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Abstract

In this paper, we construct an explicit isomorphism between Deeley
R/Z-K-homology and flat K-homology. We also describe R/Z-K-homology
out of Z/kZ-bordism theories.

1 Introduction

K-homology is dual to topological K-theory. A geometric model was introduced
by Baum-Douglas (see [5]), and proved to be an extremely important tool in
index theory and physics (see [15]): one of the main advantages of this geometric
formulation is that K-homology cycles encode the most primitive requisite objects
that must be carried by any D-brane, such as a Spinc-manifold and a Hermitian
vector bundle.

Beside K-theory, there is also the so-called differential K-theory. It combines
cohomological information with differential form information in a complicated
way. A model for this theory was studied extensively by Freed and Lott (see [9]).
Motivated by generalizing pairings between K-theory and K-homology to the
case of differential K-theory and K-homology with R/Z-coefficients, we intro-
duce an extension of geometric K-homology by continuous current data, called
differential K-homology, which encodes Deeley R/Z-K-homology as a flat
theory (Theorem 3.8), and so through Theorem 2.6 we obtain explicit realizations
of this pairing.
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2 A. Elmrabty

In the end of this paper, we describe the torsion part of Deeley R/Z-K-homo-
logy through framed Z/kZ-bordism theories (Proposition 4.4), and so the
approach of Atiyah-Patodi-Singer to R/Z-K-theory presented in [2, 3] leads to
another model for R/Z-K-homology.

2 Differential K-homology and its pairings with Freed-Lott

differential K-theory

In this section we define a differential K-homology.

In all the following, we denote by X a smooth compact manifold.

Definition 2.1. A differential K-cycle over X is a quadruple (M, (E,∇E), f , φ)
consisting of :

• A smooth closed Spinc-manifold M.

• A smooth Hermitian vector bundle E over M with a unitary connection ∇E.

• A smooth map f : M → X.

• A class of currents φ ∈ Ω∗(X)
img(∂)

.

There are no connectedness requirements made upon M, and hence the bun-
dle E can have different fibre dimensions on the different connected components
of M. It follows that the disjoint union,

(M, (E,∇E), f , φ) ⊔ (M′, (E′,∇E′
), f ′, φ′) :=

(M ⊔ M′, (E ⊔ E′,∇E ⊔∇E′
), f ⊔ f ′, φ + φ′),

is a well-defined operation on the set of differential K-cycles over X.

A differential K-cycle (M, (E,∇E), f , φ) is called even (resp. odd), if all

connected components of M are of even (resp. odd) dimension and φ ∈ Ωodd(X)
img(∂)

(resp. φ ∈ Ωev(X)
img(∂)

).

We define an equivalence relation on differential K-cycles as follows. First, let
x := (M, (E,∇E), f , φ) be a differential K-cycle over X and V be a Spinc-vector
bundle of even rank over M with an Euclidean connection ∇V . Let 1M denote
the trivial rank-one real vector bundle over M. We denote by M̂ the boundary
of the unit disk bundle D(V ⊕ 1M) of V ⊕ 1M. The Spinc-structures on TM and
V ⊕ 1M induce a Spinc-structure on TD(V ⊕ 1M) by a direct sum decomposition
T(V ⊕ 1M) ∼= π∗(V ⊕ 1M)⊕ π∗TM where π is the bundle projection of V ⊕ 1M,
and then taking the boundary of this Spinc-structure to obtain a Spinc-structure
on TM̂.
Denote by S := S+ ⊕ S− the Z2-graded spinor bundle associated with the Spinc-
structure on the vertical tangent bundle of M̂ carrying a unitary connection
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∇S+ ⊕∇S− induced by ∇V . Define V̂ to be the dual of S+ and ∇V̂ to be the uni-
tary connection on V̂ induced by ∇S+ . We denote by xV the quadruple

(M̂, (V̂ ⊗ π∗E,∇V̂ ⊗ π∗∇E), f ◦ π, φ), called the modification of x by V, which
is obviously a differential K-cycle over X.

