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Abstract

A curve is, in this paper, the image of the circle S1 under an immersion
f into S2, R

2 or the real projective plane P2(R), such that every multiple
point of f is an ordinary double point. Such a curve C is double point-
homogeneous or DP-homogeneous when the group of diffeomorphisms (of
S2, R

2 or P2(R)) preserving C has a transitive action on the set of its double
points. The orbits of DP-homogeneous curves in S2 are totally determined;
using combinatorial methods, we prove that they fall into five countably in-
finite families ; the description of every family is illustrated by drawings of
some representatives with a small number of double points. As a corollary,
we obtain a similar classification of the DP-homogeneous curves in R

2. We
also propose a conjecture about the classification of DP-homogeneous curves
in P2(R).

1 Introduction

The curves considered in this paper are generic which means that each one is
the image of an immersion f of the circle S1 into a two-dimensional manifold M
such that every multiple point of f is an ordinary double point. Such a curve C
is said to be double point-homogeneous or DP-homogeneous if, for every pair (p, q)
of double points of C, there is a diffeomorphism of M which preserves C and
sends p onto q. The main result of this paper is the classification of the orbits
of DP-homogeneous spherical curves (case M = S2) under the action of the
group of all diffeomorphisms of S2. A consequence of this is the classification of
DP-homogeneous plane curves (case M = R

2) under the action of the group of
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all diffeomorphisms of R
2. We sometimes say that two curves are equivalent if

they belong to the same orbit.

Examples of DP-homogeneous plane curves are presented in Figures 1 and 2.
Any two different curves among the eight shown there are not equivalent. But
if we denote by C a curve in Figure 1 and by D the curve in Figure 2 having
the same number of double points as C, and if we map R

2 onto open subsets of
S2 by diffeomorphisms F and G, then the spherical curves F(C) and G(D) are
equivalent. This remark suggests the existence of a first infinite family of orbits
of DP-homogeneous spherical curves, the family P, with representatives of P1 to
P4 shown in Figure 3.

FIGURE 1: Four DP-homogeneous plane curves which are not equivalent with respect

to diffeomorphisms of R
2. They belong to Family P′ (see Section 4).

FIGURE 2: Four DP-homogeneous plane curves which are not equivalent to those of

Figure 1. They belong to Family P′′ (see Section 4).

FIGURE 3: Representatives of the first four elements of the family P of orbits of DP-

homogeneous spherical curves.
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We shall prove that the other orbits of DP-homogeneous spherical curves are
classified in a natural way into four families presented in Figures 4, 5, 6 and 7 by
means of representatives.

FIGURE 4: Representatives of the first three elements of the family Q.

FIGURE 5: Representatives of the first three elements of the family R.
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FIGURE 6: Representatives of the first three elements of the family S.

FIGURE 7: Representatives of the first three elements of the family T.

Let us denote by O(n) the number of orbits of DP-homogeneous spherical
curves having exactly n double points (n ≥ 1); a first consequence of our clas-
sification is the fact that the function n → O(n) is completely known: its first
fourteen values are 1 , 2 , 2 , 4 , 2 , 2 , 2 , 4 , 2 , 3 , 2 , 3 , 2 , 3 , and the next values
satisfy the recurrence O(n) = O(n − 12).

Another consequence of our classification is the analogous classification of
the orbits of DP-homogeneous plane curves. Two infinite families were already
presented in Figures 1 and 2. There is a third one: representatives of its first three
elements are shown in Figure 8.
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FIGURE 8: Representatives of the first elements of the third family of orbits of DP-

homogeneous plane curves. They belong to Family S′ (see Section 4).

2 Statement of the main result

The following definitions, where M denotes R
2 or S2, are useful for the descrip-

tion of DP-homogeneous (plane or spherical) curves.

DEFINITIONS: A curvilinear m-gon (m ≥ 1) is any subset D of M which is
homeomorphic to a closed disk and whose boundary B is a closed curve which is
smooth everywhere excepted in m angular points, called vertices. If m > 1, a side
of D is an arc of B joining neighboring vertices; if m = 1, it is B.

