 niai ∈ Ap(S, E). Hence every element a ∈ G(S) can be written as

a = ∑
r
i=1 ziai + ω where ω ∈ Ap(S, E). The next proposition, which is Corollary

1.7 from [11], assert that when S is Cohen-Macaulay, this expression is unique.

Proposition 2. If S is a Cohen-Macaulay simplicial affine semigroup, then
(1) Every element in G(S) is equal to an unique expression of the form z1a1 + . . . +
zrar + ω with zi ∈ Z and ω ∈ Ap(S, E).
(2) The element ∑

r
i=1 ziai + ω with zi ∈ Z and ω ∈ Ap(S, E) is in S if and only if

zi ≥ 0 for all i.

The cone spanned by S and interior of cone S, are denoted by:

cone(S) =

{
r

∑
i=1

riai |ri ∈ Q≥0

}

, intcone(S) =

{
r

∑
i=1

riai |ri ∈ Q>0

}

respectively. From the definition it is easy to see that

G(S) ∩ intcone(S) =
{

∑
r

i=1
ziai + ωj

∣
∣
∣γ

j
1 > −z1, . . . , γ

j
r > −zr, j = 1, . . . , t

}

.

Definition 2. Let S be an affine semigroup. The vector f ∗ ∈ G(S) \ S is called a
Frobenius vector for S if for all x ∈ G(S) ∩ intcone(S), f ∗ + x ∈ S.

x ∈ G(S) ∩ intcone(S)..
.

ar+m..

a1

a2 a3

f ∗
f
∗ +

in
tc

on
e(

S)

f ∗ + x ∈ S

The set of Frobenius vectors of S will be denoted by F(S). We define a cone
ordering on F(S) by writing f ∗1 ≤ f ∗2 if f ∗2 + cone(S) ⊆ f ∗1 + cone(S). We will
denote by MF(S) the set of minimal Frobenius vectors of S with respect to ≤.

Let Ap(S, E) = {ω1 = 0, ω2, . . . , ωt}. Since S is simplicial, there exist non-

negative rational numbers γ
j
i , i = 1, . . . , r, j = 1, . . . , t, such that ωj = ∑

r
i=1 γ

j
i ai.

Let M and M
j
i are r × r matrices, with column vectors a1, a2, . . . , ar and

a1, a2, . . . , âi, . . . , ar, ωj, respectively, where âi means that ai is omitted. It is not
hard to see that

γ
j
i =

∣
∣
∣
∣
∣

det M
j
i

det M

∣
∣
∣
∣
∣

. (2.1)
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Now, by Euclidean division, there exists a unique integer µ
j
i ≥ −1 and a unique

rational number 0 < β
j
i ≤ 1 such taht γ

j
i = µ

j
i + β

j
i , for each i = 1, . . . , r. Define

ξ j =
r

∑
i=1

β
j
iai =

r

∑
i=1

(−µ
j
i)ai +

r

∑
i=1

γ
j
i ai =

r

∑
i=1

(−µ
j
i)ai + ωj.

Clearly ξ j ∈ G(S) ∩ intcon (S). It is straightforward to see that

−µ
j
i =

⌊

−γ
j
i

⌋

+ 1. (2.2)

For example, let S ⊆ N3 and ω2 = 3
2 a1 +

5
7 a2 +

13
4 a3 ∈ Ap(S, E). Since γ2

1 =
3
2 , γ2

2 = 5
7 , γ2

3 = 13
4 , we have µ2

1 =
⌊
− 3

2

⌋
+ 1, µ2

2 =
⌊
− 5

7

⌋
+ 1, µ2

3 =
⌊

− 13
4

⌋

+ 1, and

so ξ2 = −a1 − 3a3 + ω2.

Lemma 1. Let S be a simplicial affine semigroup. Then f ∗ ∈ F(S) if and only if
f ∗ + ξk ∈ S, for every k = 1, . . . , t.

Proof. Let f ∗ be a Frobenius vector for S. Since ξk ∈ G(S) ∩ intcone(S), f ∗ + ξk ∈
S. Conversely let x = ∑

r
i=1 ziai + ωl ∈ G(S) ∩ intcone(S). Since x ∈ intcone(S),

zi + γl
i > 0 ⇒ zi > −γl

i ⇒ zi ≥
⌊

−γl
i

⌋

+ 1 = −µl
i .

Thus x − ξl = ∑
r
i=1 (zi − (− µl

i))ai ∈ S and so f ∗ + x = f ∗ + ξl
︸ ︷︷ ︸

∈S

+ x − ξl
︸ ︷︷ ︸

∈S

∈ S.

