Double point-homogeneous spherical curves

Guy Valette

Abstract

A curve is, in this paper, the image of the circle S! under an immersion
f into S?, R? or the real projective plane P,(IR), such that every multiple
point of f is an ordinary double point. Such a curve C is double point-
homogeneous or DP-homogeneous when the group of diffeomorphisms (of
S2,IR? or P,(IR)) preserving C has a transitive action on the set of its double
points. The orbits of DP-homogeneous curves in S? are totally determined;
using combinatorial methods, we prove that they fall into five countably in-
finite families ; the description of every family is illustrated by drawings of
some representatives with a small number of double points. As a corollary,
we obtain a similar classification of the DP-homogeneous curves in IR?. We
also propose a conjecture about the classification of DP-homogeneous curves
in Pz (]R)

1 Introduction

The curves considered in this paper are generic which means that each one is
the image of an immersion f of the circle S! into a two-dimensional manifold M
such that every multiple point of f is an ordinary double point. Such a curve C
is said to be double point-homogeneous or DP-homogeneous if, for every pair (p,q)
of double points of C, there is a diffeomorphism of M which preserves C and
sends p onto q. The main result of this paper is the classification of the orbits
of DP-homogeneous spherical curves (case M = S?) under the action of the
group of all diffeomorphisms of S%. A consequence of this is the classification of
DP-homogeneous plane curves (case M = R?) under the action of the group of
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all diffeomorphisms of IR>. We sometimes say that two curves are equivalent if
they belong to the same orbit.

Examples of DP-homogeneous plane curves are presented in Figures 1 and 2.
Any two different curves among the eight shown there are not equivalent. But
if we denote by C a curve in Figure 1 and by D the curve in Figure 2 having
the same number of double points as C, and if we map IR? onto open subsets of
S? by diffeomorphisms F and G, then the spherical curves F(C) and G(D) are
equivalent. This remark suggests the existence of a first infinite family of orbits
of DP-homogeneous spherical curves, the family P, with representatives of P; to
P4 shown in Figure 3.

o0 § L =

FIGURE 1: Four DP-homogeneous plane curves which are not equivalent with respect
to diffeomorphisms of IR?. They belong to Family P’ (see Section 4).
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FIGURE 2: Four DP-homogeneous plane curves which are not equivalent to those of
Figure 1. They belong to Family P” (see Section 4).

FIGURE 3: Representatives of the first four elements of the family P of orbits of DP-
homogeneous spherical curves.
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We shall prove that the other orbits of DP-homogeneous spherical curves are
classified in a natural way into four families presented in Figures 4, 5, 6 and 7 by
means of representatives.

FIGURE 5: Representatives of the first three elements of the family R.
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FIGURE 7: Representatives of the first three elements of the family T

Let us denote by O(n) the number of orbits of DP-homogeneous spherical
curves having exactly n double points (n > 1); a first consequence of our clas-
sification is the fact that the function n — O(n) is completely known: its first
fourteen valuesare1,2,2,4,2,2,2,4,2,3,2,3,2,3, and the next values
satisfy the recurrence O(n) = O(n — 12).

Another consequence of our classification is the analogous classification of
the orbits of DP-homogeneous plane curves. Two infinite families were already
presented in Figures 1 and 2. There is a third one: representatives of its first three
elements are shown in Figure 8.



Double point-homogeneous spherical curves 77

FIGURE 8: Representatives of the first elements of the third family of orbits of DP-
homogeneous plane curves. They belong to Family S’ (see Section 4).

2 Statement of the main result

The following definitions, where M denotes R? or S2, are useful for the descrip-
tion of DP-homogeneous (plane or spherical) curves.

DEFINITIONS: A curvilinear m-gon (m > 1) is any subset D of M which is
homeomorphic to a closed disk and whose boundary B is a closed curve which is
smooth everywhere excepted in m angular points, called vertices. If m > 1, a side
of D is an arc of B joining neighboring vertices; if m = 1, it is B.