A vertex a of the curvilinear m-gon D is said to be salient if the measure of
the interior angle of D in a is smaller than π, and is re-entrant if this measure is
greater than π.

Let C be a curve having n double points (n ≥ 1); a curvilinear m-gon is said
to be inscribed in C if its sides are arcs of C joining neighboring double points if
m > 1, the same double point if m = 1. An example of an inscribed 5-gon is given
in Figure 9.

FIGURE 9: A 5-gon (coloured in grey) inscribed in a curve.

A curve C in M determines a tiling of M, whose tiles are the closures of the
connected components of M \ C; for brevity’s sake, we will say that the tiles of
this tiling are the tiles of C. Such a tile is biangular (resp. triangular) if it is a
curvilinear 2-gon (resp. 3-gon) with salient vertices.
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THEOREM: If a DP-homogeneous spherical curve has at least one double point, then
(under the group of all diffeomorphisms of S2) it belongs to one orbit of one of the
following five families:

1) The family P is the sequence of orbits P1, P2, P3, ... , Pn, ... where any element of
P1 is a figure-eight curve and, if n > 1, any element C of Pn is a curve (with n double
points) one tile of which is a curvilinear n-gon with salient vertices, each of these vertices
being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of P1,
P2, P3 and P4 are shown on the four spheres of Figure 3.

2) The family Q is the sequence of orbits Q2, Q4, Q6, ... , Q2m, ... where any
element C of Q2m is a curve (with 2m double points) in which a curvilinear 2m-gon D is
inscribed ; the vertices of D are alternately salient and re-entrant and each of them is also
the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of Q2, Q4 and
Q6 are shown on the three spheres of Figure 4.

3) The family R is the sequence of orbits R4, R8, R12, ... , R4m, ... where any element
C of R4m is a curve (with 4m double points) in which a curvilinear 4m-gon D is inscribed;
every vertex of D has one salient neighbour and one re-entrant neighbour, and is also the
vertex of a curvilinear 1-gon incribed in C. Examples of elements of R4, R8 and R12

are shown on the spheres of Figure 5.

4) The family S is the sequence of orbits S3, S5, S7, ... , S2m+1, ... where any
element C of S2m+1 is a curve (with 2m + 1 double points) in which two curvilinear
(2m + 1)-gons with the same salient vertices are inscribed; they are separated by a chain
of 2m + 1 biangular tiles with salient vertices. Examples of elements of S3, S5 and S7

are shown on the three spheres of Figure 6.

5) The family T is the sequence of orbits T4, T8, T10, ... , T6m−2, T6m+2, ... where
any element C of T6m±2 is a curve (with 6m ± 2 double points) whose two tiles are
curvilinear (3m ± 1)-gons with salient vertices; they are strictly separated by a belt of
6m ± 2 triangular tiles. If 6m ± 2 > 4, then the tiling of C is combinatorially equivalent
to the natural tiling of the boundary of an antiprism whose bases are (3m ± 1)-gons.
Examples of elements of T4, T8 and T10 are shown on the spheres of Figure 7.

3 Gauss diagrams and proofs

Our proof of the Theorem uses diagrams introduced by Gauss [Ga]. We define
them via codes of curves which are similar to the Gauss codes used in knot theory.

NOTATIONS AND DEFINITIONS: Let C = f (S1) be a spherical curve with n
double points (n > 0). In order to define a Gauss code of C, we first give a name
(letter with or without subscript) to each double point of C and then write their
names following the order in which f (u) meets them when u runs along S1 ; the
word (of length 2n) so obtained is a Gauss code of C, which is defined (after the
choice of names) up to an element of the dihedral group D2n.

Every Gauss code Ω of 2n letters may be represented by a Gauss diagram of
order n, i.e. a plane figure Γ consisting of
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(i) a circle γ of the Euclidean plane,

(ii) the vertices of a regular 2n-gon P inscribed in γ, also called vertices of Γ,
denoted by the letters of Ω in such a way that neighboring vertices of P corre-
spond to successive letters of Ω,

(iii) the n chords joining the vertices which have the same name.