Theorem 2.1. Let S be a simplicial affine semigroup. Then MF(S) 6= ∅.

Proof. Let f = ∑
r
i=1 ziai + ωj ∈ G(S) \ S. First of all, we observe that there exist

N1, . . . , Nt ∈ N large enough such that

f +
t

∑
k=1

Nkξk =
r

∑
i=1

ziai + ωj +
t

∑
k=1

Nk

r

∑
i=1

βk
i ai =

r

∑
i=1

ziai + ωj +
r

∑
i=1

t

∑
k=1

Nkβk
i ai

=
r

∑
i=1

(

zi +
t

∑
k=1

Nkβk
i

)

ai + ωj ∈ S.

Now, if f /∈ F(S), there exists k1 ∈ {1, . . . , r} such that f1 = f + ξk1
∈ G(S) \ S.

If f1 /∈ F(S), there exists k2 ∈ {1, . . . , r} such that f1 = f + ξk1
+ ξk2

∈ G(S) \ S.
Since this process can be repeated only finitely many times, by Lemma 1,
we conclude that F(S) 6= ∅. Now we prove that MF(S) 6= ∅. Let
f = ∑

r
i=1 ziai + ωj ∈ F(S), f ′ = ∑

r
i=1 z′iai + ωj′ ∈ F(S) and f ∈ f ′ + cone(S). Then

z′i + γ
j′

i ≤ zi + γ
j
i for all i = 1, . . . , r, and so z′i ≤ zi + γ

j
i − γ

j′

i . On the other hand,

since ∑
r
i=1 ai ∈ G(S) ∩ intcone(S), we have f ′ + ∑

r
i=1 ai = ∑

r
i=1 (z

′
i + γ

j′

i + 1) ∈ S,

and thus −γ
j′

i − 1 ≤ z′i . Hence −γ
j′

i − 1 < z′i ≤ zi + γ
j
i − γ

j′

i . The finiteness of
Ap(S, E) implies that { f ∗ ∈ F(S) | f ∈ f ∗+cone(S)} is a finite set, which proves
that MF(S) 6= ∅.
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Definition 3. The simplicial affine semigroup S is called pure simplicial if for each
i = 1, . . . , m, ar+i ∈ intcone(S). We abbreviate pure simplicial as P-simplicial.

We can define the following relation on G(S): for any a, b ∈ G(S), a≤Sb ⇔
b − a ∈ S. Let max(Ap(S, E)) = {η1, η2, . . . , ηs} be the set of maximal elements

of Ap(S, E) with respect to ≤S and let γmax
i =

⌊

maxj(γ
j
i)
⌋

+ 1, where maxj(γ
j
i) =

max{γ1
i , γ2

i , . . . , γt
i}.

Theorem 2.2. Let S be a simplicial affine semigroup.
(1) If S is Cohen-Macaulay, then

MF(S) ⊂

{
r

∑
i=1

ziai + ω |−1 ≤ zi ≤ γmax
i , ω ∈ Ap(S, E)

}

.

(2) If S is Cohen-Macaulay and P-simplicial, then

MF(S) ⊂

{
r

∑
i=1

ziai + η |−1 ≤ zi ≤ γmax
i , η ∈ max (Ap(S, E))

}

.

Proof. (1) Let f = ∑
r
i=1 ziai + ω ∈ F(S). As ∑

r
i=1 ai ∈ G(S) ∩ intcone(S), so

f + ∑
r
i=1 ai = ∑

r
i=1 (zi + 1) + ω ∈ S. Hence by Proposition 2, zi ≥ −1. Now let

zl > γmax
l for some l ∈ {1, . . . , r}. We show that f /∈ MF(S). Set

f1 = ∑
r
i=1,i 6=l ziai + γmax

l al + ω. Since f ∈ f1 + cone(S), it suffices to prove that

f1 ∈ F(S). Let x = ∑
r
i=1 z′iai + ω′ ∈ G(S) ∩ intcone(S).

f1 + x =
r

∑
i=1,i 6=l

ziai + γmax
l al + ω +

r

∑
i=1,i 6=l

z′iai + z′lal + ω′

=
r

∑
i=1,i 6=l

(zi + z′i)ai + (γmax
l + z′l)al + (ω+ω′).