A vertex a of the curvilinear m-gon D is said to be salient if the measure of
the interior angle of D in a is smaller than 7, and is re-entrant if this measure is
greater than 7.

Let C be a curve having n double points (n > 1); a curvilinear m-gon is said
to be inscribed in C if its sides are arcs of C joining neighboring double points if
m > 1, the same double point if m = 1. An example of an inscribed 5-gon is given
in Figure 9.

FIGURE 9: A 5-gon (coloured in grey) inscribed in a curve.

A curve C in M determines a tiling of M, whose tiles are the closures of the
connected components of M \ C; for brevity’s sake, we will say that the tiles of
this tiling are the tiles of C. Such a tile is biangular (resp. triangular) if it is a
curvilinear 2-gon (resp. 3-gon) with salient vertices.
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THEOREM: If a DP-homogeneous spherical curve has at least one double point, then
(under the group of all diffeomorphisms of S?) it belongs to one orbit of one of the
following five families:

1) The family P is the sequence of orbits P1, P, Ps, ... , Py, ... where any element of
Py is a figure-eight curve and, if n > 1, any element C of P, is a curve (with n double
points) one tile of which is a curvilinear n-gon with salient vertices, each of these vertices
being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of Py,
P;, P3 and P, are shown on the four spheres of Figure 3.

2) The family Q is the sequence of orbits Qz, Qu, Qs, ... , Qom, ... Where any
element C of Qo is a curve (with 2m double points) in which a curvilinear 2m-gon D is
inscribed ; the vertices of D are alternately salient and re-entrant and each of them is also
the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of Q, Q4 and
Qg are shown on the three spheres of Figure 4.

3) The family R is the sequence of orbits Ry, Rg, R, ... , Ry, ... where any element
C of Ry, is a curve (with 4m double points) in which a curvilinear 4m-gon D is inscribed;
every vertex of D has one salient neighbour and one re-entrant neighbour, and is also the
vertex of a curvilinear 1-gon incribed in C. Examples of elements of R4, Rg and Ryp
are shown on the spheres of Figure 5.

4) The family S is the sequence of orbits S3, S5, Sy, ... , Sopy1, ... where any
element C of Spp41 is a curve (with 2m + 1 double points) in which two curvilinear
(2m + 1)-gons with the same salient vertices are inscribed; they are separated by a chain
of 2m + 1 biangular tiles with salient vertices. Examples of elements of S3, S5 and Sy
are shown on the three spheres of Figure 6.

5) The family T is the sequence of orbits Ty, Tg, T1o, ... , Tem—2, Tem+2, ... where
any element C of Tey+2 is a curve (with 6m £ 2 double points) whose two tiles are
curvilinear (3m =+ 1)-gons with salient vertices; they are strictly separated by a belt of
6m =+ 2 triangular tiles. If 6m £ 2 > 4, then the tiling of C is combinatorially equivalent
to the natural tiling of the boundary of an antiprism whose bases are (3m + 1)-gons.
Examples of elements of T4, Tg and Tjy are shown on the spheres of Figure 7.

3 Gauss diagrams and proofs

Our proof of the Theorem uses diagrams introduced by Gauss [Ga]. We define
them via codes of curves which are similar to the Gauss codes used in knot theory.

NOTATIONS AND DEFINITIONS: Let C = f(S!) be a spherical curve with n
double points (1 > 0). In order to define a Gauss code of C, we first give a name
(letter with or without subscript) to each double point of C and then write their
names following the order in which f(u) meets them when u runs along S! ; the
word (of length 2n) so obtained is a Gauss code of C, which is defined (after the
choice of names) up to an element of the dihedral group D»,.

Every Gauss code ) of 2n letters may be represented by a Gauss diagram of
order n, i.e. a plane figure I' consisting of
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(i) a circle y of the Euclidean plane,

(i) the vertices of a regular 2n-gon P inscribed in 7y, also called vertices of T,
denoted by the letters of () in such a way that neighboring vertices of P corre-
spond to successive letters of (),

(iii) the n chords joining the vertices which have the same name.

