Differential K-homology and explicit isomorphisms between \mathbb{R} / \mathbb{Z}-K-homologies

Adnane Elmrabty

Abstract

In this paper, we construct an explicit isomorphism between Deeley \mathbb{R} / \mathbb{Z}-K-homology and flat K-homology. We also describe \mathbb{R} / \mathbb{Z}-K-homology out of $\mathbb{Z} / k \mathbb{Z}$-bordism theories.

1 Introduction

K-homology is dual to topological K-theory. A geometric model was introduced by Baum-Douglas (see [5]), and proved to be an extremely important tool in index theory and physics (see [15]): one of the main advantages of this geometric formulation is that K-homology cycles encode the most primitive requisite objects that must be carried by any D-brane, such as a Spin ${ }^{\text {c }}$-manifold and a Hermitian vector bundle.

Beside K-theory, there is also the so-called differential K-theory. It combines cohomological information with differential form information in a complicated way. A model for this theory was studied extensively by Freed and Lott (see [9]). Motivated by generalizing pairings between K-theory and K-homology to the case of differential K-theory and K-homology with \mathbb{R} / \mathbb{Z}-coefficients, we introduce an extension of geometric K-homology by continuous current data, called differential K-homology, which encodes Deeley \mathbb{R} / \mathbb{Z}-K-homology as a flat theory (Theorem 3.8), and so through Theorem 2.6 we obtain explicit realizations of this pairing.

[^0]In the end of this paper, we describe the torsion part of Deeley \mathbb{R} / \mathbb{Z}-K-homology through framed $\mathbb{Z} / k \mathbb{Z}$-bordism theories (Proposition 4.4), and so the approach of Atiyah-Patodi-Singer to \mathbb{R} / \mathbb{Z}-K-theory presented in $[2,3]$ leads to another model for \mathbb{R} / \mathbb{Z}-K-homology.

2 Differential K-homology and its pairings with Freed-Lott differential K-theory

In this section we define a differential K-homology.
In all the following, we denote by X a smooth compact manifold.
Definition 2.1. A differential K-cycle over X is a quadruple $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ consisting of :

- A smooth closed Spin ${ }^{c}$-manifold M.
- A smooth Hermitian vector bundle E over M with a unitary connection ∇^{E}.
- A smooth map $f: M \rightarrow X$.
- A class of currents $\phi \in \frac{\Omega_{*}(X)}{i m g(\partial)}$.

There are no connectedness requirements made upon M, and hence the bundle E can have different fibre dimensions on the different connected components of M. It follows that the disjoint union,

$$
\begin{aligned}
& \left(M,\left(E, \nabla^{E}\right), f, \phi\right) \sqcup\left(M^{\prime},\left(E^{\prime}, \nabla^{E^{\prime}}\right), f^{\prime}, \phi^{\prime}\right): \\
& \quad\left(M \sqcup M^{\prime},\left(E \sqcup E^{\prime}, \nabla^{E} \sqcup \nabla^{E^{\prime}}\right), f \sqcup f^{\prime}, \phi+\phi^{\prime}\right),
\end{aligned}
$$

is a well-defined operation on the set of differential K-cycles over X.
A differential K-cycle $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ is called even (resp. odd), if all connected components of M are of even (resp. odd) dimension and $\phi \in \frac{\Omega_{\text {odd }}(X)}{i m g(\partial)}$ (resp. $\phi \in \frac{\Omega_{e v}(X)}{i m g(\partial)}$).

We define an equivalence relation on differential K-cycles as follows. First, let $x:=\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ be a differential K-cycle over X and V be a $S_{p i n}{ }^{c}$-vector bundle of even rank over M with an Euclidean connection ∇^{V}. Let 1_{M} denote the trivial rank-one real vector bundle over M. We denote by \hat{M} the boundary of the unit disk bundle $\mathbb{D}\left(V \oplus 1_{M}\right)$ of $V \oplus 1_{M}$. The Spin ${ }^{c}$-structures on $T M$ and $V \oplus 1_{M}$ induce a Spin^{c}-structure on $T \mathbb{D}\left(V \oplus 1_{M}\right)$ by a direct sum decomposition $T\left(V \oplus 1_{M}\right) \cong \pi^{*}\left(V \oplus 1_{M}\right) \oplus \pi^{*} T M$ where π is the bundle projection of $V \oplus 1_{M}$, and then taking the boundary of this Spin ${ }^{c}$-structure to obtain a Spin ${ }^{\text {c }}$-structure on $T \hat{M}$.
Denote by $S:=S_{+} \oplus S_{-}$the \mathbb{Z}_{2}-graded spinor bundle associated with the $S_{\text {pin }}{ }^{c}{ }_{-}$ structure on the vertical tangent bundle of \hat{M} carrying a unitary connection
$\nabla^{S_{+}} \oplus \nabla^{S_{-}}$induced by ∇^{V}. Define \hat{V} to be the dual of S_{+}and $\nabla^{\hat{V}}$ to be the unitary connection on \hat{V} induced by $\nabla^{S_{+}}$. We denote by x^{V} the quadruple $\left(\hat{M},\left(\hat{V} \otimes \pi^{*} E, \nabla^{\hat{V}} \otimes \pi^{*} \nabla^{E}\right), f \circ \pi, \phi\right)$, called the modification of x by V, which is obviously a differential K -cycle over X .

Now two differential K-cycles ξ^{\prime} and ξ^{\prime} over X are said to be equivalent if there exist a $S_{p i n}{ }^{c}$-vector bundle V of even rank over the manifold in $\xi^{\prime \prime}$, a smooth compact Spin ${ }^{\text {c }}$-manifold W, a smooth Hermitian vector bundle ε over W with a unitary connection ∇^{ε}, and a smooth map $g: W \rightarrow X$ such that

$$
\xi \sqcup \xi_{-}^{\prime V}=\left(\partial W,\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right),\left.g\right|_{\partial W},\left[\int_{W} T d(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]\right)
$$

where $\xi_{-}=\left(M^{-},\left(E, \nabla^{E}\right), f,-\phi\right)$ when $\xi=\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ and M^{-}denotes M with its Spin^{c} structure reversed, $\operatorname{Td}(W)$ is the Spin^{c}-Todd form of the LeviCivita connection on M and $\operatorname{ch}\left(\nabla^{\varepsilon}\right)$ is the geometric Chern form of ∇^{ε}. In this situation, $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$ is called a K-chain over X with differential boundary $\xi \sqcup \xi^{\prime}{ }_{-}^{V}$.

Definition 2.2. The differential K-homology group $\check{K}_{*}(X)$ is the group of equivalence classes of differential K -cycles over X, for the equivalence relation generated by the above relation and the following identification:

Direct sum:

$$
\left(M,\left(E, \nabla^{E}\right), f, \phi\right) \sqcup\left(M,\left(E^{\prime}, \nabla^{E^{\prime}}\right), f, \phi^{\prime}\right) \sim\left(M,\left(E \oplus E^{\prime}, \nabla^{E} \oplus \nabla^{E^{\prime}}\right), f, \phi+\phi^{\prime}\right) .
$$

The group $\check{K}_{*}(X)$ is Abelian and naturally \mathbb{Z}_{2}-graded:

$$
\check{K}_{*}(X)=\check{K}_{e v}(X) \oplus \check{K}_{o d d}(X) .
$$

The construction of differential K-homology is functorial: for every smooth map $\rho: X \rightarrow Y$ between two smooth compact manifolds, the homomorphism $\rho_{*}: \check{K}_{*}(X) \rightarrow \check{K}_{*}(Y)$ is defined by

$$
\rho_{*}\left[M,\left(E, \nabla^{E}\right), f, \phi\right]:=\left[M,\left(E, \nabla^{E}\right), \rho \circ f, \phi \circ \rho^{*}\right] .
$$

Remark 2.3. If $\left(M,\left(E, \nabla_{0}^{E}\right), f, \phi\right)$ and $\left(M,\left(E, \nabla_{1}^{E}\right), f, \phi\right)$ are two differential K-cycles, then

$$
\begin{aligned}
& {\left[M,\left(E, \nabla_{0}^{E}\right), f, \phi\right]=} \\
& \quad\left[M,\left(E, \nabla_{1}^{E}\right), f, \phi-\left[\int_{M \times[0,1]} \operatorname{Td}(M \times[0,1]) \operatorname{ch}(B)(f \circ p)^{*}\right]\right]\left(\in \check{K}_{*}(X)\right),
\end{aligned}
$$

where B is the connection on the pullback of E by the projection $p: M \times[0,1] \rightarrow$ M, given by $B=(1-t) \nabla_{0}^{E}+t \nabla_{1}^{E}+d t \frac{d}{d t}$.

Recall that a K-chain (of Baum-Douglas) over X is of the form $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$, where W is a smooth compact Spin^{c}-manifold, ε is a Hermitian vector bundle over W with a unitary connection ∇^{ε}, and g a smooth map from W to X. The boundary of a K-chain $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$ is defined by $\partial\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right):=(\partial W$, $\left.\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right),\left.g\right|_{\partial W}\right)$. A K-cycle is a K-chain without boundary. We refer the
reader to [5] for the definition of K-homology group $K_{*}^{\text {geo }}(X)$ out of K-cycles and K-chains. Let $C h_{*}: K_{*}^{g e o}(X) \rightarrow H_{*}^{d R}(X)$ be the Chern character, $\left[M,\left(E, \nabla^{E}\right), f\right] \stackrel{C h_{*}}{\mapsto}$ $\left[\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*}\right]$, and $\Omega_{*}^{0}(X):=\left\{\phi \in \Omega_{*}(X) \mid[\phi] \in \operatorname{img}\left(C h_{*}\right)\right\}$. The group $\check{K}_{*}(X)$ fits into the exact sequence

$$
0 \rightarrow \frac{\Omega_{*+1}(X)}{\Omega_{*+1}^{0}(X)} \xrightarrow{a} \check{K}_{*}(X) \xrightarrow{\imath} K_{*}^{g e o}(X) \rightarrow 0
$$

where \imath is the forgetful map $\left(\imath\left[M, E^{\nabla^{E}}, f, \phi\right]=\left[M, E^{\nabla^{E}}, f\right]\right)$, and a is induced by the map which associates to each $\phi \in \Omega_{*+1}(X)$ the class $[\varnothing, \varnothing, \varnothing,-\phi] \in \check{K}_{*}(X)$.