Figure 10 describes an example of this representation.

FIGURE 10: From left to right : a curve whose double points are A, B, C, D, E, F; three

equivalent Gauss codes of this curve ; a Gauss diagram Γ of these codes and of the curve ;

a variant to Γ with a better visibility (it is sometimes useful to take different but similar

names for the endpoints of a chord).

Let K be a chord of the Gauss diagram Γ; the step of K is the minimum number
of sides of P needed to join the endpoints of K along the boundary of P. An
s-chord is a chord whose step is s (in the example of Fig. 10, Γ has three 1-chords,
one 3-chord and two 5-chords).

One easily proves that every chord in the Gauss diagram of any plane or
spherical curve has an odd step and that if a curve is DP-homogeneous, then
all its chords have the same step (note that the converse is not true: for example,
there is a spherical curve with three double points which is not DP-homogeneous,
but whose Gauss diagram has only 1-chords).

LEMMA 1: If a spherical curve C with n double points is DP-homogeneous, then its
Gauss diagram Γ is invariant under the group Cn of rotations whose angles are multiples
of 2π/n.

Proof: Let s be the common step of the chords of Γ and let [0], [1], ... , [2n − 1]
be the vertices of the polygon P used in the definition of Γ (the sides of P are the
segments [[j],[j + 1]], addition being done mod 2n). As the Lemma is obvious
when s = 1 or s = n, we may assume that 1 < s < n and prove the assertion by
contradiction. Let us agree that two chords are neighboring if one of them is the
image of the other by a rotation of π/n.

If the assertion were false, then we could find in Γ two neighboring chords,
one of them being [[a],[a + s]] and the other [[a + 1],[a + 1 + s]]; two possibilities
occur: either one of these chords is neighboring with a third chord, or not.

α) The first assumption implies that a double point of C is a vertex of two biangu-
lar tiles of C; as C is DP-homogeneous, all the double points of C have the same
property; this implies that, for every vertex [j], the segment [[j],[j + s]] is a chord
of Γ, which is only possible when s = n, contradicting the condition 1 < s < n.

β) The second assumption and the DP-homogeneity imply that the set of chords
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of Γ can be partitioned into disjoint pairs of neighboring chords and consequently,
that the set of vertices of Γ can be partitioned into disjoint pairs of neighboring
vertices which are endpoints of neighboring chords. Since [[a],[a + s]] and
[[a + 1],[a + 1 + s]] are such chords, the number of vertices of Γ between [a + 1]
and [a + s] is equal to s − 2, an odd number, giving the contradiction.

The notation Γ(n, s) will be used for any plane diagram consisting of
(i) a circle γ of the Euclidean plane,
(ii) the vertices of a regular 2n-gon P inscribed in γ,
(iii) n chords of γ with odd step s joining pairs of vertices of P, whose union

is invariant under the rotation group Cn.

Note that, given integers n and s with s odd and 1 ≤ s ≤ n, there is essentially
one diagram with these properties. Examples are drawn in Fig. 11.

FIGURE 11: The diagrams Γ(6, 3) and Γ(8, 5); AFBACBDCEDFE may be a code for

Γ(6, 3), and A0a6 A1a7 A2a0 A3a1 A4a2 A5a3 A6a4 A7a5 for Γ(8, 5).

In the proof of Lemma 2, we use a procedure found by L. Lovasz and M.L.
Marx [LM] to decide whether or not a word of 2n characters (n symbols occurring
twice) is the Gauss code of a spherical curve. In order to increase the readability
of our paper, we now recall three definitions and two properties given in [LM].

DEFINITIONS: If a word has the form AαAβ where α and β are non-empty
sequences, then the vertex split at A is the change from this word to α−1β where
α−1 has the same letters as α but in the opposite order.

The loop removal at A of the word AαAβ is the change from this word to the
one obtained from β by deleting all the letters which occur in α.

A reduced word of a word Ω is a non-empty word obtained from Ω after a finite
number of changes (vertex splits or loop removals).

