
When are enriched strong monads double

exponential monads?

Christopher Townsend

Abstract

Some categorical conditions are given that are sufficient to show that an
enriched monad with a strength is a double exponential monad. The condi-
tions hold for the double power locale monad (enriched over posets) and so
as an application it is shown that the double power locale monad is a double
exponential monad. A benefit is that this result about the double power lo-
cale monad can be established without the need for any detailed discussion
of frame presentations or topos theory.

1 Introduction

The category of locales provides an example of a category where exponentials
do not always exist (not all locales are locally compact) but for which double
exponentiation at the Sierpiński locale does always exist; the double exponential
is given by the double power locale construction, [VT04]. This example motivates
a broader question: what categorical conditions can we think of that establish
that a monad is a double exponential monad, in the absence of an assumption of
cartesian closedness on the ambient category? The double power locale monad
has a strength and the category of locales is enriched over posets and has cate-
gorical tensors that are stable under finite product. Further, the proof that the
double power locale functor is a double exponential seems, at the very least, to
require this level of assumptions on the ambient category C and the structure of
the monad. So the question becomes: when are enriched strong monads dou-
ble exponential monads? This paper provides some categorical conditions that
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answer the question. We show that for any strong order enriched monad T

we have that T is a double exponential monad X 7→ AAX
provided (i) A is a

T-algebra, (ii) AX exists weakly and is given by categorical tensor; and, (iii) the
contravariant functor C( , A) is fully faithful.

The structure of the paper is as follows. In the next section we recall some
results about categorical tensors, focusing on how when tensors exist they
induce a monad on the category V over which our ambient category C is enriched.
The following section discusses weak exponentials, and describes a condition for
when weak exponentials are given by tensor. The next section proves the main
result, showing that the categorical conditions just outlined are sufficient for a
strong monad to be double exponential. The second to last section outlines how
the result can be applied to prove that the double power locale monad is a double
exponential monad. The last section provides a discussion on potential further
work.

2 Order enriched categorical definitions and initial lemmas on

tensors

Let C be a category enriched over another category V . We assume that V is a
category with finite products and has 1 generating; that is, for any two mor-
phisms c, d : D ✲✲ E if ca = da for all a : 1 ✲ D then c = d. Any enrichment
over V uses finite products in V as the monoidal structure. Consult B2.1 of [J02]
for material on enriched categories; in particular we follow the notation |C| for
the underlying ordinary category of an enriched category C.

The definition of tensor for an object D of V and an object X of C, is an object
D⊗X of C together with a map iD

X : D ✲ C(X, D ⊗X) such that for every Y and
every morphism l : D ✲ C(X, Y) there is a unique map xl : D ⊗ X ✲ Y such

that l factors as D
iD
X✲ C(X, D ⊗ X)

xl◦( )✲ C(X, Y). Put another way, ( )⊗ X :
V ✲ |C| is left adjoint to C(X, ) : |C| ✲ V . We use the notation evX,Y for
the map xIdC(X,Y)

: C(X, Y) ⊗ X ✲ Y; i.e. the mate of the identity on C(X, Y).

Below we will have a fixed object A as part of our assumptions; DX will be used
as notation for C(X, A) and evX for evX,A : DX ⊗ X ✲ A.

Say C has finite products and tensors. Then for any pair X1 and X2 of objects
of C there is a canonical map ΨX1,X2

: D ⊗ (X1 × X2) ✲ (D ⊗ X1)× X2 given
by xl× where l× is the map

D
iD
X1✲ C(X1, (D ⊗ X1))

( )×IdX2✲ C(X1 × X2, (D ⊗ X1)× X2)

Tensors are said to be stable under finite products provided this canonical map
is always an isomorphism. Note that the condition is equivalent to the same
condition restricted to X1 = 1. Notice that the mate of

D
iD
1✲ C(1, D ⊗ 1)

( )×IdX✲ C(X, [D ⊗ 1]× X)

is the same as the mate of

D
iD
X✲ C(X, D ⊗ X)

Ψ1,X◦( )✲ C(X, [D ⊗ 1]× X)
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by definition of Ψ. It follows that if tensors are stable under product then the
diagram

D
iD
1 ✲ C(1, D ⊗ 1)

C(X, D ⊗ X)

iD
X

❄ ∼=✲ C(X, [D ⊗ 1]× X)

( )× IdX

❄

commutes. Therefore every arrow X ✲ D ⊗ X in the image of iD
X can be

expressed as (a, IdX) : X ✲ D ⊗ X for some a : 1 ✲ D ⊗ 1. This will be
exploited when we come to looking at natural transformations between functors
of the form C( × X, A) : |Cop| ✲ V .