Example 2.4. - The above exact sequence, together with the fact that the only classes in $K_{*}^{g e o}(p t)$ are $\left[p t, \mathbb{C}^{k}, i d_{p t}\right]$ with $k \in \mathbb{N}$ implies that

$$
\check{K}_{e v}(p t) \cong \mathbb{Z} \text { and } \check{K}_{o d d}(p t) \cong \mathbb{R} / \mathbb{Z}
$$

- Since $K_{e v}^{g e o}\left(S^{1}\right) \cong \mathbb{Z} \cong K_{o d d}^{g e o}\left(S^{1}\right)$, we have two short exact sequences

$$
\begin{gathered}
0 \rightarrow \mathbb{R} / \mathbb{Z} \rightarrow \check{K}_{e v}\left(S^{1}\right) \rightarrow \mathbb{Z} \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{c}\left(C^{\infty}\left(S^{1}\right), \mathbb{R}\right) / \mathbb{Z} \rightarrow \check{K}_{\text {odd }}\left(S^{1}\right) \rightarrow \mathbb{Z} \rightarrow 0 .
\end{gathered}
$$

It follows from the second exact sequence that the homomorphism which associates to each closed curve (in $C^{\infty}\left(S^{1}\right)$) the holonomy around it determines an element in $\check{K}_{\text {odd }}\left(S^{1}\right)$.

Definition 2.5. The curvature of a differential K-cycle $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ is the real-valued current $R\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ given by

$$
R\left(M,\left(E, \nabla^{E}\right), f, \phi\right):=\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*}-\partial \phi
$$

The assignment

$$
\left(M,\left(E, \nabla^{E}\right), f, \phi\right) \mapsto R\left(M,\left(E, \nabla^{E}\right), f, \phi\right)
$$

induces a homomorphism $\check{K}_{*}(X) \xrightarrow{R} \Omega_{*}(X)$.
Recall that the Freed-Lott differential K-group $\hat{K}(X)$ ([9]) is the abelian group coming from the following generators and relations: a generators is a pair $\left(\left(F, \nabla^{F}\right), w\right)$, where F is a Hermitian vector bundle over X with a unitary connection ∇^{F} and $w \in \frac{\Omega^{\text {odd }}(X)}{i m g(d)}$ is a class of odd differential form. The relation is $\left(\left(F_{2}, \nabla^{F_{2}}\right), w_{2}\right)=\left(\left(F_{1} \oplus F_{3}, \nabla^{F_{1}} \oplus \nabla^{F_{3}}\right), w_{1}+w_{3}\right)$ whenever there is a split short exact sequence of
Hermitian vector bundles over X,

$$
0 \longrightarrow F_{1} \xrightarrow{i} F_{2} \xrightarrow{\stackrel{s}{4} \ldots} F_{3} \longrightarrow 0,
$$

with $w_{2}=w_{1}+w_{3}+\operatorname{CS}\left((i \oplus s)^{*} \nabla^{F_{2}}, \nabla^{F_{1}} \oplus \nabla^{F_{3}}\right)$ where $\operatorname{CS}\left(\nabla, \nabla^{\prime}\right) \in \frac{\Omega^{\text {odd }}(X)}{i m g(d)}$ is the relative Chern-Simons form of two connections on a smooth complex vector bundle. It is related to the K-theory group $K(X)$ by the following short exact sequence

$$
0 \rightarrow \frac{\Omega^{\text {odd }}(X)}{\Omega_{0}^{\text {odd }}(X)} \xrightarrow{b} \hat{K}(X) \xrightarrow{\jmath} K(X) \rightarrow 0
$$

where $\Omega_{0}^{\text {odd }}(X)$ is the space of odd forms on X with integer K-periods, \jmath is the forgetful map $\left(\gamma\left(\left[\left(F, \nabla^{F}\right), w\right]-\left[\left(F^{\prime}, \nabla^{F^{\prime}}\right), w^{\prime}\right]\right)=[F]-\left[F^{\prime}\right]\right)$, and b is the map induced by $w \in \Omega^{\text {odd }}(X) \mapsto\left[\left(1_{n}, \nabla^{\text {can }}\right), 0\right]-\left[\left(1_{n}, \nabla^{\text {can }}\right), w\right]$. The curvature homomorphism $r: \hat{K}(X) \rightarrow \Omega^{e v}(X)$ is given by $\left[\left(F, \nabla^{F}\right), w\right] \mapsto \operatorname{ch}\left(\nabla^{F}\right)-d w$. The kernel of r is isomorphic to the K-theory with \mathbb{R} / \mathbb{Z}-coefficients $K^{-1}(X, \mathbb{R} / \mathbb{Z})$, given through differential K-characters (see [7]).

Theorem 2.6. There is a unique pairing $\mu: \hat{K}(X) \otimes \check{K}_{\text {odd }}(X) \rightarrow \mathbb{R} / \mathbb{Z}$ up to torsion in $K^{-1}(X, \mathbb{R} / \mathbb{Z})$, which satisfies
(i)

(ii)

where $\alpha(w, \phi)=\phi(w) \bmod \mathbb{Z}$ for all $(w, \phi) \in \Omega^{*}(X) \times \Omega_{*}(X)$.
Proof. For every $\left[\left(F, \nabla^{F}\right), w\right] \in \hat{K}(X)$ and $\left[M,\left(E, \nabla^{E}\right), f, \phi\right] \in \check{K}_{\text {odd }}(X)$, we set

$$
\begin{aligned}
\mu\left(\left(\left(F, \nabla^{F}\right), w\right)\right)\left(\left(M,\left(E, \nabla^{E}\right), f, \phi\right)\right): & =\bar{\eta}_{E \otimes f^{*} F}-\int_{M} T d(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*}(w) \\
& -\phi\left(r\left[\left(F, \nabla^{F}\right), w\right]\right) \bmod \mathbb{Z}
\end{aligned}
$$

where $\bar{\eta}_{E \otimes f^{*} F}$ is the eta (spectral) invariant of the Dirac operator $\mathcal{D}^{E \otimes f^{*} F}$ on M twisted by $E \otimes f^{*} F$ ([7]). It is apparent that μ is bi-additive. We show that μ is compatible with the equivalence relation on differential K -cycles. Compatibility with direct sum relation is straightforward. Let $\left(\left(F, \nabla^{F}\right), w\right)$ be a differential K-cocycle over X, and let $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$ be a K-chain over X. The Atiyah-PatodiSinger index theorem $[2,3,4]$ implies that

$$
\bar{\eta}_{\left.\left(\varepsilon \otimes g^{*} F\right)\right|_{\partial W}}-\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon \otimes g^{*} F}\right)=-\operatorname{Ind}\left(\mathcal{D}_{+}^{\varepsilon \otimes g^{*} F}\right) \in \mathbb{Z},
$$

and then

$$
\mu\left(\left(F, \nabla^{F}\right), w\right)\left(\partial W,\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right),\left.g\right|_{\partial W},\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]\right)=0 .
$$

Now let $V \rightarrow M$ be an even Spin c-vector bundle of dimension $2 p$. We consider the smooth closed manifold \hat{M} defined above, which is an $S^{2 p}$-fibration over M,

$$
\pi: \hat{M} \rightarrow M
$$

If $S_{\mathrm{S}^{2} p}=S_{\mathrm{S}^{2} p}^{+} \oplus S_{\mathrm{S}^{2} p}^{-}$and $S_{M}=S_{M}^{+} \oplus S_{M}^{-}$are the spinor bundles associated with the $S_{p i n}{ }^{c}$-structures on the tangent vector bundles $T S^{2 p}$ and $T M$ respectively, then the spinor bundle $S_{\hat{M}}$ associated with the tangent vector bundle $T \hat{M}$ is isomorphic to the graded tensor product vector bundle $\tilde{S}_{\mathrm{S}^{2 p}} \hat{\otimes} \tilde{S}_{M}$, where $\tilde{S}_{S^{2 p}}$ and \tilde{S}_{M} are corresponding lifts to \hat{M}. Let b be the Bott bundle over $S^{2 p}$ (see [1] for the construction of this element). We denote by \mathcal{D}^{b} the self-adjoint Dirac operator on $\mathrm{S}^{2 p}$ twisted by b. The index of \mathcal{D}_{+}^{b} is equal to 1 . According to [4], we get out of \mathcal{D}^{b} a differential operator $\hat{\mathcal{D}}^{b}$ on \hat{M} acting on smooth sections of the vector bundle $S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*} E$. In the same way and following the same reference ([4]), we get out of the Dirac operator on M twisted by E, \mathcal{D}^{E}, a differential operator $\hat{\mathcal{D}}^{E}$ over \hat{M} acting on smooth sections of $S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*} E$.
The sharp product of $\hat{\mathcal{D}}^{b}$ and $\hat{\mathcal{D}}^{E}$ yields an elliptic differential operator $\hat{\mathcal{D}}^{b} \sharp \hat{\mathcal{D}}^{E}$ acting on sections of $S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*} E$. This operator can be identified with the Dirac operator on \hat{M} twisted by $\hat{V} \otimes \pi^{*} E$:

$$
\mathcal{D}^{\hat{V} \otimes \pi^{*} E}=\hat{\mathcal{D}}^{b} \sharp \hat{\mathcal{D}}^{E} .
$$

We can work locally and assume that the fibration $\pi: \hat{M} \rightarrow M$ is trivial: π is the projection $\mathrm{S}^{2 p} \times M \rightarrow M$. The Hilbert space on which $\mathcal{D}^{\hat{V} \otimes \pi^{*} E}$ acts is the graded tensor product

$$
L^{2}\left(\mathrm{~S}^{2 p} \times M, S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*} E\right)=L^{2}\left(\mathrm{~S}^{2 p}, S_{\mathrm{S}^{2 p}} \otimes b\right) \hat{\otimes} L^{2}\left(M, S_{M} \otimes E\right)
$$