PROPERTY 1 (”biparity condition” in [LM]): If the Gauss code of a spherical
curve with at least two double points A and B has the form AαAµBβBγ where α,
µ, β, γ are finite (possibly empty) sequences of letters, then α and β have an even
number of common letters.

PROPERTY 2 (”Theorem” in [LM]): A word Ω wherein each letter occurs twice
is a Gauss code of a spherical curve if and only if no reduced word of Ω has the
form A1A2...AmA1A2...Am with m even.

LEMMA 2: If C is a DP-homogeneous spherical curve, then its Gauss diagram belongs
to one of the three families described below and shown in Fig. 12:

a) the family A consists of diagrams Γ(n, 1) where n ∈ N0,
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b) the family B consists of diagrams Γ(n, n) where n = 2m + 1 (m ∈ N0),
c) the family C consists of diagrams Γ(n, s) where n and s depend on m ∈ N0 in one

of the following ways:
either n = 6m − 2 and s = 4m − 1 or n = 6m + 2 and s = 4m + 1.

FIGURE 12: The three families of diagrams considered in Lemma 2.

Proof: The family A (resp. B) consists of all the diagrams described in Lemma
1 when the step s equals 1 (resp. n). Hence it remains to exclude, among the
diagrams Γ(n, s) such that 2 < s < n, those which are neither of the form
n = 6m − 2 and s = 4m − 1 nor of the form n = 6m + 2 and s = 4m + 1. In
other words, we must exclude all diagrams Γ(n, s) for which n is odd and, among
the diagrams with n even, those for which 2n does not belong to {3s − 1, 3s + 1}.
Suppose on the contrary that there is a spherical curve C whose Gauss diagram
must be excluded. By Lemma 1, its Gauss code Ω may be written as AαAµBβBγ
where the words µ and γ are possibly empty and |α| = |β| = s − 1. (|σ| denotes
the number of letters of the word σ). We distinguish three cases in order to get a
contradiction.

α) 2n is greater than 3s + 1. If s ≡ 3 mod 4, then we take µ = ∅ in the

notation above for Ω; if s ≡ 1 mod 4, then we choose |µ| = 2; in both cases,
the number of common letters of α and β is odd, contradicting Property 1.

β) n is odd and 2n ≤ 3s + 1. Since |α| = |β| = s − 1, we have
|µ|+ |γ| = 2n − 2(s − 1)− 4 = 2n − 2s − 2 ≤ 3s + 1 − 2s − 2 = s − 1,

which shows that a letter cannot appear twice in any word α, µ, β or γ; moreover,
the distance between any letter of µ and any letter of γ is at least s+ 2; this implies
that any letter of µ ∪ γ appears also in α ∪ β. Hence the number of letters with
two occurences in α ∪ β is equal to (2(s − 1)− (2n − 2s − 2))/2 i.e. 2s − n, which
implies that the number of letters common to α and β is the odd number 2s − n,
contradicting Property 1.

γ) n is even and 2n < 3s + 1. We use the notation introduced in the second
example of Fig.11 for the Gauss code of a curve C with diagram Γ(n, s): so
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Ak = [2k] and ak = [2k+ s] if we identify the set of vertices of Γ(n, s) with Z/(2n).
By Lemma 1, a Gauss code for Γ(6, 5) can be written as

Ω(6, 5) = A0a4 A1a5 A2a0 A3a1A4a2 A5a3;

if Ω(6, 5) were the Gauss code of a spherical curve, then a vertex split of Ω(6, 5)
at A0 would produce the Gauss code Ω

′ of a spherical curve, but this is not so
because Ω

′ does not satisfy the biparity condition, a contradiction. In the case
n > 7, a Gauss code for Γ(n, s) may be written as

Ω(n, s) = A0ag A1ag+1A2...an−1Aha0 Ah+1a1...Agag−h Ag+1ag−h+1...An−1ag−1

where g = (2n − s + 1)/2 and h = (s − 1)/2. In this case two changes are needed
to conclude: the first one is the vertex split of Ω(n, s) at A0, giving the word