Figure 10 describes an example of this representation.

a A
B e
AABCCDEBDFFE C r
DFFEAABCCDEB ‘
CCBAAEFFDBED e :
D d
I b

FIGURE 10: From left to right : a curve whose double points are A, B, C, D, E, F; three
equivalent Gauss codes of this curve ; a Gauss diagram I' of these codes and of the curve ;
a variant to I' with a better visibility (it is sometimes useful to take different but similar
names for the endpoints of a chord).

Let K be a chord of the Gauss diagram I'; the step of K is the minimum number
of sides of P needed to join the endpoints of K along the boundary of P. An
s-chord is a chord whose step is s (in the example of Fig. 10, I' has three 1-chords,
one 3-chord and two 5-chords).

One easily proves that every chord in the Gauss diagram of any plane or
spherical curve has an odd step and that if a curve is DP-homogeneous, then
all its chords have the same step (note that the converse is not true: for example,
there is a spherical curve with three double points which is not DP-homogeneous,
but whose Gauss diagram has only 1-chords).

LEMMA 1: If a spherical curve C with n double points is DP-homogeneous, then its
Gauss diagram I is invariant under the group C,, of rotations whose angles are multiples
of 27t/ n.

Proof: Let s be the common step of the chords of I and let [0], [1], ... , [2n — 1]
be the vertices of the polygon P used in the definition of I (the sides of P are the
segments [[j],[j + 1]], addition being done mod 2n1). As the Lemma is obvious
when s = 1 or s = n, we may assume that 1 < s < n and prove the assertion by
contradiction. Let us agree that two chords are neighboring if one of them is the
image of the other by a rotation of 77 /n.

If the assertion were false, then we could find in I' two neighboring chords,
one of them being [[a],[a + s]] and the other [[a 4 1],[a + 1 + s]]; two possibilities
occur: either one of these chords is neighboring with a third chord, or not.

«) The first assumption implies that a double point of C is a vertex of two biangu-
lar tiles of C; as C is DP-homogeneous, all the double points of C have the same
property; this implies that, for every vertex [j], the segment [[j],[j + s]] is a chord
of I', which is only possible when s = 1, contradicting the condition 1 < s < n.

B) The second assumption and the DP-homogeneity imply that the set of chords
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of I' can be partitioned into disjoint pairs of neighboring chords and consequently,
that the set of vertices of I' can be partitioned into disjoint pairs of neighboring
vertices which are endpoints of neighboring chords. Since [[a],[a + s]] and
[[a + 1],[a + 1 + s]] are such chords, the number of vertices of I between [a + 1]
and [a + s] is equal to s — 2, an odd number, giving the contradiction. [ ]

The notation I'(n, s) will be used for any plane diagram consisting of

(i) a circle y of the Euclidean plane,

(i) the vertices of a regular 2n-gon P inscribed in 7,

(iii) n chords of  with odd step s joining pairs of vertices of P, whose union
is invariant under the rotation group C.

Note that, given integers n and s with s odd and 1 < s < n, there is essentially
one diagram with these properties. Examples are drawn in Fig. 11.

B F / \’
A3 AO
D A a, as
C E Ag Aq
a ay
E™D F Ag a; Ag

FIGURE 11: The diagrams I'(6,3) and I'(8,5); AFBACBDCEDFE may be a code for
F<6, 3), and Aoa6A1a7A2aoA3a1A4a2A5a3A6a4A7a5 for F(8, 5)

In the proof of Lemma 2, we use a procedure found by L. Lovasz and M.L.
Marx [LM] to decide whether or not a word of 2n characters (1 symbols occurring
twice) is the Gauss code of a spherical curve. In order to increase the readability
of our paper, we now recall three definitions and two properties given in [LM].