We have

$$
\begin{aligned}
\int_{\hat{M}} \operatorname{Td}(\hat{M}) \operatorname{ch}\left(\nabla^{\hat{V}}\right)(f \circ \pi)^{*} & =\int_{M}\left(\int_{\hat{M}} \operatorname{Td}(\hat{M}) \operatorname{ch}\left(\nabla^{\hat{V}}\right)\right) \operatorname{ch}\left(\nabla^{E}\right) f^{*} \\
& =\int_{M}\left(\int_{S^{2}} \operatorname{Td}\left(S^{2}\right) \operatorname{ch}(b)\right) \operatorname{ch}\left(\nabla^{E}\right) f^{*} \\
& =\operatorname{index}\left(\mathcal{D}_{+}^{b}\right) \times \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*} \\
& =\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*}
\end{aligned}
$$

On the other hand, if we split the first factor, $L^{2}\left(S^{2 p}, S_{S^{2} p} \otimes b\right)$, as $\operatorname{ker}\left(\mathcal{D}_{+}^{b}\right)$ plus its orthogonal complement, then we obtain a corresponding direct sum decomposition of $L^{2}\left(S^{2 p} \times M, S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*} E\right)$. We therefore obtain a decomposition
of $\mathcal{D}^{\hat{V}} \otimes \pi^{*} E$ as a direct sum of two operators. Since the kernel of \mathcal{D}_{+}^{b} is onedimensional, the first operator acts on $\operatorname{ker}\left(\mathcal{D}_{+}^{b}\right) \hat{\otimes} L^{2}\left(M, S_{M} \otimes E\right) \cong L^{2}\left(M, S_{M} \otimes E\right)$ and is equal to \mathcal{D}^{E}. The second operator has a antisymmetric spectrum. To see this, if T is the partial isometry part of \mathcal{D}_{+}^{b} in the polar decomposition, and if γ is the grading operator on $L^{2}\left(M, S_{M} \otimes E\right)$, then the odd-graded involution $i T \hat{\otimes} \gamma$ on the Hilbert space $\operatorname{ker}\left(\mathcal{D}_{+}^{b}\right)^{\perp} \hat{\otimes} L^{2}\left(M, S_{M} \otimes E\right)$ anticommutes with the restriction of $\mathcal{D}^{\hat{V}} \otimes \pi^{*} E$ to $\operatorname{ker}\left(\mathcal{D}_{+}^{b}\right)^{\perp} \hat{\otimes} L^{2}\left(M, S_{M} \otimes E\right)$. Furthermore, the kernel of $\mathcal{D}_{+}^{\hat{V} \otimes \pi^{*} E}$ coincides with the kernel of \mathcal{D}_{+}^{E}. Since the same relation holds for the adjoint, we deduce that

$$
\bar{\eta}_{E \otimes f^{*} F}=\bar{\eta}_{\hat{V} \otimes \pi^{*}\left(E \otimes f^{*} F\right)} .
$$

Then μ is defined up to the equivalence relation on differential K -cycles.
We show that μ is compatible with the equivalence relation used to define the Freed-Lott differential K-theory. Let $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ be a differential K-cycle over X, and let $\left(\left(F, \nabla^{F}\right), w\right)$ and $\left(\left(F^{\prime}, \nabla^{F^{\prime}}\right), w^{\prime}\right)$ be two K-cocycles over X which define the same class in $\hat{K}(X)$. Since the map $\mu(\cdot)\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ is additive, we can assume that there exists an isomorphism of Hermitian vector bundles $h: F \rightarrow F^{\prime}$ such that $C S\left(\nabla^{F}, h^{*} \nabla^{F^{\prime}}\right)=w-w^{\prime}$. It follows by Fubini and APS-index theorem ($[2,3,4]$) that

$$
\begin{aligned}
& \mu\left(\left(F, \nabla^{F}\right), w\right)\left(M,\left(E, \nabla^{E}\right), f, \phi\right)-\mu\left(\left(F^{\prime}, \nabla^{F^{\prime}}\right), w^{\prime}\right)\left(M,\left(E, \nabla^{E}\right), f, \phi\right) \\
& \quad=\bar{\eta}_{E \otimes f^{*} F}-\bar{\eta}_{E \otimes f^{*} F^{\prime}}-\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) \wedge C S\left(f^{*} \nabla^{F},(h \circ f)^{*} \nabla^{F^{\prime}}\right) \bmod \mathbb{Z} \\
& \quad=\bar{\eta}_{\left.p^{*}\left(E \otimes f^{*} F\right)\right|_{\partial M \times[0,1]}-\int_{M \times[0,1]} \operatorname{Td}(M \times[0,1]) \operatorname{ch}(B) \bmod \mathbb{Z}=\overline{0},},
\end{aligned}
$$

where B is the connection on the pullback of $E \otimes f^{*} F$ by the projection p : $M \times[0,1] \rightarrow M$ given by $B=t\left(\nabla^{E} \otimes f^{*} \nabla^{F}\right)+(1-t)\left(\nabla^{E} \otimes(h \circ f)^{*} \nabla^{F^{\prime}}\right)+$ $d t \frac{d}{d t}$.

It is clear that μ is natural map and satisfies (i) and (ii).
Now assume that we have two natural pairings $\mu^{k}, k=0,1$, which satisfy (i) and (ii). We consider the bilinear map $B: \hat{K}(X) \otimes \check{K}_{\text {odd }}(X) \rightarrow \mathbb{R} / \mathbb{Z}$ given by

$$
(x, \xi) \mapsto B(x, \xi):=\mu^{0}(x, \xi)-\mu^{1}(x, \xi) .
$$

For $w \in \Omega^{\text {odd }}(X)$, we have by i,

$$
B(b(w), \xi)=\alpha(w, \xi)-\alpha(w, \xi)=0 .
$$

Similarly, $B(x, a(\phi))=0$ for all $\phi \in \Omega_{e v}(X)$. Therefore, B factors over a pairing

$$
\bar{B}: K(X) \rightarrow \operatorname{Hom}\left(K_{o d d}^{\text {geo }}(X), \mathbb{R} / \mathbb{Z}\right) \stackrel{\theta}{\cong} K^{-1}(X, \mathbb{R} / \mathbb{Z})
$$

where $\theta^{-1}: K^{-1}(X, \mathbb{R} / \mathbb{Z}) \cong \operatorname{Hom}\left(K_{\text {odd }}^{\text {geo }}(X), \mathbb{R} / \mathbb{Z}\right)$ is the isomorphism constructed in [7]. Using the rational isomorphism $C h_{\mathbb{R} / \mathrm{Q}}$ constructed in [13, p.9], \bar{B} induces a natural transformation from $K(X)$ to the cohomology group $H^{\text {odd }}(X, \mathbb{R} / \mathbb{Q})$, denoted by

$$
\widetilde{B}: K(X) \rightarrow H^{\text {odd }}(X, \mathbb{R} / \mathbb{Q})
$$

Let $G r:=\lim _{\rightarrow} G_{n}\left(\mathbb{C}^{\infty}\right)$ where $G_{n}\left(\mathbb{C}^{\infty}\right)$ are the complex Grassmannians of n-dimensional vector subspaces. Since $K(X) \cong[X, \mathbb{Z} \times G r]$, then from Yoneda's lemma \widetilde{B} is necessarily induced by a class $\mathcal{N} \in H^{\text {odd }}(\mathbb{Z} \times G r, \mathbb{R} / \mathbb{Q})=0$, and hence B vanishes up to torsion in $K^{-1}(X, \mathbb{R} / \mathbb{Z})$.
Remark 2.7. If μ^{\prime} is a natural pairing such that (i) and (ii) from Theorem 2.6 hold and μ is the pairing defined in the same theorem, upon eta invariant, then the Atiyah-Singer index theorem and the surjectivity of the usual Atiyah-Singer homomorphism $K\left(S^{1} \times X\right) \rightarrow \operatorname{Hom}\left(K_{o d d}^{\text {geo }}(X), \mathbb{Z}\right)$, imply that for each $\left[\left(F, \nabla^{F}\right), w\right]$
$\in \hat{K}(X)$, the homomorphism $\left(\mu^{\prime}-\mu\right)\left(\left[\left(F, \nabla^{F}\right), w\right]\right)(\cdot)$ is identified with an odd form on X with periods in the image of an injection $\mathbb{Z} \hookrightarrow \mathbb{Q}$: for certain $q \in \mathbb{N}^{*}$ and $v \in \Omega_{0}^{\text {odd }}(X)$,

$$
\left(\mu^{\prime}-\mu\right)\left(\left[\left(F, \nabla^{F}\right), w\right],\left[M,\left(E, \nabla^{E}\right), f, \phi\right]\right)=\frac{1}{q} \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*}(v) \bmod \mathbb{Z}
$$

for all $\left[M,\left(E, \nabla^{E}\right), f, \phi\right] \in \check{K}_{\text {odd }}(X)$.
A natural pairing $m: \hat{K}(X) \otimes \check{K}_{*}(X) \rightarrow \check{K}_{*}(X)$ can be defined as follows: for every K-cocycle $\left(\left(F, \nabla^{F}\right), w\right)$ over X and differential K-cycle $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ over X,

$$
\begin{aligned}
m\left(\left[\left(F, \nabla^{F}\right), w\right],\left[M,\left(E, \nabla^{E}\right), f, \phi\right]\right) & :=\left[M,\left(E \otimes f^{*} F, \nabla^{E \otimes f^{*} F}\right), f, \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) \wedge\right. \\
& \left.\wedge f^{*}(w \wedge \cdot)+\phi\left(r\left[\left(F, \nabla^{F}\right), w\right] \wedge \cdot\right)+\partial(\phi(w \wedge \cdot))\right]
\end{aligned}
$$

Let us consider the collapse map $\epsilon: X \rightarrow p t$. It is obvious that the pairing $\epsilon_{*} \circ m_{\text {odd }}: \hat{K}(X) \otimes \check{K}_{\text {odd }}(X) \rightarrow \check{K}_{\text {odd }}(p t) \cong \mathbb{R} / \mathbb{Z}$ satisfies (i) and (ii) from Theorem 2.6. Following the same Theorem, for all $\left[M,\left(E, \nabla^{E}\right), f, 0\right] \in \breve{K}_{*}(X)$ we have

$$
\begin{aligned}
& \bar{\eta}_{E} \bmod \mathbb{Z}=\mu\left(\left[\left(1, \nabla^{c a n}\right), 0\right],\left[M,\left(E, \nabla^{E}\right), f, 0\right]\right)= \\
& \epsilon_{*} \circ m_{o d d}\left(\left[\left(1, \nabla^{c a n}\right), 0\right],\left[M,\left(E, \nabla^{E}\right), f, 0\right]\right)+\frac{1}{q} C h_{o d d}\left(\left[M,\left(E, \nabla^{E}\right), f\right]\right)(v) \bmod \mathbb{Z}
\end{aligned}
$$

for certain $q \in \mathbb{N}^{*}$ and $v \in \Omega_{0}^{\text {odd }}(X)$. By the Hopkins theorem [12, Theorem 8.1]), the form v is with periods in $q \mathbb{Z}$, and then the following diagram commutes:

where $\eta^{\prime}\left[M,\left(E, \nabla^{E}\right), f, \phi\right]=\bar{\eta}_{E}-\phi(1) \bmod \mathbb{Z}$.