Notice also that the following diagram commutes, provided tensors are stable
under product:

C(1, D ⊗ 1)⊗ X
[( )× IdX]⊗ IdX✲ C(X, D ⊗ X)⊗ X

evX,D⊗X ✲ D ⊗ X

[C(1, D ⊗ 1)⊗ 1]× X

∼=

❄ ev1,D⊗1 × IdX ✲ (D ⊗ 1)× X

∼=

❄

This follows by unwinding the definitions of the various isomorphisms involved.
By definition of tensor, for each object X of C, a monad KX is induced on V whose
functor part is given by D 7→ C(X, D ⊗ X); this is the monad on V induced by the
adjunction ( )⊗ X ⊣ C(X, ). The last two diagrams show that provided tensors
are stable under product, ( )× IdX induces a monad morphism from K(= K1)
to KX. It follows that for any X and Y, C(X, Y) is a K algebra; its structure map

is given by C(1, C(X, Y)⊗ 1)
( )×IdX✲ C(X, C(X, Y) ⊗ X)

evX,Y◦( )✲ C(X, Y)

Example 2.1. The category of sets, enriched over itself, is an example: X ⊗Y is given by
X × Y, from which it is clear that the tensor is stable under finite products.

Example 2.2. The category of locales, Loc, is enriched over Pos, the category of posets. It
has tensors that are stable under products. For any poset P, monotone maps
P ✲ Loc(X, Y) are in order preserving bijection with Loc(Idl(P) × X, Y), where
Idl(P) is the locale whose frame of opens is the set of upper closed subsets of P. In other
words P ⊗ X exists and is given by Idl(P) × X, from which it is clear that the tensor
is stable under products. The monad induced on Pos is the ideal completion monad (its
functor part sends each poset to its set of ideals; that is, lower closed and directed subsets).
The category of algebras is therefore the category dcpo, of directed complete posets.

With these basic facts about tensor recalled and examples given, we can now
progress with an initial lemma.
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Lemma 2.3. Assume that C, enriched over V , has finite products and tensors that are
stable under finite product. Then,

(a) for any objects X, Y and A of C, given any natural transformation
α : C( × X, A) ✲ C( × Y, A),

(i) αDX⊗1(evX) : DX ⊗ Y ✲ A is equal to

DX ⊗ Y
α1⊗IdY✲ DY ⊗ Y

evY✲ A; and,

(ii) α1 is a K-algebra homomorphism.
(b) For any two natural transformations α, β : C( × X, A) ✲ C( × Y, A),

α1 = β1 if and only if αDX⊗1(evX) = βDX⊗1(evX).

Part (a)(ii) tells us that natural transformations Loc( × X, A) ✲

Loc( ×Y, A) give rise to dcpo homomorphisms. Part (b) will be key to the proof
of the main result.

Proof. (a)(i). By definition of tensor, a proof is needed that

DX
i
DX
Y ✲ C(Y, DX ⊗ Y)

αDX⊗1(evX)◦( )✲ C(Y, A)

is equal to

DX
α1✲ DY.

Since 1 is generating, and every a : 1 ✲ DX factors as (iDX
1 (a))(evX), the two

arrows are equal because α is natural at each iDX
1 (a) : 1 ✲ DX ⊗ 1 and, as

observed above, iDX
Y (a) factors as Y

(i
DX
1 (a),IdY)✲ (DX ⊗ 1)× Y

(a)(ii). We must check for any φ : 1 ✲ C(X, A)⊗ 1, that

α1(evX(φ × IdX)) = evY((α1 ⊗ 1)φ × IdY)

The right hand side is equal to evY(α1 ⊗ IdY)(φ × IdY) and by (a)(i) this is
equal to αDX⊗1(evX)(φ × IdX) and so this stage of the proof follows by naturality
at φ.