DEFINITIONS: If a word has the form Aa A where & and B are non-empty
sequences, then the vertex split at A is the change from this word to =!8 where
a~! has the same letters as & but in the opposite order.

The loop removal at A of the word AaAB is the change from this word to the
one obtained from B by deleting all the letters which occur in «.

A reduced word of a word () is a non-empty word obtained from () after a finite
number of changes (vertex splits or loop removals).

PROPERTY 1 (“biparity condition” in [LM]): If the Gauss code of a spherical
curve with at least two double points A and B has the form Ax AuBpBy where a,
1, B, 7y are finite (possibly empty) sequences of letters, then « and  have an even
number of common letters.

PROPERTY 2 ("Theorem” in [LM]): A word () wherein each letter occurs twice
is a Gauss code of a spherical curve if and only if no reduced word of () has the
form A1 Aj... A A1As.. Ay with m even.

LEMMA 2: If C is a DP-homogeneous spherical curve, then its Gauss diagram belongs
to one of the three families described below and shown in Fig. 12:
a) the family A consists of diagrams T'(n, 1) where n € Ny,
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b) the family B consists of diagrams T'(n,n) where n = 2m + 1 (m € WNy),

c) the family C consists of diagrams I'(n, s) where n and s depend on m € Ny in one
of the following ways:
eitherr n=6m—2ands =4m—1 or n=6m+2ands=4m+1.

A

etc.
B

etc.
C

etc.

FIGURE 12: The three families of diagrams considered in Lemma 2.

Proof: The family A (resp. B) consists of all the diagrams described in Lemma
1 when the step s equals 1 (resp. n). Hence it remains to exclude, among the
diagrams I'(n,s) such that 2 < s < n, those which are neither of the form
n =6m-—2and s = 4m — 1 nor of the formn = ém+2and s = 4m + 1. In
other words, we must exclude all diagrams I'(#, s) for which n is odd and, among
the diagrams with n even, those for which 21 does not belong to {3s — 1,3s + 1}.
Suppose on the contrary that there is a spherical curve C whose Gauss diagram
must be excluded. By Lemma 1, its Gauss code () may be written as Aa AuBBBy
where the words i and vy are possibly empty and || = || = s — 1. (|| denotes
the number of letters of the word ¢). We distinguish three cases in order to get a
contradiction.

«) 2nis greater than3s+1. If s = 3 mod 4, then we take y = & in the

notation above for (); if s = 1 mod 4, then we choose |yt| = 2; in both cases,
the number of common letters of &« and  is odd, contradicting Property 1.

B) nis odd and 2n < 3s + 1. Since |a| = |B| = s — 1, we have

lul+ ]y =2n—2(s—1)—4=2n—-25-2<3s+1-2s—2=5-1,
which shows that a letter cannot appear twice in any word «, 1, B or <; moreover,
the distance between any letter of i and any letter of -y is at least s 4- 2; this implies
that any letter of u U <y appears also in « U 8. Hence the number of letters with
two occurences in « U B is equal to (2(s — 1) — (2n — 2s — 2)) /2 i.e. 2s — n, which
implies that the number of letters common to & and B is the odd number 2s — 1,
contradicting Property 1.

) niseven and 2n < 3s + 1. We use the notation introduced in the second
example of Fig.11 for the Gauss code of a curve C with diagram I'(n,s): so
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Ay = [2k] and a = [2k + 5] if we identify the set of vertices of I'(n, s) with Z/ (2n).
By Lemma 1, a Gauss code for I'(6,5) can be written as

0(6,5) = A0a4A1a5A2a0A3a1A4a2A5a3;
if ()(6,5) were the Gauss code of a spherical curve, then a vertex split of )(6,5)
at Ap would produce the Gauss code )’ of a spherical curve, but this is not so
because () does not satisfy the biparity condition, a contradiction. In the case
n > 7,a Gauss code for I'(n,s) may be written as