Definition 2.8. The flat K-homology group $\check{K}_{*}^{f}(X)$ is defined as the kernel of $R: \check{K}_{*}(X) \rightarrow \Omega_{*}(X)$.

The construction of flat K-homology is functorial. Let $\rho_{0}, \rho_{1}: X \mapsto Y$ be two smooth homotopic maps between two smooth compact manifolds. If $\rho: X \times[0,1]$ $\mapsto Y$ is a smooth homotopy between ρ_{0} and ρ_{1}, then for all differential K-cycle $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ over X with trivial curvature we can easily check that $\breve{\rho_{0}}\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ and $\check{\rho_{1}}\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ are equivalent under $(M \times[0,1]$, $\left.\left(p_{M}{ }^{*} E, p_{M}{ }^{*} \nabla^{E}\right), \rho \circ\left(f \times I d_{[0,1]}\right)\right)$ where $p_{M}: M \times[0,1] \rightarrow M$ is the natural projection, and then $X \mapsto \check{K}_{*}^{f}(X)$ is a homotopy invariant.

Note that we have the exact sequences

$$
\begin{gathered}
0 \rightarrow \check{K}_{*}^{f}(X) \hookrightarrow \check{K}_{*}(X) \xrightarrow{R} \Omega_{*}^{0}(X) \rightarrow 0 \\
K_{*+1}^{g e o}(X) \xrightarrow{C h_{*+1}} H_{*+1}^{D R}(X) \rightarrow \check{K}_{*}^{f}(X) \rightarrow \mathcal{T}\left(K_{*}^{g e o}(X)\right) \rightarrow 0,
\end{gathered}
$$

where $\Omega_{*}^{0}(X)$ denote the group of closed continuous currents whose de Rham homology class lie in the image of the Chern character $C h_{*}: K_{*}^{\text {geo }}(X) \rightarrow H_{*}^{d R}(X)$, $\mathcal{T}\left(K_{*}^{\text {geo }}(X)\right)$ is the torsion subgroup of $K_{*}^{\text {geo }}(X)$, which can be identified with the torsion subgroup of K-theory $K^{*-1}(X)$ ([7]).

Example 2.9. - The group $\check{K}_{e v}^{f}(p t)$ is trivial and $\check{K}_{o d d}(p t) \cong \mathbb{R} / \mathbb{Z}$.

- Since $K\left(S^{1}\right) \cong \mathbb{Z} \cong K^{1}\left(S^{1}\right)$, we have

$$
\check{K}_{e v}^{f}\left(S^{1}\right) \cong \check{K}_{o d d}^{f}\left(S^{1}\right) \cong \mathbb{R} / \mathbb{Z}
$$

We will define a homomorphism $\check{C h} h_{*}: \check{K}_{*}^{f}(X) \rightarrow H_{*+1}(X, \mathbb{R} / \mathbb{Q})$ where $H_{*+1}(X, \mathbb{R} / \mathbb{Q})$ is a certain homology group of X with \mathbb{R} / \mathbb{Q}-coefficients.
We define $\check{C h} h_{*}$. First, we construct $H_{*}(X, \mathbb{R} / \mathbb{Q})$. Denote by $\bar{\Omega}_{*}(X)$ the cartesian product $\Omega_{*}(X, \mathbb{R}) \times \Omega_{*-1}(Y, \mathbb{Q})$. The boundary map $\bar{\partial}_{*}: \bar{\Omega}_{*}(X) \rightarrow \bar{\Omega}_{*-1}(X)$ is defined by

$$
\bar{\partial}_{*}(\phi, \psi)=(\partial \phi-j \circ \psi,-\partial \psi),
$$

where $j: \mathbb{Q} \hookrightarrow \mathbb{R}$ is the inclusion. We set

$$
H_{*}(X, \mathbb{R} / \mathbb{Q}):=\frac{\operatorname{Ker}\left(\bar{\partial}_{*}\right)}{\operatorname{img}\left(\bar{\partial}_{*+1}\right)} .
$$

It fits into the following long exact sequence

$$
\cdots \longrightarrow H_{*+1}^{D R}(X, \mathbb{R}) \longrightarrow H_{*+1}(X, \mathbb{R} / \mathbb{Q}) \longrightarrow H_{*}^{D R}(X, \mathbb{Q}) \longrightarrow \cdots
$$

where the homomorphisms $H_{*}^{D R}(X, \mathbb{R}) \rightarrow H_{*}(X, \mathbb{R} / \mathbb{Q})$ and $H_{*}(X, \mathbb{R} / \mathbb{Q}) \rightarrow$ $H_{*-1}^{D R}(X, \mathbb{Q})$ are induced respectively by

$$
\phi \mapsto(\phi, 0) \text { and }(\phi, \psi) \mapsto \psi .
$$

Now let $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ be a differential K-cycle over X with trivial curvature. Then the class of $\left(M,\left(E, \nabla^{E}\right), f\right)$ in $K_{*}^{g e o}(X)$ has vanishing Chern character. Thus there is a positive integer k such that $\left(M,\left(k E, k \nabla^{E}\right), f\right)$ is the boundary of a K-chain $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$. It follows from the definitions that $\frac{1}{k}\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]-\phi \in H_{*+1}^{D R}(X, \mathbb{R})$. Let $\check{C h} h_{*}\left(M, E^{\nabla^{E}}, f, \phi\right)$ be the image of $\frac{1}{k}\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]-\phi$ under the homomorphism $H_{*+1}^{D R}(X, \mathbb{R}) \longrightarrow$ $H_{*+1}(X, \mathbb{R} / \mathbb{Q})$. We show that $C h_{*}\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ is independent of the choice of $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$. Suppose that k^{\prime} is another positive integer such that $\left(M,\left(k^{\prime} E, k^{\prime} \nabla^{E}\right), f\right)$ is the boundary of a K-chain $\left(W^{\prime},\left(\varepsilon^{\prime}, \nabla^{\varepsilon^{\prime}}\right), g^{\prime}\right)$. Then

$$
\begin{aligned}
\left(k k^{\prime}\right)\left(\frac{1}{k}\right. & {\left.\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]-\frac{1}{k^{\prime}}\left[\int_{W^{\prime}} \operatorname{Td}\left(W^{\prime}\right) \operatorname{ch}\left(\nabla^{\varepsilon^{\prime}}\right) g^{\prime *}\right]\right) } \\
& =\left[\int_{k^{\prime} W} \operatorname{Td}\left(k^{\prime} W\right) \operatorname{ch}\left(k^{\prime} \nabla^{\varepsilon}\right) k^{\prime} g^{*}\right]-\left[\int_{k W^{\prime}} \operatorname{Td}\left(k W^{\prime}\right) \operatorname{ch}\left(\nabla^{k \varepsilon^{\prime}}\right) k g^{\prime *}\right] \\
& =C h_{*}\left[P,\left(V, \nabla^{V}\right), j\right],
\end{aligned}
$$

where $\left(P,\left(V, \nabla^{V}\right), j\right)$ is the K-cycle obtained by gluing together the two K-chains $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$ and $\left(W^{\prime},\left(\varepsilon^{\prime}, \nabla^{\varepsilon^{\prime}}\right), g^{\prime}\right)$ along their common boundary via the composed isomorphism $k^{\prime} \partial\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right) \xrightarrow{\cong} k k^{\prime}\left(M,\left(E, \nabla^{E}\right), f\right) \xrightarrow{\cong} k \partial\left(W^{\prime},\left(\varepsilon^{\prime}, \nabla^{\varepsilon^{\prime}}\right)\right.$, $\left.g^{\prime}\right)$. Then $\frac{1}{k}\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]-\frac{1}{k^{\prime}}\left[\int_{W^{\prime}} \operatorname{Td}\left(W^{\prime}\right) \operatorname{ch}\left(\nabla^{\varepsilon^{\prime}}\right) g^{\prime *}\right]$ is the same, up to multiplication by rational numbers, as the image of $C h_{*}\left[P,\left(V, \nabla^{V}\right), j\right]$ $\left(\in H_{*+1}^{D R}(X, \mathbb{Q})\right)$, and so vanishes when mapped into $H_{*+1}(X, \mathbb{R} / \mathbb{Q})$ $\left(\left(C h_{*}\left[P,\left(V, \nabla^{V}\right), j\right], 0\right)=\bar{\partial}\left(0,-C h_{*}\left[P,\left(V, \nabla^{V}\right), j\right]\right)\right)$. Thus, $\check{C h} h_{*}\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ does not depend on k and $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$. The assignment

$$
\left(M,\left(E, \nabla^{E}\right), f, \phi\right) \mapsto \check{C h}_{*}\left(M,\left(E, \nabla^{E}\right), f, \phi\right)
$$

induces a well-defined odd homomorphism

$$
\check{C h h_{*}}: \check{K}_{*}^{f}(X) \rightarrow H_{*+1}(X, \mathbb{R} / \mathbb{Q}),
$$

called the flat Chern character. It fits into the commutative diagram

Upon tensoring everything with Q, it follows from the five-lemma that $\check{C h} h_{*}$ is a rational isomorphism.