One way round for (b) follows from (a)(i). For the other way round observe
that for any natural transformation γ : C( × X, A) ✲ C( × Y, A) and for any
a : 1 ✲ DX, it is clear from naturality that γ1a = [γDX⊗1(evA)](a × IdY).

3 Weak exponentials as tensors

If X and A are two objects of a category C, then a weak exponential W [X,A] is

an object of C together with a map wevX,A : W [X,A] × X ✲ A such that for

every map a : Z × X ✲ A there is a map fa : Z ✲ W [X,A] such that a factors
as wevX,A( fa × IdX). In other words a weak exponential is the same thing as an
exponential but without the uniqueness requirement placed on fa. For interest,
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note that if the definition of weak exponential was weakened to require the exis-
tence of fa only in the case Z = 1, then DX ⊗ 1 would always be a weak exponen-

tial W [X,A].
Weak exponentials are important in our context because in their presence the

natural transformations that are of interest to us are uniquely determined by their
actions on the weak evaluation map wev:

Lemma 3.1. If C is a category, with finite products, enriched over V and A an object of C

such that W [X,A] exists for every X, then every natural transformation
C( × X, A) ✲ C( × Y, A) is uniquely determined by αW [X,A](wevX,A)

Proof. This is immediate from naturality and the definition of weak exponential
(and our assumption that 1 generates V) because every a : Z × X ✲ A factors
as wevX,A( fa × IdX).

If C has tensors that are stable under products then we say that the weak ex-

ponential W [X,A], when it exists, is given by the tensor DX ⊗ 1 provided the map

(DX ⊗ 1)× X
∼=✲ DX ⊗ X

evX✲ A makes DX ⊗ 1 into a weak exponential. The
next lemma provides some insight into the relationships between the various cat-
egorical statements that we are discussing:

Lemma 3.2. Let C be a category over V with finite products and tensors that are sta-

ble under product, and X and A two objects of C. Then C has weak exponentials W [X,A],
given by the tensor DX ⊗ 1, if and only if for every object Z there exists a map
rZ : DZ×X ⊗ Z ✲ DX ⊗ 1 such that evX(rZ × IdX) = evZ×X.

Proof. Say DX ⊗ 1 is a weak exponential, then the rZ required exists for any Z, by
applying the definition of weak exponential to evZ×X : (DZ×X ⊗ Z)× X ✲ A.

In the other direction, say we are given a : Z × X ✲ A, then a must factor
as evZ×X(pa, IdZ×X) for some pa : 1 ✲ DZ×X ⊗ 1. But then rZ(pa, IdZ) is the
morphism required to prove that DX ⊗ 1 is a weak exponential.

It is well know that the category of locales has weak exponentials, W [X,S],
given by tensor, Idl(DX), where we are taking A = S, the Sierpiński locale, for
C = Loc (and so for any locale X, DX

∼= OX, the opens of X). For example

you can exploit the facts that Idl(DX) ∼= SSpec(DX) and S is injective. The lemma
can also be applied; since the opens of Z × X are in order preserving bijection
with suplattice homomorphisms OX ✲ OZop there is a forgetful monotone
map from DZ×X

✲ Loc(Z, Idl(DX)), which defines a map rZ : Idl(DZ×X)×
Z ✲ Idl(DX) for any locale Z.

4 Main result

Before we state and prove our main result, we must be clearer about what is
meant by a double exponential monad. For objects X and A in C, AX does not
necessarily exist in C as we are not making the assumption that C is cartesian
closed. However, the presheaf C( × X, A) : |Cop| ✲ V is the exponential
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C( , A)C( ,X) in the presheaf category [|Cop|,V ]. So we can define the double expo-

nential AAX
to be an object of C with the property that morphisms p : Y ✲ AAX

are (naturally in Y) in bijection with natural transformations from C( × X, A) to
C( × Y, A). An enriched monad T = (T, η, µ) on an enriched category C is a
double exponential monad with respect to an object A provided TX is a double

exponential AAX
, naturally in X, and under the bijections that this establishes

the unit ηX is mapped to the identity natural transformation on C( × X, A) and

the natural transformation C( , µX) is C( , A)⊠
X

, where ⊠
X : C( × X, A) ✲

C( × TX, A) is the mate of the identity on TX.