Q(i’l, S) = AoagA1agHAz...an_lAhaoAhHal...Agag_hAg+1ag_h+1...A,,_lag_l

where ¢ = (2n —s+1)/2and h = (s — 1) /2. In this case two changes are needed
to conclude: the first one is the vertex split of Q(n,s) at Ay, giving the word

Ahﬂn_lAh_l...Azﬂg+1A1ﬂgAh+1ﬂ1...Agag_hAg+1ag_h+1...An_lag_l
or the equivalent word
/
O = Ag+1ag_h+1...An_lag_lAhan_lAh_l...AzagHAlagAhHal...Agag_h

also written Q' = Ag1aa, 1 if we set

N = ag_h+1...An_lag_lAhan_lAh_l...Az and ﬁ = AlagAhHal...Agag_h
Finally, a loop removal of () at A creates the reduced word Ajaga; Ay which
means, according to Property 2, that ()(n, s) is not the Gauss code of a spherical
curve, contrary to the assumption. ]

Proof of the Theorem: Every curve described in the Theorem is clearly
DP-homogeneous; moreover, if it belongs to one of the families P, Q or R, then
its Gauss diagram belongs to family A while, if it belongs to family S (resp. T),
then its Gauss diagram belongs to family B (resp. C). So its remains to show that
every DP-homogeneous spherical curve C with n double points belongs to one of
the families P, Q, R, S or T. The rest of the proof has three parts, corresponding
to the three possible families A, B and C.

a) Curves with diagram in family A. If the Gauss diagram of CisI'(1,1), then
C is clearly a figure-eight curve and all such curves form the orbit A;. If the
Gauss diagram of C is I'(n, 1) with n > 1, then C is a union of n loops and n arcs
connecting neighboring double points; these arcs form a Jordan curve B, which is
boundary of two curvilinear n-gons.
«) If the loops of C at a double point and at its two neighbors (only one if n = 2)
are on the same side of B, then this property is true for every double point, and
so C belongs to the orbit Pj,.
B) If the loop of C at a double point is on one side of B while the loops at its
neighbors are on the other side, then this property is true for every double point,
which implies that 1 is even and that C belongs to the orbit Q,,.
) If the loops of C at the neighbors of a double point are not on the same side
of B, then this property is true for every double point, and so n is a multiple of 4
and C belongs to the orbit R;,.

b) Curves with diagram in family B. If the Gauss diagram of C is I'(n,n)

(n = 2m+1,m > 0), then any simple arc of the circle v of I'(n,n) (i.e. any arc
joining neighboring vertices) determines with its antipodal arc the boundary of a
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biangular tile of the tiling of C; these biangular tiles have the properties described
in point 4 of the Theorem, and so C belongs to the orbit S,.

c) Curves with diagram in family C. A Gauss code of I'(4, 3) is
0(4,3) = AoﬂgAlaoAzﬂlA:;ﬂz
The simple arcs Agas, Azap and apA; of the circle y of I'(4, 3) determine the sides
of a triangular tile Ay of C. We define in the same way A; by means of Ajay, Apas
and a1 Az, Ay by means of Ayay, Ajap and a;Ap, and Az by means of Azay, Azay
and a3 Aq; as Ag and A have a common side, as well as A; and Ay, A, and Az, A3
and Ay, and so these four tiles form a belt having the properties described in point
5 of the Theorem, which implies that C belongs to the orbit T4. In the same way,
one proves that, if the Gauss diagram I'(n,s) of CisI'(6m —2,4m — 1) (m > 1) or
I'(6m+2,4m+ 1) (m > 0), then C belongs to the orbit T,. u

4 DP-homogeneous plane curves

COROLLARY: If a DP-homogeneous plane curve has at least one double point, then it
belongs to one orbit (under the group of all diffeomorphisms of R?) of one of the
three families described below:

1) The family P’ is the sequence of orbits P}, P, P},... , Pl,, ... where any element of
P} is a figure-eight curve and, if n > 1, where any element C of P}, is a curve (with n
double points) one tile of which is a curvilinear n-gon with salient vertices, each of them
being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of
P’y, P'y, P'3 and P/ are shown in Figure 1.