Ahan−1Ah−1...A2ag+1A1ag Ah+1a1...Agag−h Ag+1ag−h+1...An−1ag−1

or the equivalent word

Ω
′ = Ag+1ag−h+1...An−1ag−1Ahan−1Ah−1...A2ag+1A1ag Ah+1a1...Agag−h

also written Ω
′ = Ag+1αag+1β if we set

α = ag−h+1...An−1ag−1Ahan−1Ah−1...A2 and β = A1ag Ah+1a1...Agag−h

Finally, a loop removal of Ω
′ at Ag+1 creates the reduced word A1aga1Ag which

means, according to Property 2, that Ω(n, s) is not the Gauss code of a spherical
curve, contrary to the assumption.

Proof of the Theorem: Every curve described in the Theorem is clearly
DP-homogeneous; moreover, if it belongs to one of the families P, Q or R, then
its Gauss diagram belongs to family A while, if it belongs to family S (resp. T),
then its Gauss diagram belongs to family B (resp. C). So its remains to show that
every DP-homogeneous spherical curve C with n double points belongs to one of
the families P, Q, R, S or T. The rest of the proof has three parts, corresponding
to the three possible families A, B and C.

a) Curves with diagram in family A. If the Gauss diagram of C is Γ(1, 1), then

C is clearly a figure-eight curve and all such curves form the orbit A1. If the
Gauss diagram of C is Γ(n, 1) with n > 1, then C is a union of n loops and n arcs
connecting neighboring double points; these arcs form a Jordan curve B, which is
boundary of two curvilinear n-gons.
α) If the loops of C at a double point and at its two neighbors (only one if n = 2)
are on the same side of B, then this property is true for every double point, and
so C belongs to the orbit Pn.
β) If the loop of C at a double point is on one side of B while the loops at its
neighbors are on the other side, then this property is true for every double point,
which implies that n is even and that C belongs to the orbit Qn.
γ) If the loops of C at the neighbors of a double point are not on the same side
of B, then this property is true for every double point, and so n is a multiple of 4
and C belongs to the orbit Rn.

b) Curves with diagram in family B. If the Gauss diagram of C is Γ(n, n)

(n = 2m + 1, m > 0), then any simple arc of the circle γ of Γ(n, n) (i.e. any arc
joining neighboring vertices) determines with its antipodal arc the boundary of a
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biangular tile of the tiling of C; these biangular tiles have the properties described
in point 4 of the Theorem, and so C belongs to the orbit Sn.

c) Curves with diagram in family C. A Gauss code of Γ(4, 3) is

Ω(4, 3) = A0a3 A1a0 A2a1A3a2

The simple arcs A0a3, A3a2 and a0 A2 of the circle γ of Γ(4, 3) determine the sides
of a triangular tile ∆0 of C. We define in the same way ∆1 by means of A1a0, A0a3

and a1 A3, ∆2 by means of A2a1, A1a0 and a2A0, and ∆3 by means of A3a2, A2a1

and a3 A1; as ∆0 and ∆1 have a common side, as well as ∆1 and ∆2, ∆2 and ∆3, ∆3

and ∆0, and so these four tiles form a belt having the properties described in point
5 of the Theorem, which implies that C belongs to the orbit T4. In the same way,
one proves that, if the Gauss diagram Γ(n, s) of C is Γ(6m − 2, 4m − 1) (m > 1) or
Γ(6m + 2, 4m + 1) (m > 0), then C belongs to the orbit Tn.

4 DP-homogeneous plane curves

COROLLARY: If a DP-homogeneous plane curve has at least one double point, then it
belongs to one orbit (under the group of all diffeomorphisms of R

2) of one of the
three families described below:

1) The family P′ is the sequence of orbits P′
1, P′

2, P′
3,... , P′

n, ... where any element of
P′

1 is a figure-eight curve and, if n > 1, where any element C of P′
n is a curve (with n

double points) one tile of which is a curvilinear n-gon with salient vertices, each of them
being also the vertex of a curvilinear 1-gon inscribed in C. Examples of elements of
P′

1, P′
2, P′

3 and P′
4 are shown in Figure 1.