If T is a double exponential monad, then a strength can be defined on it by
defining, for any Z and X of C, tZ,X : Z × TX ✲ T(Z × X) to be the map corre-

sponding to the natural transformation C( × Z × X, A)
⊠

X
( )×Z ✲

C( × Z × TX, A). If T is a monad with a strength then it is a double exponential
monad provided that also the strength is, up to isomorphism, that determined by
the double exponential structure (i.e. determined by ⊠

X
( )×Z

).

Theorem 4.1. Let V be a finite product category with 1 generating and C a category
enriched over V with tensors that are stable under product. Denote by K the monad on V
induced by the assumption that C has tensors (i.e. its functor part is D 7→ C(1, D ⊗ 1)).

Let A be an object of C such that for any object X of C the weak exponential W [X,A]

exists and is given by tensor. Then for any strong V-monad T on C, we have that T is
isomorphic to the double exponential monad induced by A provided

(i) A is a T-algebra; and,

(ii) the functor UA : |CT| ✲ (VK)op given by UA(X) = C(X, A) is full and
faithful.

For clarity we note that the functor UA is a contravariant functor from the
underlying ordinary category of the Kleisli category determined by T to the
category of algebras on V induced by the tensor. It is given by

|CT| ✲ (VK)op

X1 7→ C(X1, A)

7→

TX2

f

❄
7→ C(X2, A)

aT( ) f

✻

where a : TA ✲ A is the structure map on A. That this is well defined is clear
from earlier lemmas (to see that aT( ) f is a K algebra homomorphism, observe

that αZ(Z×X2
c✲ A) = Z×X1

IdZ× f✲ Z×TX2

tZ,X2✲ T(Z ×X2)
Tc✲ TA

a✲ A
determines a natural transformation with α1 = aT( ) f and apply Lemma 2.3
(a)(ii)).
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Proof. We start with a proof that for any objects X and Y of C, morphisms
p : Y ✲ TX are in bijection with the collection of natural transformations from
C( × X, A) to C( × Y, A).

For every object X of C, consider the functor FX : |C| ✲ |CT| that sends

Z to Z × X on objects and sends a morphism f : Z1
✲ Z2 to Z1 × X

f×IdX✲

Z2 × X
ηZ2×X✲ T(Z2 × X). Clearly C( × X, A) = UAFX .

Given p : Y ✲ TX, define αp : FY
✲ FX by defining α

p
Z to be the composite

Z × Y
IdZ×p✲ Z × TX

tZ,X✲ T(Z × X),

where t is the strength on T. By exploiting the fact that the strength tZ,X is
natural in Z, it can be checked that αp is a natural transformation and so gives
rise to a natural transformation βp ≡ UA(α

p) from C( × X, A) to C( × Y, A). By
exploiting the fact that t1,X is (canonically isomorphic to) the identity on TX (by

definition of strength) we see that α
p
1 = p.

On the other hand given a natural transformation β from C( × X, A) to
C( × Y, A), we know by part (a)(ii) of Lemma 2.3 that β1 is a K-algebra
homomorphism and so by assumption there is some pβ : Y ✲ TX such that
UA(pβ) = β1. By combining (b) of Lemma 2.3 and Lemma 3.1 we know that
β is uniquely determined by β1 and so as we have assumed that UA is faithful,
a bijection is established between morphisms Y ✲ TX and natural transforma-
tions C( × X, A) to C( × Y, A). For clarity we note that given p : Y ✲ TX,
then the corresponding natural transformation, βp, sends any b : Z × X ✲ A
to

Z × Y
IdZ×p✲ Z × TX

tZ,X✲ T(Z × X)
Tb✲ TA

a✲ A.

It is then clear that the bijection is natural in Y and further that the mate of
ηX : X ✲ TX must be the identity natural transformation, this last by exploit-
ing the fact that ηZ×X must factor as tZ,X(IdZ × ηX) for any Z, by definition of
strength. To see that the bijection is natural in X, say we are given g : X1

✲ X2,
then it must be checked for any p : Y ✲ TX1 and any b : Z × X2

✲ A that

Z × Y
IdZ×p✲ Z × TX1

IdZ×Tg✲ Z × TX2

tZ,X2✲ T(Z × X2)
Tb✲ TA

a✲ A

is equal to

Z × Y
IdZ×p✲ Z × TX1

tZ,X1✲ T(Z × X1)
T(IdX×g)✲ T(Z × X2)

Tb✲ TA
a✲ A

which follows by naturality of tZ,X at X.