Since f ∈ F(S), we have f + x = ∑
r
i=1 (zi + z′i)ai+ω + ω′ ∈ S. So by Proposi-

tion 2, ∑
r
i=1,i 6=l (zi + z′i)ai + ω + ω′ ∈ S. Clearly γmax

l + z′l > 0, so f1 + x is also in

S and therefore f1 ∈ F(S).
(2) Let f = ∑

r
i=1 ziai + ω ∈ F(S). If ω /∈ max (Ap(S, E)), then there exists

η ∈ max (Ap(S, E)) such that η − ω ∈ S. Clearly η − ω ∈ Ap(S, E), which
implies that it belongs to intcone(S), because S is P-simplicial. Since f /∈ S, by
Proposition 2, f + η − ω = ∑

r
i=1 ziai+η /∈ S. This contradicts f ∈ F(S).

By the previous theorem and Proposition 2, if f ∗ = ∑
r
i=1 ziai + η is a minimal

Frobenius vector of the Cohen-Macaulay P-simplicial semigroup S, then there ex-
ists k ∈ {1, . . . , r} such that zk = −1 and therefore f ∗1 = −ak + ∑

r
i=1,i 6=k γmax

i ai + η

is a Frobenius vector for S, because f ∗1 ∈ f ∗+cone(S).

Remark 1 (Numerical case). Every numerical semigroup S =<a1, . . . ,am+1> is a
P-simplicial and Cohen-Macaulay semigroup. As a consequence of the above
theorem f ∗(S) = −a1 + max (Ap(S, a1)) (see [10, Proposition 2.12]).

As a consequence of the Theorem 2.2 and Lemma 1, we can compute the
elements of MF(S) for Cohen-Macaulay simplicial semigroup, because we only
have to check if a finite number of elements of G(S) \ S belongs to MF(S).
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Theorem 2.3. Let S be a simplicial affine semigroup and |max (Ap(S, E))| = 1. Then
f ∗ = η − ∑

r
i=1 ai is a Frobenius vector for S, where η = max (Ap(S, E)).

Proof. Let x ∈ G(S) ∩ intcone(S) and f ∗ + x = ∑
r
i=1 ziai + ω ∈ G(S). So

η − ω + x = ∑
r
i=1 (zi + 1)ai. Since η − ω ∈ cone(S) and x ∈ intcone(S), so

η − ω + x ∈ G(S) ∩ intcone(S). Hence for all i = 1, . . . , r, zi + 1 > 0, and so
zi ≥ 0, consequently, f ∗ + x ∈ S.

Proposition 3. Let S be a simplicial affine semigroup. The following statements are
equivalent.
• S is a Gorenstein semigroup;
• S is a Cohen-Macaulay semigroup and the set Ap(S, E) has a unique maximal element.

Proof. Combining Theorem 4.6 with Theorem 2.8 in [11].

Corollary 1. Let S be a Gorenstein simplicial affine semigroup. Then f ∗ = η − ∑
r
i=1 ai

is a Frobenius vector for S where η = max (Ap(S, E)). Moreover, if S is P-simplicial,
then it is a minimal Frobenius vector for S and it is unique.

In [1] (resp. [2]) it is shown that when S is a complete intersection simplicial
semigroup (resp. free semigroup) the vector f ∗ = η − ∑

r
i=1 ai is the only minimal

Frobenius vector for S. We recall that a simplicial affine semigroup is said to be
free if |Ap(S, E)| = n1n2 · · · nm, where ni = min{k ∈ N \ 0 | kar+i ∈ 〈a1, a2, . . . ,
ar+i−1〉 } , i = 1, . . . m. Clearly every simplicial affine semigroup with m = 1 is
free. Free semigoups are complete intersection and so they are Gorenstein. If S
be a free semigoup, then IS is generated by the set

{

xn1
r+1 −

r

∏
i=1

x
t1i
i , xn2

r+2 −
r+1

∏
i=1

x
t2i
i , . . . , xnm

r+m −
r+m−1

∏
i=1

x
tmi
i

}

where niar+i= ∑
r+i−1
k=1 tikak (for more details, please see [12]).

Let S be a Cohen-Macaulay P-simplicial semigroup. By Theorem 2.1, there
exists at least one minimal Frobenius vector for S. Using the following algorithm
we can compute minimal Frobenius vectors of S.
———————————————————————————————————–
Algoritm : Computing minimal Frobenius vectors of a P-simplicial Cohen-Mac-
aulay semigroup.
———————————————————————————————————–
Inpute: A P-simplicial Cohen-Macaulay semigroup S = 〈a1, . . . , ar+m〉 ⊂ Nr.
Output: The set of minimal Frobenius vectors of S.