3 An isomorphism between flat K-homology and Deeley \mathbb{R} / \mathbb{Z}-K-homology

We recall the construction of the Deeley \mathbb{R} / \mathbb{Z}-K-homology (see [8]) with some additional remarks.

In all the following, we denote by N a II_{1}-factor and τ a faithful normal trace on N .

Definition 3.1. An \mathbb{R} / \mathbb{Z} - K -cycle over X is a triple $\left(W,\left((H, \varepsilon, \alpha),\left(\nabla^{H}, \nabla^{\varepsilon}\right)\right), g\right)$, where

- W is a smooth compact $S p i n^{c}$-manifold;
- H is a fiber bundle over W with fibers are finitely generated projective Hermitian Hilbert N -modules with a unitary connection ∇^{H};
- ε is a Hermitian vector bundle over ∂W with a unitary connection ∇^{ε};
- α is an isomorphism from $\left.H\right|_{\partial W}$ to $\varepsilon \otimes_{\mathbb{C}} N$;
- $g: W \rightarrow X$ is a smooth map.

An \mathbb{R} / \mathbb{Z}-K-cycle $\left(W,\left((H, \varepsilon, \alpha),\left(\nabla^{H}, \nabla^{\varepsilon}\right)\right), g\right)$ is called even (resp. odd), if all connected components of W are of even (resp. odd) dimension.

The addition operation on the set of $\mathbb{R} / \mathbb{Z}-\mathrm{K}$-cycles is defined using disjoint union operations. The semigroup of $\mathbb{R} / \mathbb{Z}-K$-cycles over X will be denoted by $\Gamma_{*}(X)$.

A bordism of \mathbb{R} / \mathbb{Z}-K-cycles over X consists of the following data :

- Z is a smooth compact Spin c-manifold;
- $W \subseteq \partial Z$ is a regular domain;
- V is a fiber bundle over Z with fibers are finitely generated projective Hermitian Hilbert N -modules with a unitary connection ∇^{V}, and ϑ is a Hermitian vector bundle over $\partial Z-\operatorname{int}(W)$ with a unitary connection ∇^{ϑ}, such that $\left.V\right|_{\partial Z-i n t(W)} \stackrel{\beta}{\cong} \vartheta \otimes_{C} \mathrm{~N}$;
- $h: Z \rightarrow X$ is a smooth map.

Here, a regular domain W of ∂Z means a closed submanifold of ∂Z such that $\operatorname{int}(W) \neq \varnothing$ and if $x \in \partial W$, then there exists a coordinate chart $\psi: U \rightarrow \mathbb{R}^{n}$ centred at x with $\psi(W \cap U)=\left\{\left(y_{i}\right) \in \psi(U) \mid y_{n} \geq 0\right\}$.
The boundary of a bordism $\left(Z, W,\left((V, \vartheta, \beta),\left(\nabla^{V}, \nabla^{\vartheta}\right)\right), h\right)$ is the \mathbb{R} / \mathbb{Z}-K-cycle

$$
\partial\left(Z, W,\left((V, \vartheta, \beta),\left(\nabla^{V}, \nabla^{\vartheta}\right)\right), h\right):=\left(W,\left(\left(\left.V\right|_{W},\left.\vartheta\right|_{\partial W}, \beta\right),\left(\left.\nabla^{V}\right|_{W},\left.\nabla^{\vartheta}\right|_{\partial W}\right)\right),\left.h\right|_{W}\right) .
$$

Remark 3.2. If $\left(Z, W,\left((V, \vartheta, \beta),\left(\nabla^{V}, \nabla^{\vartheta}\right)\right), h\right)$ is a bordism, then

$$
\partial\left(\partial Z-\operatorname{int}(W),\left(\vartheta, \nabla^{\vartheta}\right),\left.h\right|_{\partial Z-i n t(W)}\right)=\left(\partial W,\left(\left.\vartheta\right|_{\partial W},\left.\nabla^{\vartheta}\right|_{\partial W}\right),\left.h\right|_{\partial W}\right) .
$$

The modification of an \mathbb{R} / \mathbb{Z}-K-cycle y by a Spin c-vector bundle V of even rank with an Euclidean connection ∇^{V}, is denoted by y^{V}, and is defined in the same way as that on differential K-cycles.

Definition 3.3. Two \mathbb{R} / \mathbb{Z}-K-cycles $\left(W_{0},\left(\left(H_{0}, \varepsilon_{0}, \alpha_{0}\right),\left(\nabla^{H_{0}}, \nabla^{\varepsilon_{0}}\right)\right), g_{0}\right)$ and $\left(W_{1},\left(\left(H_{1}, \varepsilon_{1}, \alpha_{1}\right),\left(\nabla^{H_{1}}, \nabla^{\varepsilon_{1}}\right)\right), g_{1}\right)$ are equivalent if there exist a Spin c-vector bundle $V \rightarrow W_{1}$ of even rank and a bordism ζ over X such that

$$
\left(W_{0},\left(\left(H_{0}, \varepsilon_{0}, \alpha_{0}\right),\left(\nabla^{H_{0}}, \nabla^{\varepsilon_{0}}\right)\right), g_{0}\right) \sqcup\left(W_{1}^{-},\left(\left(H_{1}, \varepsilon_{1}, \alpha_{1}\right),\left(\nabla^{H_{1}}, \nabla^{\varepsilon_{1}}\right)\right), g_{1}\right)^{V}=\partial \zeta .
$$

Remark 3.4. (i) If $\left(W,\left((H, \varepsilon, \alpha),\left(\nabla^{H}, \nabla^{\varepsilon}\right)\right), g\right)$ and $\left(W,\left(\left(H^{\prime}, \varepsilon^{\prime}, \alpha^{\prime}\right),\left(\nabla^{H^{\prime}}, \nabla^{\varepsilon^{\prime}}\right)\right)\right.$ $, g)$ are two \mathbb{R} / \mathbb{Z}-cycles over X with the same Spin c-manifold W and map g, then $\left(\left(W,\left((H, \varepsilon, \alpha),\left(\nabla^{H}, \nabla^{\varepsilon}\right)\right), g\right) \sqcup\left(W,\left(\left(H^{\prime}, \varepsilon^{\prime}, \alpha^{\prime}\right),\left(\nabla^{H^{\prime}}, \nabla^{\varepsilon^{\prime}}\right)\right), g\right)\right)^{1_{W \cup W}^{2}}$ and $\left(W,\left(\left(H \oplus H^{\prime}, \varepsilon \oplus \varepsilon^{\prime}, \alpha \oplus \alpha^{\prime}\right),\left(\nabla^{H} \oplus \nabla^{H^{\prime}}, \nabla^{\varepsilon} \oplus \nabla^{\varepsilon^{\prime}}\right)\right), g\right)$ are equivalent ([8, Proposition 4.11]).
(ii) If $\left(M,\left(E, \nabla^{E}\right), f\right)$ is a cycle of Baum-Douglas over X, then the \mathbb{R} / \mathbb{Z}-K-cycle $\left(M,\left((E \otimes N, \varnothing, \varnothing),\left(\nabla^{E}, \varnothing\right)\right), f\right)$ is equivalent to the trivial \mathbb{R} / \mathbb{Z}-K-cycle, $(\varnothing,(\varnothing, \varnothing), \varnothing)$, where a bordism is given by $\left(M \times[0,1], M,\left(\left(p_{M}^{*} E \otimes N, E, i d_{M}\right)\right.\right.$, $\left.\left.\left(p_{M}^{*} \nabla^{E}, \nabla^{E}\right)\right), f \circ p_{M}\right)$ with $p_{M}: M \times[0,1] \rightarrow M$ is the natural projection.

Definition 3.5. The Deeley \mathbb{R} / \mathbb{Z}-K-homology group $K_{*}(X, \mathbb{R} / \mathbb{Z})$ is the quotient of $\Gamma_{*}(X)$ by the equivalence relation on \mathbb{R} / \mathbb{Z} - K -cycles.

The group $K_{*}(X, \mathbb{R} / \mathbb{Z})$ is Abelian and naturally \mathbb{Z}_{2}-graded.

Remark 3.6. If moreover X is a Spin-manifold, then $K_{*}(X, \mathbb{R} / \mathbb{Z})$ is identified with the Kasparov K-homology group $K K^{*-1}(C(X), \mathcal{C})$ where \mathcal{C} is the mapping cone of the inclusion $\mathbb{C} \hookrightarrow \mathrm{N}$ ([8, Theorem 5.2]).

Example 3.7. Note that the trace τ on N extends to $M_{n}(N) \cong N \otimes M_{n}(\mathbb{C})$, also denoted by τ, with the property that two projections $p, q \in M_{n}(\mathrm{~N})$ are Murray-von Neumann equivalent if and only if $\tau(p)=\tau(q)$. Then it induces an isomorphism from the K-theory group $K_{0}(N)$ to \mathbb{R}. Moreover, $K_{1}(N)$ is trivial.
Let $K^{a n, *}(A)$ denote the analytic K-homology group of a C^{*}-algebra A (for more details we refer the reader to [11]). Following the universal coefficients theorem for K-homology,

$$
0 \rightarrow \operatorname{Ext}\left(K_{*}(\mathrm{~N}), \mathbb{R}\right) \rightarrow K^{a n, *+1}(\mathrm{~N}) \rightarrow \operatorname{Hom}\left(K_{*+1}(\mathrm{~N}), \mathbb{R}\right) \rightarrow 0
$$

together with \mathbb{R} is divisible, we get

$$
K^{a n, 0}(\mathrm{~N})=\mathbb{R} \text { and } K^{a n, 1}(\mathrm{~N})=0 .
$$

Because the $*$-algebra \mathcal{C} is null-homotopic, we have $K^{a n, 0}(\mathcal{C})=0$. On the other hand, the six-term exact sequence for K-homology associated to the short exacte sequence $0 \rightarrow C_{0}(] 0,1[) \otimes_{\mathbb{C}} \mathrm{N} \hookrightarrow \mathcal{C} \xrightarrow{e \mathcal{V 1}_{1}} \mathbb{C} \rightarrow 0$, implies that $K^{a n, 1}(\mathcal{C}) \cong \mathbb{R} / \mathbb{Z}$. From the above remark, we obtain that

$$
K_{e v}(p t, \mathbb{R} / \mathbb{Z}) \cong \mathbb{R} / \mathbb{Z} \text { et } K_{\text {odd }}(p t, \mathbb{R} / \mathbb{Z})=0
$$