We also must have that C( , µX) is C( , A)⊠
X

, up to the bijections established.
To see this it can be checked that for any p : Y ✲ TTX that βµX p = βpβIdTX , i.e.
for any b : Z × X ✲ A that

Z × Y
IdZ×p✲ Z × TTX

IdZ×µX✲ Z × TX
tZ,X✲ T(Z × X)

Tb✲ TA
a✲ A

is equal to
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Z × Y
IdZ×p✲ Z × TTX

tZ,TX✲ T(Z × TX)
T(IdZ×IdTX)✲ T(Z × TX)

TtZ,X✲

TT(Z × X)
TTb✲ TTA

Ta✲ TA
a✲ A.

This can be seen by exploiting the facts that aTa = aµA, µ is natural (at b) and that
µZ×X(TtZ,X)tZ,TX = tZ,X(IdZ × µX), by definition of strength.

Finally, the strength t of T must be shown to be that induced by the double
exponential structure. Say we are given b : Z1 × Z × X ✲ A, then it must be
checked that

Z1 × Z × TX
IdZ1

×tZ,X✲ Z1 × T(Z × X)
tZ1,Z×X✲ T(Z1 × Z × X)

Tb✲ TA
a✲ A

is equal to

Z1 × Z × TX
tZ1×Z,X✲ T(Z1 × Z × X)

Tb✲ TA
a✲ A

which is clear from the definition of strength.

5 Application

The double power locale monad, P, was initially defined as the composite, in
either order, of the lower and the upper power locale monad, [JV91]. It does not
matter which order is taken because the upper and lower power locale monads
commute with each other. If X is a locale then the frame of opens of the double
power locale PX, is given by the free frame on OX, keeping the dcpo structure
on OX fixed. Notice then that S ∼= P0 because the frame of opens of S is the
free frame on the singleton set 1 (and the frame of opens of the zero locale is the
singleton set). So S is a P-algebra.

Both the lower and upper power locale monads have strengths; this can be
seen by exploiting the fact that locale product can be given by either suplattice
or preframe tensor. Therefore the double power locale monad has a strength as it
is easy to check that the composition of any two commuting monads, both with
a strength, has a strength. It is clear that US : LocP

✲ Posop is the functor
that sends a morphism Y ✲ PX to its corresponding dcpo homomorphism;
it is therefore faithful. Equally any dcpo homomorphism OX ✲ OY arises in
this way and so we have checked all the conditions of our main theorem and can
conclude that P is a double exponential monad.

6 Discussion

That the double power locale monad is a double exponential monad was origi-
nally shown in [VT04]. The proof offered here, it is hoped, provides some insight
into categorical techniques that can be deployed to obtain the result. Trivially
the main result can be applied to cartesian closed categories, so the challenge of
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finding non-trivial applications is finding categories that are not cartesian closed
but for which double exponentiation does exist (for some object A). Aside from
Loc the author has been unable to think of any; the relationship between the
monad induced on the category V and the points of the double power locale
monad seems to be quite particular. To take these ideas further one instinct is to
tamper with Pos; for example, the points of the lower and upper power locales
are natural transformations between functors Locop ✲ SLat, where SLat is the
category of semilattices. But this fails then to be double exponentiation because
the Yoneda lemma does not embed Loc into [Locop, SLat]. On the other hand
if the situation is unique, perhaps it is characterizing Loc? Indeed the category
of locales is the opposite of the category of order internal distributive lattices
in the category dcpo; is it possible for a category to be the category of internal
distributive lattices on the category of algebras of its enrichment (and to have
double exponentiation) without this somehow forcing it to be Loc? The challenge
in this idea seems to be in proving that the enrichment is necessarily Pos.

Another avenue is to see whether the categorical techniques offered here can
be deployed to provide a result about indexed categories, with V the base
category. This idea is plausible because the double power locale monad is dou-
ble exponentiation relative to any topos E , but a direct application of the result
offered here is not possible because 1 is not generating in the category of posets
relative to an arbitrary topos E . The author hopes to make an indexed version of
our main result the topic of a follow up paper.
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