Now two differential K-cycles ξ and ξ′ over X are said to be equivalent if there
exist a Spinc-vector bundle V of even rank over the manifold in ξ′ , a smooth
compact Spinc-manifold W, a smooth Hermitian vector bundle ε over W with a
unitary connection ∇ε, and a smooth map g : W → X such that

ξ ⊔ ξ′
V
− = (∂W, (ε|∂W ,∇ε|∂W), g|∂W , [

∫

W
Td(W)ch(∇ε)g∗]),

where ξ− = (M−, (E,∇E), f ,−φ) when ξ = (M, (E,∇E), f , φ) and M− denotes
M with its Spinc structure reversed, Td(W) is the Spinc-Todd form of the Levi-
Civita connection on M and ch(∇ε) is the geometric Chern form of ∇ε. In this
situation, (W, (ε,∇ε), g) is called a K-chain over X with differential boundary

ξ ⊔ ξ′
V
−.

Definition 2.2. The differential K-homology group Ǩ∗(X) is the group of
equivalence classes of differential K-cycles over X, for the equivalence relation
generated by the above relation and the following identification:

Direct sum:
(M, (E,∇E), f , φ) ⊔ (M, (E′ ,∇E′

), f , φ′) ∼ (M, (E ⊕ E′,∇E ⊕∇E′
), f , φ + φ′).

The group Ǩ∗(X) is Abelian and naturally Z2-graded:

Ǩ∗(X) = Ǩev(X)⊕ Ǩodd(X).

The construction of differential K-homology is functorial: for every smooth
map ρ : X → Y between two smooth compact manifolds, the homomorphism
ρ∗ : Ǩ∗(X) → Ǩ∗(Y) is defined by

ρ∗[M, (E,∇E), f , φ] := [M, (E,∇E), ρ ◦ f , φ ◦ ρ∗].

Remark 2.3. If (M, (E,∇E
0 ), f , φ) and (M, (E,∇E

1 ), f , φ) are two differential
K-cycles, then

[M, (E,∇E
0 ), f , φ] =

[M, (E,∇E
1 ), f , φ − [

∫

M×[0,1]
Td(M × [0, 1])ch(B)( f ◦ p)∗]] (∈ Ǩ∗(X)),

where B is the connection on the pullback of E by the projection p : M × [0, 1] →
M, given by B = (1 − t)∇E

0 + t∇E
1 + dt d

dt .

Recall that a K-chain (of Baum-Douglas) over X is of the form (W, (ε,∇ε), g),
where W is a smooth compact Spinc-manifold, ε is a Hermitian vector bundle
over W with a unitary connection ∇ε, and g a smooth map from W to X. The
boundary of a K-chain (W, (ε,∇ε), g) is defined by ∂(W, (ε,∇ε), g) := (∂W,
(ε|∂W ,∇ε|∂W), g|∂W). A K-cycle is a K-chain without boundary. We refer the
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reader to [5] for the definition of K-homology group K
geo
∗ (X) out of K-cycles and

K-chains. Let Ch∗ : K
geo
∗ (X) → HdR

∗ (X) be the Chern character, [M, (E,∇E), f ]
Ch∗7→

[
∫

M Td(M)ch(∇E) f ∗], and Ω0
∗(X) := {φ ∈ Ω∗(X) | [φ] ∈ img(Ch∗)}. The group

Ǩ∗(X) fits into the exact sequence

0 →
Ω∗+1(X)

Ω0
∗+1(X)

a
→ Ǩ∗(X)

ı
→ K

geo
∗ (X) → 0

where ı is the forgetful map (ı[M, E∇E
, f , φ] = [M, E∇E

, f ]), and a is induced by
the map which associates to each φ ∈ Ω∗+1(X) the class [∅, ∅, ∅,−φ] ∈ Ǩ∗(X).

Example 2.4. • The above exact sequence, together with the fact that the only
classes in K

geo
∗ (pt) are [pt, Ck, idpt] with k ∈ N implies that

Ǩev(pt) ∼= Z and Ǩodd(pt) ∼= R/Z.

• Since K
geo
ev (S1) ∼= Z ∼= K

geo
odd(S

1), we have two short exact sequences

0 → R/Z → Ǩev(S
1) → Z → 0

0 → Homc(C
∞(S1), R)/Z → Ǩodd(S

1) → Z → 0.

It follows from the second exact sequence that the homomorphism which
associates to each closed curve (in C∞(S1)) the holonomy around it
determines an element in Ǩodd(S

1).

Definition 2.5. The curvature of a differential K-cycle (M, (E,∇E), f , φ) is the
real-valued current R(M, (E,∇E), f , φ) given by

R(M, (E,∇E), f , φ) :=
∫

M
Td(M)ch(∇E) f ∗ − ∂φ.

The assignment

(M, (E,∇E), f , φ) 7→ R(M, (E,∇E), f , φ)

induces a homomorphism Ǩ∗(X)
R
→ Ω∗(X).