Note that from [8] and [16], cocycles in $K K^{*}(C(X), N)$ can be described by geometric cycles of the form $\left(M,\left(H, \nabla^{H}\right), f\right)$, where M is a smooth closed Spinc manifold, H is a fiber bundle over M with fibers are finitely generated projective Hermitian Hilbert N-modules, with a unitary connection ∇^{H}, and $f: M \rightarrow X$ is a smooth map. The group $K K^{*}(C(X), \mathrm{N})$ is nothing more than an analytic model for the real K-homology of X. An isomorphism between $K_{*}^{\text {geo }}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ and $K K^{*}(C(X), \mathrm{N})$ is given at level of cycles by

$$
v\left(\left(M,\left(E, \nabla^{E}\right), f\right), t\right)=\left[M,\left(E \otimes p_{t} \mathrm{~N}^{n}, \nabla^{E}\right), f\right],
$$

where $p_{t} \in M_{n}(\mathbb{N})$ is a projection with $\tau\left(p_{t}\right)=t$.
The Chern character $C h_{\tau, *}: K K^{*}(C(X), \mathrm{N}) \rightarrow H_{*}^{d R}(X, \mathbb{R})$ is giving by

$$
C h_{\tau, *}\left[M,\left(H, \nabla^{H}\right), f\right]:=\left[\int_{M} \operatorname{Td}(M) c h_{\tau}\left(\nabla^{H}\right) f^{*}(\cdot)\right],
$$

where $\operatorname{ch}_{\tau}\left(\nabla^{H}\right):=\tau_{*}\left(\operatorname{Tr}\left(e^{\frac{-\nabla H^{2}}{2 i \pi}}\right)\right) \in \Omega^{2 *}(X, \mathbb{R})$ and $\tau_{*}: \Omega^{*}(X, \mathrm{~N}) \rightarrow \Omega^{*}(X, \mathbb{R})$ is the homomorphism associated by fonctoriality to the trace $\tau: N \rightarrow \mathbb{R}$. It fits into the commutative diagram

where $C h_{*}^{\mathbb{R}}: K_{*}^{\text {geo }}(X) \otimes \mathbb{R} \xrightarrow{C h_{*} \times \cdot} H_{*}^{d R}(X, \mathbb{R})$, and then $C h_{\tau, *}$ turns out to be an isomorphism.

Using the above commutative diagram, Remark 3.2 and the Atiyah-Singer index theorem on even spheres, we obtain that $\gamma: K_{*}(X, \mathbb{R} / \mathbb{Z}) \rightarrow \check{K}_{*}^{f}(X)$ given by

$$
\gamma\left[W,\left((H, \varepsilon, \alpha),\left(\nabla^{H}, \nabla^{\varepsilon}\right)\right), g\right]:=\left[\partial W,\left(\varepsilon, \nabla^{\varepsilon}\right),\left.g\right|_{\partial W},\left[\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right]\right]
$$

is a well-defined homomorphism.

Theorem 3.8. The homomorphism γ is an isomorphism.
Proof. We construct the inverse of γ, denoted by $v: \check{K}_{*}^{f}(X) \rightarrow K_{*+1}(X, \mathbb{R} / \mathbb{Z})$, as follows. Let $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ be a differential K -cycle over X with trivial curvature. Since the diagram relating $C h_{\tau, *}$ with $C h_{*}^{\mathbb{R}}$ is commutatif and $C h_{\tau, *}$ is an isomorphism, there exist a smooth compact Spinc -manifold W, a fiber bundle H over W with fibers are finitely generated projective Hermitian Hilbert N-modules with a unitary connection ∇^{H}, and a smooth map $g: W \rightarrow X$ such that

$$
\left(M,\left(E \otimes N, \nabla^{E}\right), f\right) \stackrel{h}{\cong}\left(\partial W,\left(\left.H\right|_{\partial W},\left.\nabla^{H}\right|_{\partial W}\right),\left.g\right|_{\partial W}\right) .
$$

This implies that

$$
\begin{aligned}
\partial\left(\phi-\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right)= & \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f^{*} \\
& -\left.\int_{\partial W} \operatorname{Td}(\partial W) \operatorname{ch} \tau_{\tau}\left(\left.\nabla^{H}\right|_{\partial W}\right) g\right|_{\partial W^{*}}=0 .
\end{aligned}
$$

Let then $\left[N,\left(F, \nabla^{F}\right), j\right] \in K K^{*}(C(X), N)$ with

$$
C h_{\tau, *}\left(\left[N,\left(F, \nabla^{F}\right), j\right]\right)=\phi-\left[\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right] .
$$

We set

$$
v\left(M,\left(E, \nabla^{E}\right), f, \phi\right):=\left[W \sqcup N,\left(\left(H \sqcup F, \alpha^{*} E, \beta\right),\left(\nabla^{H} \sqcup \nabla^{F}, \alpha^{*} \nabla^{E}\right)\right), g \sqcup j\right],
$$

where $\alpha: \partial W \rightarrow M$ and $\beta:\left.H\right|_{\partial W} \rightarrow \alpha^{*} E \otimes N$ are isomorphisms induced by h.
We show that v is well defined on $\check{K}_{*}^{f}(X)$. From (i) in Remark 3.4, v is compatible with the relation of direct sum in Definition 2.2, and from definitions, the image of every modification of $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ under v is equal to the modification of $v\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$.
Let $\left(W,\left(\varepsilon, \nabla^{\varepsilon}\right), g\right)$ be a K-chain over X. We have

$$
\begin{array}{r}
v\left(\partial W,\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right), g_{\mid \partial W}, \int_{W} T d(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right)=\left[W,\left(\left(\varepsilon \otimes N,\left.\varepsilon\right|_{\partial W},\left(i d_{\partial W}^{*} \otimes 1\right)\right),\right.\right. \\
\left.\left.\left(\nabla^{\varepsilon},\left.\nabla^{\varepsilon}\right|_{\partial W}\right)\right), g\right] .
\end{array}
$$

If $p: W \times[0,1] \rightarrow W$ is the projection and $\left.\left.i:\left(W \sqcup W^{-}\right) \times\right] 0,1\right] \sqcup(\partial W \times[0,1]) \sqcup$ $\partial W \hookrightarrow W \times[0,1]$ the inclusion, then $\left(W \times[0,1], W,\left(\left(p^{*} \varepsilon,(p \circ i)^{*} \varepsilon\right)\right.\right.$, $\left.\left.\left(p^{*} \nabla^{\varepsilon},(p \circ i)^{*} \nabla^{\varepsilon}\right)\right), g \circ p\right)$ is a bordism between $\left(W,\left(\left(\varepsilon \otimes \mathbb{N},\left.\varepsilon\right|_{\partial W},\left(i d_{\partial W}^{*} \otimes i d_{\mathrm{N}}\right)\right)\right.\right.$, $\left.\left.\left(\nabla^{\varepsilon},\left.\nabla^{\varepsilon}\right|_{\partial W}\right)\right), g\right)$ and the trivial cycle, and then the class $v\left(\partial W,\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right)\right.$, $\left.g_{\mid \partial W},\left[\int_{W} \operatorname{Td}(W) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]\right)$ is trivial.

Now we show that $v\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ does not depend on choice of $\left(W,\left(H, \nabla^{H}\right), g\right)$. Let $\left(W^{\prime},\left(H^{\prime}, \nabla^{H^{\prime}}\right), g^{\prime}\right)$ be an N-K-chain over X such that

$$
\begin{aligned}
\left(M,\left(E \otimes N, \nabla^{E}\right), f\right) \stackrel{h}{\cong}\left(\partial W,\left(\left.H\right|_{\partial W},\left.\nabla^{H}\right|_{\partial W}\right),\left.g\right|_{\partial W}\right) \stackrel{h^{\prime}}{\cong} \\
\left(\partial W^{\prime},\left(\left.H^{\prime}\right|_{\partial W^{\prime}},\left.\nabla^{H^{\prime}}\right|_{\partial W^{\prime}}\right),\left.g^{\prime}\right|_{\partial W^{\prime}}\right)
\end{aligned}
$$

and let $\left[N^{\prime},\left(F^{\prime}, \nabla^{F^{\prime}}\right), j^{\prime}\right] \in K K^{*}(C(X), N)$ with

$$
C h_{\tau, *}\left(\left[N^{\prime},\left(F^{\prime}, \nabla^{F^{\prime}}\right), j^{\prime}\right]\right)=\phi-\left[\int_{W^{\prime}} \operatorname{Td}\left(W^{\prime}\right) c h_{\tau}\left(\nabla^{H^{\prime}}\right) g^{\prime *}\right] .
$$

We claim that $x:=\left(W \sqcup N,\left(\left(H \sqcup F, \alpha^{*} E, \beta\right),\left(\nabla^{H} \sqcup \nabla^{F}, \alpha^{*} \nabla^{E}\right)\right), g \sqcup j\right)$ and $y:=$ $\left(W^{\prime} \sqcup N^{\prime},\left(\left(H^{\prime} \sqcup F^{\prime}, \alpha^{\prime *} E, \beta^{\prime}\right),\left(\nabla^{H^{\prime}} \sqcup \nabla^{F^{\prime}}, \alpha^{\prime *} \nabla^{E}\right)\right), g^{\prime} \sqcup j^{\prime}\right)$ are equivalent. We consider the \mathbb{R} / \mathbb{Z}-K-cycle

$$
\left(\widetilde{W},\left((\widetilde{H}, \widetilde{E}, \widetilde{\beta}),\left(\nabla^{\widetilde{H}}, \nabla^{\widetilde{E}}\right)\right), \widetilde{g}\right):=x \sqcup y^{-},
$$

and let $\left(Z,\left(\zeta, \nabla^{\zeta}\right), h\right)$ be the N-K-cycle where,

$$
\begin{gathered}
Z:=\widetilde{W} \underset{\partial W \cong M \times\{0\} ; \partial W^{\prime} \cong M \times\{1\}}{\cup} M \times[0,1], \zeta:=\widetilde{H} \underset{\partial W \cong M \times\{0\} ; \partial W^{\prime} \cong M \times\{1\}}{\cup} p_{M}^{*} E \otimes_{\mathbb{C}} N, \\
\nabla^{\zeta}:=\nabla^{\widetilde{H}} \cup p_{M}^{*} \nabla^{E}, \text { and } h:=\widetilde{g} \cup\left(f \circ p_{M}\right) .
\end{gathered}
$$