Steps of the Algorithm:
1. Compute IS = ker ϕ for ϕ : K[x1, . . . , xr+m] → K[S], xi 7→ yai ([6, Theorem
12.24]), ([13, Chapter 12]).

2. Compute a monomial K-basis {Mi |i} of
K[x1,...,xr+m]
<IS,x1,...,xr>

and set

Ap(S, E) = {ω1, ω2, . . . , ωt} =
{

degS(Mi) |i
}

.

3. Using (2.1) and (2.2), compute ξ j = ∑
r
i=1(−µ

j
i)ai + ωj, j = 1, . . . , t.

4. Choose η ∈ max (Ap(S, E)) and set Aη = {−a1 − a2 − · · · − ar + η}, MFη(S)=∅.
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5. Using Lemma 1, compute T =
{

t ∈ Aη |t ∈ F(S)
}

. Set MFη(S) = MFη(S) ∪ T.
Note that if f + ξk ∈ S, k ∈ {1, . . . , t}, and f≤S f ′, then f ′ + ξk ∈ S.
6. Set Aη = ∪r

i=1

(
ai + (Aη \ T)

)
\ S. We see that every element of Aη is of the

form c1a1 + · · ·+ crar + η.
7. Set Aη = Aη \ {c1a1 + · · ·+ crar + η ∈ Aη |ci > γmax

i , for some i} and repeat
step 5.
8. The set of minimal Frobenius vectors of S is equal to min≤ ∪

η
MFη(S).

———————————————————————————————————–

Example 1. Let S = 〈a1 = (1, 5), a2 = (5, 1), a3 = (2, 2), a4 = (3, 3)〉. By Theorem
2.1, S has at least one minimal Frobenius vector. Performing the steps of the above
algorithm we compute the set of minimal Frobenius vectors of S.

Step 1. Using CoCoA [3], K[S] ≃
K[x,y,z,w]

IS
, where IS =

〈
z3 − w2,−xy + w2

〉
.

Step 2. The set {1, z̄, z̄2, w̄, z̄w̄, z̄2w̄} is a monomial K-basis of
K[x,y,z,w]
<IS,x,y> . Hence

Ap(S, E) = {ω1 = 0, ω2 = a3, ω3 = 2a3, ω4 = a4, ω5 = a3 + a4, ω6 = 2a3 + a4} .

By Proposition 1, the semigroup S is Cohen-Macaulay, because for every
x, y ∈ Ap(S, E), x − y or y − x is in intcone(S) and since a1 and a2 are linearly
independent, x − y /∈ G(a1, a2).

Step 3. Using CoCoA, we see that

ω1 = 0a1 + 0a2 ⇒ ξ1 = a1 + a2 = (6, 6), ω4 = 1
2 a1 +

1
2 a2 ⇒ ξ4 = a4 = (3, 3)

ω2 = 1
3 a1 +

1
3 a2 ⇒ ξ2 = a3 = (2, 2), ω5 = 5

6 a1 +
5
6 a2 ⇒ ξ5 = a3 + a4 = (5, 5)

ω3 = 2
3 a1 +

2
3 a2 ⇒ ξ3 = 2a3 = (4, 4),

ω6 = 7
6 a1 +

7
6 a2 ⇒ ξ6 = −a1 − a2 + 2a3 + a4 = (1, 1).

Step 4. Set A2a3+a4
= { f ∗ = −a1 − a2 + 2a3 + a4 = (1, 1)}.

Step 5. Since f ∗ + ξ1 = 2a3 + a4 ∈ S, f ∗ + ξ2 = a4 ∈ S, f ∗ + ξ3 = a3 + a4 ∈ S,
f ∗ + ξ4 = 2a3 ∈ S, f ∗ + ξ5 = 2a4 ∈ S and f ∗ + ξ6 = a3 ∈ S, so f ∗ ∈ F(S). Set
T = { f ∗}.
Step 6. A2a3+a4

= ∪2
i=1(ai + A2a3+a4

\ T
︸ ︷︷ ︸

∅

) = ∅.

It follows that f ∗ = (1, 1) is the only minimal Frobenius vector for S. The semi-
group S is free, because |Ap(S, E)| = 6 (see Fig 1).

Example 2. Let S = 〈a1 = (2, 1), a2 = (1, 5), a3 = (1, 1), a4 = (4, 5)〉.

Step 1. Using CoCoA, K[S] ≃ K[x,y,z,w]
IS

, where IS =
〈
−z6 + xw, x3y − z3w,

x2yz3 − w2
〉
.