Recall that the Freed-Lott differential K-group K̂(X) ([9]) is the abelian group
coming from the following generators and relations: a generators is a pair
((F,∇F), w), where F is a Hermitian vector bundle over X with a unitary con-

nection ∇F and w ∈ Ωodd(X)
img(d)

is a class of odd differential form. The relation is

((F2 ,∇F2), w2) = ((F1 ⊕ F3,∇F1 ⊕∇F3), w1 + w3) whenever there is a split short
exact sequence of
Hermitian vector bundles over X,

0 // F1
i // F2

// F3

s
tt

// 0 ,
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with w2 = w1 + w3 + CS((i ⊕ s)∗∇F2 ,∇F1 ⊕∇F3) where CS(∇,∇′) ∈ Ωodd(X)
img(d)

is

the relative Chern-Simons form of two connections on a smooth complex vector
bundle. It is related to the K-theory group K(X) by the following short exact
sequence

0 →
Ωodd(X)

Ωodd
0 (X)

b
→ K̂(X)


→ K(X) → 0

where Ω
odd
0 (X) is the space of odd forms on X with integer K-periods,  is the

forgetful map (([(F,∇F), w] − [(F′ ,∇F′
), w′]) = [F] − [F′]), and b is the map in-

duced by w ∈ Ωodd(X) 7→ [(1n,∇can), 0]− [(1n,∇can), w]. The curvature
homomorphism r : K̂(X) → Ωev(X) is given by [(F,∇F), w] 7→ ch(∇F)− dw. The
kernel of r is isomorphic to the K-theory with R/Z-coefficients K−1(X, R/Z),
given through differential K-characters (see [7]).

Theorem 2.6. There is a unique pairing µ : K̂(X)⊗ Ǩodd(X) → R/Z up to torsion in
K−1(X, R/Z), which satisfies

(i)

Ω
odd(X)⊗ Ǩodd(X)

id⊗R
��

b⊗id
//

	

K̂(X)⊗ Ǩodd(X)

µ

��

Ωodd(X)⊗ Ωodd(X) α // R/Z

(ii)

K̂(X)⊗ Ωev(X)

r⊗id
��

id⊗a
//

	

K̂(X)⊗ Ǩodd(X)

µ

��

Ωev(X)⊗ Ωev(X) α // R/Z

where α(w, φ) = φ(w) mod Z for all (w, φ) ∈ Ω
∗(X)× Ω∗(X).

Proof. For every [(F,∇F), w] ∈ K̂(X) and [M, (E,∇E), f , φ] ∈ Ǩodd(X), we set

µ(((F,∇F), w))((M, (E,∇E), f , φ)) := η̄E⊗ f ∗F −
∫

M
Td(M)ch(∇E) f ∗(w)

− φ(r[(F,∇F), w]) mod Z,

where η̄E⊗ f ∗F is the eta (spectral) invariant of the Dirac operator DE⊗ f ∗F on M
twisted by E ⊗ f ∗F ([7]). It is apparent that µ is bi-additive. We show that µ
is compatible with the equivalence relation on differential K-cycles. Compatibil-
ity with direct sum relation is straightforward. Let ((F,∇F), w) be a differential
K-cocycle over X, and let (W, (ε,∇ε), g) be a K-chain over X. The Atiyah-Patodi-
Singer index theorem [2, 3, 4] implies that

η̄(ε⊗g∗F)|∂W
−

∫

W
Td(W)ch(∇ε⊗g∗F) = −Ind(D

ε⊗g∗F
+ ) ∈ Z,
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and then

µ((F,∇F), w)(∂W, (ε|∂W ,∇ε|∂W), g|∂W , [
∫

W
Td(W)ch(∇ε)g∗]) = 0.

Now let V → M be an even Spinc-vector bundle of dimension 2p. We consider
the smooth closed manifold M̂ defined above, which is an S2p-fibration over M,

π : M̂ → M.

If SS2p = S+
S2p ⊕ S−

S2p and SM = S+
M ⊕ S−

M are the spinor bundles associated with

the Spinc-structures on the tangent vector bundles TS2p and TM respectively,
then the spinor bundle SM̂ associated with the tangent vector bundle TM̂ is iso-

morphic to the graded tensor product vector bundle S̃S2p⊗̂S̃M, where S̃S2p and S̃M

are
corresponding lifts to M̂. Let b be the Bott bundle over S2p (see [1] for the
construction of this element). We denote by Db the self-adjoint Dirac operator on
S2p twisted by b. The index of Db

+ is equal to 1. According to [4], we get out of Db

a differential operator D̂b on M̂ acting on smooth sections of the vector bundle
SM̂ ⊗ V̂ ⊗ π∗E. In the same way and following the same reference ([4]), we get

out of the Dirac operator on M twisted by E, DE, a differential operator D̂E over
M̂ acting on smooth sections of SM̂ ⊗ V̂ ⊗ π∗E.