2) The family P is the sequence of orbits PY, Py, P4,... , P}, ... where any element
of P is equivalent to a Pascal snail with inner loop and, if n > 1, where any element of
P, is a curve C (with n double points) in which a curvilinear n-gon D with re-entrant
vertices is inscribed; every vertex of D is also the vertex of a curvilinear 1-gon inscribed
in C. Examples of elements of P}, PJ, P} and P} are shown in Figure 2.

3) The family S is the sequence of orbits S}, S§, S%,... , Sh,, .1, ... where any element

C of S,,,.1 is a curve (with 2m +- 1 double points) one tile of which is a curvilinear
(2m + 1)-gon D with salient vertices; D is separated from the unbounded tile of C by a
chain of 2m + 1 biangular tiles. Examples of elements of S}, S and S, are shown in

Figure 8.

Proof: As R? is diffeomorphic to the complement of a point (denoted by ) in
S?, we may identify R? with S? \ co. Any DP-homogeneous plane curve C may
be seen as a DP-homogeneous spherical curve which, by the Theorem, belongs to
one orbit of one of the families P, Q, R, Sand T.

Suppose that the spherical curve C belongs to Py; if oo is a point of a 1-gonal
tile, then C belongs (as a plane curve) to P{; if not, then C belongs to P;.

If C belongs to P,, with n > 1, then co cannot be a point of a 1-gonal tile, which
implies that C belongs to P), or P;,.

If C belongs to S, then co cannot be a point of a 2-gonal tile, which implies
that C belongs to S/,.
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If C belongs to Q;, R, or T}, then every position of co leads to a contradiction,
which proves that, in the classification of the orbits of DP-homogeneous plane
curves, there is no familiy other than P/, P and S'. m

5 DP-homogeneity in the real projective plane

Family P’

Family P”

O® BB

Family S’

CASEE N

Family S”

FIGURE 13: Representatives of some elements of the four families of orbits of null-
homotopic DP-homogeneous curves in the real projective plane.

CONJECTURE: Let C be a DP-homogeneous curve of P>(IR) with at least one double
point.

1) If C is null-homotopic, then it belongs to one orbit (under the group of all dif-
feomorphisms of P>(IR)) of one of four infinite families:
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a) The family P is the sequence of orbits P!, (n € Ny), whose representatives are curves
with n double points sketched, for n < 5, in the first row of Fig. 13.

b) The family P is the sequence of orbits P!! (n € INy), whose representatives are curves
with n double points sketched, for n < 5, in the second row of Fig. 13.

¢) The family S’ is the sequence of orbits S, (n = 2m +1, m € INy), some representa-
tives of which are sketched, for n < 8, in the third row of Fig. 13.

d) The family S" is the sequence of orbits S!! (n = 2m, m € INy), some representatives
of which are sketched, for n <5, in the last row of Fig. 13.

2) If C is not null-homotopic, then it belongs to one orbit (under the group of all
diffeomorphisms of P,(IR)) of one of three infinite families:

a) The family Q' is the sequence of orbits Q, (n = 2m 41, m € IN), whose representa-
tives are sketched, for n < 6, in the upper part of Fig. 14.

b) The family R’ is the sequence of orbits R!, (n = 4m + 2, m € IN), whose representa-
tives are sketched, for n < 7, in the lower part of Fig. 14.

) The family T’ is the sequence of orbits T, (n = 6m —lorn = 6m+1,
m € INg) whose representatives are sketched, for n < 8, in Fig. 15.

etc.

Family R’

FIGURE 14: Representatives of some elements of the families of orbits Q/ and R’ of
non null-homotopic DP-homogeneous curves in the real projective plane.



86 G. Valette

Family T

/ \
\ /

etc.

FIGURE 15: Representatives of the orbits T{ and T/ of non null-homotopic
DP-homogeneous curves in the real projective plane.
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