Step 2. The set {1, z̄, z̄2, z̄3, z̄4, z̄5, w̄, z̄w̄, z̄2w̄} is a monomial K-basis of
K[x,y,z,w]
<IS,x,y> .

Hence

Ap(S, E) = {ω1 = 0, ω2 = a3, ω3 = 2a3, ω4 = 3a3, ω5 = 4a3,
ω6 = 5a3, ω7 = a4, ω8 = a3 + a4, ω9 = 2a3 + a4}.

Since a1 and a2 are linearly independent, one obtains that if x, y ∈ Ap(S, E) and
x 6= y, then x − y /∈ G(a1, a2). Hence by Proposition 1, S is a Cohen-Macaulay
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a1

a2

a3

a4

f ∗

f
∗ +

in
tc

on
e(

S)

Fig.1

a1

a2 a4

a3

f ∗

a4

f
∗ +

in
tc

on
e(

S)

Fig.2

semigroup but not Gorenstein, because max(Ap(S, E)) = {η1 = 2a3 + a4, η2 = 5a3}
(see Proposition 3 ).
Step 3. Using CoCoA, we see that

ω1 = 0a1 + 0a2 ⇒ ξ1 = a1 + a2 = (3, 6), ω2 = 4
9 a1 +

1
9 a2 ⇒ ξ2 = a3 = (1, 1)

ω3 = 8
9 a1 +

2
9 a2 ⇒ ξ3 = 2a3 = (2, 2), ω4 = 12

9 a1 +
3
9 a2 ⇒ ξ4 = −a1 + 3a3 = (1, 2)

ω5 = 16
9 a1 +

4
9 a2 ⇒ ξ5 = −a1 + 4a3 = (2, 3),

ω6 = 20
9 a1 +

5
9 a2 ⇒ ξ6 = −2a1 + 5a3 = (1, 3)

ω7 = 5
3 a1 +

2
3 a2 ⇒ ξ7 = −a1 + a4 = (2, 4),

ω8 = 19
9 a1 +

7
9 a2 ⇒ ξ8 = −2a1 + a3 + a4 = (1, 4)

ω9 = 23
9 a1 +

8
9 a2 ⇒ ξ9 = −2a1 + 2a3 + a4 = (2, 5).

Step 4. Set A2a3+a4
= { f1 = −a1 − a2 + 2a3 + a4 = (3, 1)}.

Step 5. We have f1 + ξ1 = 2a3 + a4 ∈ S, f1 + ξ2 = 2a1 ∈ S, f1 + ξ3 = 2a1 + a3 ∈ S,
f1 + ξ4 = a1+2a3 ∈ S, f1 + ξ5 = a1 + 3a3 ∈ S,
f1 + ξ6 = 4a3 ∈ S, f1 + ξ7 = 5a3 ∈ S, f1 + ξ8 = a4 ∈ S and f1 + ξ9 = 2a1 + a2 ∈ S.
So f1 ∈ F(S) and like in the example above MF2a3+a4

={ f1}.
Now we use the algorithm for η2 = 5a3. Set A5a3

= { f2 = −a1 − a2 + 5a3 =
(2,−1)}. As f2 + ξ2 = (3, 0) /∈ S, f2 /∈ F(S). Step 6 yields A5a3

= { f3 = −a1 +
η2 = (3, 4), f4 = −a2 + η2 = (4, 0)}. Since f3 + ξ4 = (4, 6) /∈ S and f4 + ξ4 =
(5, 2) /∈ S, f3 and f4 are not in F(S). Using the algorithm, A5a3

= { f5 = −a1 + a2 +
η2 = (4, 9), f6 = a1 − a2 + η2 = (6, 1)}. As γmax

1 = 3 and γmax
2 = 1, we go back

to Step 5. The vectors f5 and f6 are not in F(S) because f5 + ξ4 = (5, 11) /∈ S and
f6 + ξ4 = (7, 3) /∈ S. Using steps 6 and 7, A5a3

= { f7 = 2a1 − a2 + η2 = (8, 2)}.
As f7 + ξ4 = (9, 4) /∈ S, so f7 /∈ F(S). Set A5a3

= { f8 = 3a1 − a2 + η2 = (10, 3)}.
Since f8 + ξ4 = (11, 5) /∈ S, so f8 /∈ F(S). Finally, A5a3

= ∅ ( steps 6 and 7). Hence
f1 is the only minimal Frobenius vector for S (see Fig 2).
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