The sharp product of D̂b and D̂E yields an elliptic differential operator D̂b♯D̂E

acting on sections of SM̂ ⊗ V̂ ⊗ π∗E. This operator can be identified with the

Dirac operator on M̂ twisted by V̂ ⊗ π∗E:

DV̂⊗π∗E = D̂b♯D̂E.

We can work locally and assume that the fibration π : M̂ → M is trivial: π is the

projection S2p × M → M. The Hilbert space on which DV̂⊗π∗E acts is the graded
tensor product

L2(S2p × M, SM̂ ⊗ V̂ ⊗ π∗E) = L2(S2p, SS2p ⊗ b) ⊗̂ L2(M, SM ⊗ E).

We have

∫

M̂
Td(M̂)ch(∇V̂)( f ◦ π)∗ =

∫

M

(∫

M̂
Td(M̂)ch(∇V̂)

)
ch(∇E) f ∗

=
∫

M

(∫

S2
Td(S2)ch(b)

)
ch(∇E) f ∗

= index(Db
+)×

∫

M
Td(M)ch(∇E) f ∗

=
∫

M
Td(M)ch(∇E) f ∗.

On the other hand, if we split the first factor, L2(S2p, SS2p ⊗ b), as ker(Db
+) plus

its orthogonal complement, then we obtain a corresponding direct sum decom-
position of L2(S2p × M, SM̂ ⊗ V̂ ⊗ π∗E). We therefore obtain a decomposition
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of DV̂⊗π∗E as a direct sum of two operators. Since the kernel of Db
+ is one-

dimensional, the first operator acts on ker(Db
+)⊗̂L2(M, SM ⊗E) ∼= L2(M, SM ⊗E)

and is equal to DE. The second operator has a antisymmetric spectrum. To see
this, if T is the partial isometry part of Db

+ in the polar decomposition, and if γ
is the grading operator on L2(M, SM ⊗ E), then the odd-graded involution iT⊗̂γ
on the Hilbert space ker(Db

+)
⊥⊗̂L2(M, SM ⊗ E) anticommutes with the restric-

tion of DV̂⊗π∗E to ker(Db
+)

⊥⊗̂L2(M, SM ⊗ E). Furthermore, the kernel of DV̂⊗π∗E
+

coincides with the kernel of DE
+. Since the same relation holds for the adjoint, we

deduce that

η̄E⊗ f ∗F = η̄V̂⊗π∗(E⊗ f ∗F) .

Then µ is defined up to the equivalence relation on differential K-cycles.

We show that µ is compatible with the equivalence relation used to define the
Freed-Lott differential K-theory. Let (M, (E,∇E), f , φ) be a differential

K-cycle over X, and let ((F,∇F), w) and ((F′ ,∇F′
), w′) be two K-cocycles over

X which define the same class in K̂(X). Since the map µ(·)(M, (E,∇E), f , φ) is
additive, we can assume that there exists an isomorphism of Hermitian vector

bundles h : F → F′ such that CS(∇F, h∗∇F′
) = w − w′. It follows by Fubini and

APS-index theorem ([2, 3, 4]) that

µ((F,∇F), w)(M, (E,∇E), f , φ)− µ((F′ ,∇F′
), w′)(M, (E,∇E), f , φ)

= η̄E⊗ f ∗F − η̄E⊗ f ∗F′ −
∫

M
Td(M)ch(∇E) ∧ CS( f ∗∇F, (h ◦ f )∗∇F′

) mod Z

= η̄p∗(E⊗ f ∗F)|∂M×[0,1]
−

∫

M×[0,1]
Td(M × [0, 1])ch(B) mod Z = 0̄,

where B is the connection on the pullback of E ⊗ f ∗F by the projection p :

M × [0, 1] → M given by B = t
(
∇E ⊗ f ∗∇F

)
+ (1 − t)

(
∇E ⊗ (h ◦ f )∗∇F′

)
+

dt d
dt .

It is clear that µ is natural map and satisfies (i) and (ii).