2) The family P′′ is the sequence of orbits P′′
1 , P′′

2 , P′′
3 ,... , P′′

n , ... where any element
of P′′

1 is equivalent to a Pascal snail with inner loop and, if n > 1, where any element of
P′′

n is a curve C (with n double points) in which a curvilinear n-gon D with re-entrant
vertices is inscribed; every vertex of D is also the vertex of a curvilinear 1-gon inscribed
in C. Examples of elements of P′′

1 , P′′
2 , P′′

3 and P′′
4 are shown in Figure 2.

3) The family S′ is the sequence of orbits S′
3, S′

5, S′
7,... , S′

2m+1, ... where any element
C of S′

2m+1 is a curve (with 2m + 1 double points) one tile of which is a curvilinear
(2m + 1)-gon D with salient vertices; D is separated from the unbounded tile of C by a
chain of 2m + 1 biangular tiles. Examples of elements of S′

3, S′
5 and S′

7 are shown in
Figure 8.

Proof: As R
2 is diffeomorphic to the complement of a point (denoted by ∞) in

S2, we may identify R
2 with S2 \ ∞. Any DP-homogeneous plane curve C may

be seen as a DP-homogeneous spherical curve which, by the Theorem, belongs to
one orbit of one of the families P, Q, R, S and T.

Suppose that the spherical curve C belongs to P1; if ∞ is a point of a 1-gonal
tile, then C belongs (as a plane curve) to P′′

1 ; if not, then C belongs to P′
1.

If C belongs to Pn with n > 1, then ∞ cannot be a point of a 1-gonal tile, which
implies that C belongs to P′

n or P′′
n .

If C belongs to Sn, then ∞ cannot be a point of a 2-gonal tile, which implies
that C belongs to S′

n.
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If C belongs to Qn, Rn or Tn, then every position of ∞ leads to a contradiction,
which proves that, in the classification of the orbits of DP-homogeneous plane
curves, there is no familiy other than P′, P′′ and S′.

5 DP-homogeneity in the real projective plane

FIGURE 13: Representatives of some elements of the four families of orbits of null-

homotopic DP-homogeneous curves in the real projective plane.

CONJECTURE: Let C be a DP-homogeneous curve of P2(R) with at least one double
point.

1) If C is null-homotopic, then it belongs to one orbit (under the group of all dif-
feomorphisms of P2(R)) of one of four infinite families:
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a) The family P′ is the sequence of orbits P′
n (n ∈ N0), whose representatives are curves

with n double points sketched, for n < 5, in the first row of Fig. 13.

b) The family P′′ is the sequence of orbits P′′
n (n ∈ N0), whose representatives are curves

with n double points sketched, for n < 5, in the second row of Fig. 13.

c) The family S′ is the sequence of orbits S′
n (n = 2m + 1, m ∈ N0), some representa-

tives of which are sketched, for n < 8, in the third row of Fig. 13.

d) The family S′′ is the sequence of orbits S′′
n (n = 2m, m ∈ N0), some representatives

of which are sketched, for n < 5, in the last row of Fig. 13.

2) If C is not null-homotopic, then it belongs to one orbit (under the group of all
diffeomorphisms of P2(R)) of one of three infinite families:

a) The family Q′ is the sequence of orbits Q′
n (n = 2m + 1, m ∈ N), whose representa-

tives are sketched, for n < 6, in the upper part of Fig. 14.

b) The family R′ is the sequence of orbits R′
n (n = 4m + 2, m ∈ N), whose representa-

tives are sketched, for n < 7, in the lower part of Fig. 14.

c) The family T′ is the sequence of orbits T′
n (n = 6m − 1 or n = 6m + 1,

m ∈ N0) whose representatives are sketched, for n < 8, in Fig. 15.

FIGURE 14: Representatives of some elements of the families of orbits Q′ and R′ of

non null-homotopic DP-homogeneous curves in the real projective plane.
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FIGURE 15: Representatives of the orbits T′
5 and T′

7 of non null-homotopic
DP-homogeneous curves in the real projective plane.
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