Here, $p_{M}: M \times[0,1] \rightarrow M$ denotes the canonical projection.
A bordism between $\left(Z,\left((\zeta, \varnothing, \varnothing),\left(\nabla^{\zeta}, \varnothing\right)\right), h\right)$ and $\left(\widetilde{W},\left((\widetilde{H}, \widetilde{E}, \widetilde{\beta}),\left(\nabla^{\widetilde{H}}, \nabla^{\widetilde{E}}\right)\right), \widetilde{g}\right)$ is given by the following quadruple

$$
\left(Z \times[0,1], Z \sqcup \widetilde{W},\left(\left(p_{Z}^{*} \zeta, p_{M}^{*} E\right),\left(p_{Z}^{*} \nabla^{\zeta}, p_{M}^{*} \nabla^{E}\right)\right), h \circ p_{Z}\right) .
$$

Furthermore,

$$
\begin{aligned}
C h_{\tau, *}\left(\left[Z,\left(\zeta, \nabla^{\zeta}\right), h\right]\right)= & {\left[\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right]+C h_{\tau, *}\left(\left[N,\left(F, \nabla^{F}\right), j\right]\right) } \\
& -\left[\int_{W^{\prime}} \operatorname{Td}\left(W^{\prime}\right) c h_{\tau}\left(\nabla^{H^{\prime}}\right) g^{\prime *}\right]-C h_{\tau, *}\left(\left[N^{\prime},\left(F^{\prime}, \nabla^{F^{\prime}}\right), j^{\prime}\right]\right) \\
= & \phi-\phi=0 .
\end{aligned}
$$

Hence, $v\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$ depends only on $\left(M,\left(E, \nabla^{E}\right), f, \phi\right)$.
We check that $v \circ \gamma=i d_{K_{*}(X, \mathbb{R} / \mathbb{Z})}$ and $\gamma \circ v=i d_{\breve{K}_{*}^{f}(X)}$. The first equality is straightforward, and the second is obtained as follows. For all $\left[M,\left(E, \nabla^{E}\right), f, \phi\right] \in$ $\check{K}_{*}^{f}(X)$,

$$
\begin{aligned}
\gamma(v & {\left.\left[M,\left(E, \nabla^{E}\right), f, \phi\right]\right) } \\
& =\gamma\left(\left[W \sqcup N,\left(\left(H \sqcup F, \alpha^{*} E, \beta\right),\left(\nabla^{H} \sqcup \nabla^{F}, \alpha^{*} \nabla^{E}\right)\right), g \sqcup j\right]\right) \\
& =\left[\partial W,\left(\alpha^{*} E, \alpha^{*} \nabla^{E}\right),\left.g\right|_{\partial W},\left[\int_{W \sqcup N} \operatorname{Td}(W \sqcup N) c h_{\tau}\left(\nabla^{H} \sqcup \nabla^{F}\right)(g \sqcup j)^{*}\right]\right] \\
& =\left[\partial W,\left(\alpha^{*} E, \alpha^{*} \nabla^{E}\right),\left.g\right|_{\partial W,}\left[\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right]+C h_{\tau, *}\left[N,\left(F, \nabla^{F}\right), j\right]\right] .
\end{aligned}
$$

Since $C h_{\tau, *}\left(\left[N,\left(F, \nabla^{F}\right), j\right]\right)=\phi-\left[\int_{W} \operatorname{Td}(W) c h_{\tau}\left(\nabla^{H}\right) g^{*}\right]$, we have

$$
\gamma\left(v\left[M,\left(E, \nabla^{E}\right), f, \phi\right]\right)=\left[M,\left(E, \nabla^{E}\right), f, \phi\right] .
$$

4 The torsion part of Deeley \mathbb{R} / \mathbb{Z}-K-homology

The aim of this section is to describe the torsion subgroup of $K_{*}(X, \mathbb{R} / \mathbb{Z})$ via \mathbb{Q} / \mathbb{Z}-bordism theory.

We start by recalling the notions of \mathbb{Z}_{k}-manifold and \mathbb{Z}_{k}-vector bundle.
Definition 4.1. - A \mathbb{Z}_{k}-manifold is a triple (M, N, k) where (M, N) is a pair of smooth compact manifolds such that $\partial M=k N$. We often drop the integers from this notation and denote a \mathbb{Z}_{k}-manifold by (M, N).

- A \mathbb{Z}_{k}-vector bundle over (M, N) is a pair of vector bundles, (E, F), over M and N respectively such that $\left.E\right|_{\partial M}$ decomposes into k copies of F.

Additionally, we have natural definitions of (Hermitian) connections on (Hermitian) \mathbb{Z}_{k}-vector bundles, Spin${ }^{c}-\mathbb{Z}_{k}$-manifolds, and framed \mathbb{Z}_{k}-manifolds. We refer the reader to [10] for supplementary details.

Now, if Y is any paracompact Hausdorff space then we shall denote by $\Omega_{n}^{F, k}(Y)$ the n-th framed \mathbb{Z}_{k}-bordism group of Y. Thus $\Omega_{n}^{F, k}(Y)$ is the set of all bordism classes of maps from framed n-dimensional \mathbb{Z}_{k}-manifolds into Y. Here, a smooth map f from a \mathbb{Z}_{k}-manifold (M, N) to Y is a pair of smooth maps $f_{M}: M \rightarrow Y$ and $f_{N}: N \rightarrow Y$ where $f_{M}: M \rightarrow Y$ is an extension of f_{N}.
The set $\Omega_{n}^{F, k}(Y)$ is an Abelian group under the disjoint union operation.
For $l \in \mathbb{N}^{*}$, the assignment

$$
\left(\left(f_{M}, f_{N}\right):\left(M, N^{n}\right) \rightarrow Y\right) \mapsto\left(\left(l . f_{M}, f_{N}\right):\left(l . M, N^{n}\right) \rightarrow Y\right)
$$

induces a well-defined homomorphism $L_{l}: \Omega_{n}^{F, k}(Y) \rightarrow \Omega_{n}^{F, l k}(Y)$. Denote by $\widetilde{\Omega}_{n}^{F}(Y)$ the limit of the direct system $\left(\Omega_{n}^{F, k!}(Y), L_{k+1}\right)$.
Let $\left(S^{3, k}, S^{2}\right)$ be the Spin $^{c}-\mathbb{Z}_{k}$-manifold obtained by removing k open balls $\operatorname{int}\left(D^{3}\right)$ from the 3 -sphere, equipped with its standard Spin c-structure, $\mathcal{S} \rightarrow(M, N)$, as the boundary of the couple of balls $\left(D^{4}, D^{3}\right): \partial_{k}\left(D^{4}, D^{3}\right):=\left(\partial D^{4}-k . i n t\left(D^{3}\right)\right.$, $\left.\partial D^{3}\right)=\left(S^{3, k}, S^{2}\right)$. It is also a framed manifold. Denote by $c:\left(S^{3, k}, S^{2}\right) \rightarrow$ $\mathcal{B} U$, where $\mathcal{B U}$ is the classifying space of the unitary group $U(\infty)$, a basepointpreserving map which, under the isomorphism $\left[\left(S^{3, k}, S^{2}\right), \mathcal{B} U\right] \cong \widetilde{K}\left(S^{3, k}, S^{2}\right)$, corresponds to the difference $\left[\mathcal{S}_{+}^{*}\right]-1_{\left(S^{3, k}, S^{2}\right)}$. Consider the direct system of Abelian groups

$$
\Omega_{n}^{F, k}(\mathcal{B} U \times X) \rightarrow \Omega_{n+2}^{F, k}(\mathcal{B} U \times X) \rightarrow \Omega_{n+4}^{F, k}(\mathcal{B} U \times X) \rightarrow \cdots
$$

given as follows: for $f:\left(M, N^{n}\right) \rightarrow \mathcal{B} U \times X$ be a smooth map from a framed n-dimensional \mathbb{Z}_{k}-manifold (M, N) to Y, the composition

$$
(M, N) \times\left(S^{3, k}, S^{2}\right) \xrightarrow{c \times f} \mathcal{B} U \times \mathcal{B} U \times X \xrightarrow{m \times i d_{X}} \mathcal{B} U \times X
$$

is a cycle for $\Omega_{n+2}^{F, k}(\mathcal{B} U \times X)$ where m is the map defined through tensor product of Hermitian vector spaces. This defines a map from $\widetilde{\Omega}_{n}^{F}(\mathcal{B U} \times X)$ to
$\widetilde{\Omega}_{n+2}^{F}(\mathcal{B} U \times X)$. Denote by $\widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X)$, with $* \in\{e v, o d d\}$, the direct limit of the above directed system.
Let $\beta: \Omega^{F}(\mathcal{B} U \times X) \rightarrow \widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X)$ be the homomorphism from the framed bordism group of $\mathcal{B} U \times X$ to $\widetilde{\Omega}_{*}^{F}(\mathcal{B U} \times X)$ which associates to each $[f: M \rightarrow$ $\mathcal{B} U \times X]$ the class $[(f, \varnothing):(M, \varnothing) \rightarrow \mathcal{B} U \times X]$.
Definition 4.2. Denote by $\widetilde{\Omega}_{*}^{F}(\mathcal{B U} \times X, Q / \mathbb{Z})$ the cokernel of β.
Remark 4.3. By the Pontrjagin-Thom isomorphism [14], we can identify $\widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, Q / \mathbb{Z})$ with the stable homotopy group of the (base-pointed) topological space $\mathcal{B} U \times X$.

Let $f:\left(M, N^{n}\right) \rightarrow \mathcal{B} U \times X$ be a cycle in $\Omega_{n}^{F, k}(\mathcal{B} U \times X)$. It determines a Hermitian \mathbb{Z}_{k}-vector bundle (E, F) over (M, N) and a smooth map $\left(f_{M}^{\prime}, f_{N}^{\prime}\right)$: $(M, N) \rightarrow X$. We choose a unitary connection $\left(\nabla^{E}, \nabla^{F}\right)$ on (E, F). Recall that the framing $T\left(M, N^{n}\right) \oplus 1^{k} \cong 1^{n+k}$ of the framed \mathbb{Z}_{k}-manifold (M, N) defines a Spin ${ }^{\text {c}}$-structure on (M, N). We obtain that the quadruple $\left(N,\left(F, \nabla^{F}\right), f_{N}^{\prime},\left[\frac{1}{k} \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime}{ }^{*}\right]\right)$ is a differential K-cycle over X. Moreover,

$$
\begin{aligned}
& k\left(\int_{N} \operatorname{Td}(N) \operatorname{ch}\left(\nabla^{F}\right) f_{N}^{\prime *}-\frac{1}{k} \partial\left(\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime *}\right)\right)= \\
& \quad \int_{k N} \operatorname{Td}(k N) \operatorname{ch}\left(\nabla^{k F}\right)\left(k f_{N}^{\prime}\right)^{*}-\int_{\partial M} \operatorname{Td}(\partial M) \operatorname{ch}\left(\nabla^{\left.E\right|_{\partial M}}\right) \wedge \wedge\left(\left.f_{M}^{\prime}\right|_{\partial M}\right)^{*}=0
\end{aligned}
$$

Then the class $\left[N,\left(F, \nabla^{F}\right), f_{N}, \frac{1}{k}\left(\left[\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime}{ }^{*}\right]\right)\right]$ lies in $\check{K}_{n[2]}^{f}(X)$, and from Remark 2.3, it is independent of the choice of geometry.

Proposition 4.4. The correspondence

$$
[f:(M, N) \rightarrow \mathcal{B} U \times X] \mapsto\left[N,\left(F, \nabla^{F}\right), f_{N}, \frac{1}{k}\left[\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime *}\right]\right]
$$

determines an injective homomorphism

$$
\tau: \widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, \mathbb{Q} / \mathbb{Z}) \rightarrow \check{K}_{*}^{f}(X)
$$

Proof. It is clear that τ is an additive map and well-defined on $\widetilde{\Omega}_{n}^{F}(\mathcal{B} U \times X)$. Since every cycle in differential K-homology is identified with its modifications, τ is also well-defined on $\widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X)(* \in\{e v, o d d\})$. Moreover, τ sends $\operatorname{img}(\beta)$ to the trivial subgroup of $\check{K}_{*}^{f}(X)$.
τ is injective. In fact let $f:\left(M, N^{n}\right) \rightarrow \mathcal{B} U \times X$ be a cycle in $\Omega_{n}^{F, k}(\mathcal{B} U \times X)$ where $\left[N,\left(F, \nabla^{F}\right), f_{N}, \frac{1}{k}\left[\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime *}\right]\right]=0$. Without loss of generality, we reduce to the case when there is a smooth compact Spin ${ }^{c}$-manifold W, a smooth Hermitian vector bundle ε over W with a unitary connection ∇^{ε}, and a smooth $\operatorname{map} g: W \rightarrow X$ such that

$$
\begin{aligned}
\left(N,\left(F, \nabla^{F}\right), f_{N},\right. & \left.\frac{1}{k}\left[\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\nabla^{E}\right) f_{M}^{\prime}{ }^{*}\right]\right)=\left(\partial W,\left(\left.\varepsilon\right|_{\partial W},\left.\nabla^{\varepsilon}\right|_{\partial W}\right),\left.g\right|_{\partial W}\right. \\
& {\left.\left[\int_{W} \operatorname{Td}\left(\nabla^{W}\right) \operatorname{ch}\left(\nabla^{\varepsilon}\right) g^{*}\right]\right) . }
\end{aligned}
$$

As Spin^{c}-bordism relation is equivalent to framed bordism relation ([6, p.21]), we will consider W as a framed manifold. Let $\left(P,\left(V, \nabla^{V}\right), h\right)$ be the K-cycle obtained by gluing together the two K-chains of Baum-Douglas $\left(M,\left(E, \nabla^{E}\right), f_{M}^{\prime}\right)$ and $\left(k W,\left(k \varepsilon, \nabla^{k \varepsilon}\right), k g\right)$ along their common boundary. Let $\left(\widetilde{P},\left(\widetilde{V}, \nabla^{\widetilde{V}}\right), \widetilde{h}\right)$ be a bordism between two copies of $\left(P,\left(V, \nabla^{V}\right), h\right)$. We have

$$
\begin{aligned}
\partial \widetilde{P} & =P \sqcup P^{-} \\
& =P \sqcup M^{-} \cup_{\partial M^{-} \cong \partial\left(k . W^{-}\right)} k \cdot W^{-} .
\end{aligned}
$$

Denote by $h_{\widetilde{V}}:\left(\widetilde{P}, W^{-}\right) \rightarrow \mathcal{B} U$ a map which determines the class in the $\mathbb{Z}_{k}-\mathrm{K}-$ theory of $\left(\widetilde{P}, W^{-}\right)$represented by \widetilde{V}.
Since $\left(\widetilde{P}, W^{-}\right)$is a framed \mathbb{Z}_{k}-manifold with $\partial_{k}\left(\widetilde{P}, W^{-}\right)=\left(P \sqcup M^{-}, N^{-}\right)$, and the fiber bundle \widetilde{V} and map \widetilde{h} respect this \mathbb{Z}_{k}-structure so that $\left(h_{\widetilde{V}}:\left(\widetilde{P}, W^{-}\right) \rightarrow\right.$ $\left.\mathcal{B} U, \widetilde{h}:\left(\widetilde{P}, W^{-}\right) \rightarrow X\right)$ is a bordism between $\left(h_{V}:(P, \varnothing) \rightarrow \mathcal{B} U,(h, \varnothing):(P, \varnothing) \rightarrow\right.$ $X)$ and $f:(M, N) \rightarrow \mathcal{B} U \times X$, which implies that $[f:(M, N) \rightarrow \mathcal{B} U \times X] \in$ $\operatorname{Img}(\beta)$, and this finishes the proof.

Theorem 3.8 leads to an injective homomorphism

$$
\bar{\tau}: \widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, Q / \mathbb{Z}) \rightarrow K_{*}(X, \mathbb{R} / \mathbb{Z}) .
$$

Furthermore, from the construction of the flat Chern character $\check{C h} h_{*}: \check{K}_{*}^{f}(X) \rightarrow$ $H_{*+1}(X, \mathbb{R} / \mathbb{Q})$ we have the exact sequence

$$
0 \longrightarrow \widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\stackrel{\tau}{\tau}} K_{*}(X, \mathbb{R} / \mathbb{Z}) \xrightarrow{\check{C} h_{*} \circ \gamma} H_{*+1}(X, \mathbb{R} / \mathbb{Q}) .
$$

Corollary 4.5. The torsion part of $K_{*}(X, \mathbb{R} / \mathbb{Z})$ is isomorphic to $\widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, \mathbb{Q} / \mathbb{Z})$.
Remark 4.6. We can use the approach of Atiyah-Patodi-Singer $[2,3]$ to $\mathbb{R} / \mathbb{Z}-\mathrm{K}$ theory, to obtain a third model for $\mathbb{R} / \mathbb{Z}-$ K-homology by regarding $\widetilde{\Omega}_{*}^{F}(\mathcal{B} U \times X, \mathbb{Q} / \mathbb{Z})$ as a K-homology of X with \mathbb{Q} / \mathbb{Z}-coefficients and $H_{*}(X, \mathbb{R} / \mathbb{Q})$ as the cokernel of the natural injection $K_{*}^{\text {geo }}(X, Q) \rightarrow K_{*}^{\text {geo }}(X) \otimes \mathbb{R}$.

References

[1] M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford 19(1968), 113-140.
[2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry-I. Math. Proc. Cambridge Philos. Soc. 77(1975), 43-69.
[3] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry-II. Math. Proc. Cambridge Philos. Soc. 78(1975), 405-432.
[4] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry-III. Math. Proc. Cambridge Philos. Soc. 79(1976), 71-99.
[5] P. Baum and R. Douglas, K-homology and index theory. Operator Algebras and Applications, Proceedings of Symposia in Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 117-173.
[6] P. Baum, N. Higson and T. Schick, On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q. 3(2007), no. 1, 1-24.
[7] M. T. Benameur and M. Maghfoul, Differential characters in k-theory. Differential Geom. Appl. 24(2006), 417-432.
[8] R. Deeley, R/Z-valued index theory via geometric K-homology. To Appear in Münster Journal of Mathematics http://www.math.uni-muenster.de/mjm/acc/ Deeley.pdf/.
[9] D. S. Freed and J. Lott, An index theorem in differential k-theory. Geometry and Topology 14(2010), 903-966.
[10] D. S. Freed and R. B. Melrose, A mod k index theorem. Invent. Math. 107(1992), 283-299.
[11] N. Higson and J. Roe, Analytic K-Homology. Oxford Math. Monogr. Oxford Univ. Press, Oxford Sci. Publ., Oxford, 2000.
[12] K. Klonoff, An index theorem in differential K-theory. Ph.D. dissertation, University of Texas Austin, 2008.
[13] J. Lott, R/Z index theory. Comm. Anal. Geom. 2(1994), no. 2, 279-311.
[14] L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory. American Mathematical Society, Providence, R.I., Ser. 2 11(1959), 1-114.
[15] R. M. G. Reis and R. J. Szabo, Geometric K-Homology of Flat D-Branes. Comm. Math. Phys. 266(2006), 71-122.
[16] M. Walter, Equivariant geometric K-homology with coefficients. Diplomarbeit University of Göttingen, 2010.

Mathematics Department
Ibn Tofail University
Kenitra, Morocco
email:adnane_elmrabty@yahoo.com

[^0]: Received by the editors in May 2015.
 Communicated by J. Fine.
 2010 Mathematics Subject Classification : Primary 19K33, Secondary 19L50.
 Key words and phrases : Spinc-manifold; Chern character; eta invariant; geometric K-homology; differential K-theory; \mathbb{R} / \mathbb{Z}-K-homology.