Now assume that we have two natural pairings µk, k = 0, 1, which satisfy (i)
and (ii). We consider the bilinear map B : K̂(X)⊗ Ǩodd(X) → R/Z given by

(x, ξ) 7→ B(x, ξ) := µ0(x, ξ)− µ1(x, ξ).

For w ∈ Ωodd(X), we have by i),

B(b(w), ξ) = α(w, ξ) − α(w, ξ) = 0.

Similarly, B(x, a(φ)) = 0 for all φ ∈ Ωev(X). Therefore, B factors over a pairing

B̄ : K(X) → Hom(K
geo
odd(X), R/Z)

θ
∼= K−1(X, R/Z),
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where θ−1 : K−1(X, R/Z) ∼= Hom(K
geo
odd(X), R/Z) is the isomorphism construc-

ted in [7]. Using the rational isomorphism ChR/Q constructed in [13, p.9], B̄ in-
duces a natural transformation from K(X) to the cohomology group
Hodd(X, R/Q), denoted by

B̃ : K(X) → Hodd(X, R/Q).

Let Gr := lim
→

Gn(C
∞) where Gn(C

∞) are the complex Grassmannians of

n-dimensional vector subspaces. Since K(X) ∼= [X, Z × Gr], then from Yoneda’s

lemma B̃ is necessarily induced by a class N ∈ Hodd(Z × Gr, R/Q) = 0, and
hence B vanishes up to torsion in K−1(X, R/Z).

Remark 2.7. If µ′ is a natural pairing such that (i) and (ii) from Theorem 2.6 hold
and µ is the pairing defined in the same theorem, upon eta invariant, then the
Atiyah-Singer index theorem and the surjectivity of the usual Atiyah-Singer ho-
momorphism K(S1 × X) → Hom(K

geo
odd(X), Z), imply that for each [(F,∇F), w]

∈ K̂(X), the homomorphism (µ′ − µ)([(F,∇F), w])(·) is identified with an odd
form on X with periods in the image of an injection Z →֒ Q: for certain q ∈ N∗

and v ∈ Ωodd
0 (X),

(µ′ − µ)([(F,∇F), w], [M, (E,∇E), f , φ]) =
1

q

∫

M
Td(M)ch(∇E) f ∗(v) mod Z

for all [M, (E,∇E), f , φ] ∈ Ǩodd(X).

A natural pairing m : K̂(X) ⊗ Ǩ∗(X) → Ǩ∗(X) can be defined as follows:
for every K-cocycle ((F,∇F), w) over X and differential K-cycle (M, (E,∇E), f , φ)
over X,

m([(F,∇F), w], [M, (E,∇E), f , φ]) := [M, (E ⊗ f ∗F,∇E⊗ f ∗F), f ,
∫

M
Td(M)ch(∇E)∧

∧ f ∗(w ∧ ·) + φ(r[(F,∇F), w] ∧ ·) + ∂(φ(w ∧ ·))].

Let us consider the collapse map ǫ : X → pt. It is obvious that the pairing
ǫ∗ ◦ modd : K̂(X)⊗ Ǩodd(X) → Ǩodd(pt) ∼= R/Z satisfies (i) and (ii) from Theorem
2.6. Following the same Theorem, for all [M, (E,∇E), f , 0] ∈ Ǩ∗(X) we have

η̄E mod Z = µ([(1,∇can), 0], [M, (E,∇E), f , 0]) =

ǫ∗ ◦ modd([(1,∇can), 0], [M, (E,∇E), f , 0]) +
1

q
Chodd([M, (E,∇E), f ])(v) mod Z

for certain q ∈ N∗ and v ∈ Ωodd
0 (X). By the Hopkins theorem [12, Theorem 8.1]),

the form v is with periods in qZ, and then the following diagram commutes:

Ǩodd(X)

ǫ∗
��

η′
// R/Z ∼=

Ωev(pt)

Ω0
ev(pt)

a

∼=

ww♣♣
♣♣
♣♣
♣♣
♣♣

Ǩodd(pt)

where η′[M, (E,∇E), f , φ] = η̄E − φ(1) mod Z.
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Definition 2.8. The flat K-homology group Ǩ
f
∗(X) is defined as the kernel of

R : Ǩ∗(X) → Ω∗(X).

The construction of flat K-homology is functorial. Let ρ0, ρ1 : X 7→ Y be two
smooth homotopic maps between two smooth compact manifolds. If ρ : X × [0, 1]
7→ Y is a smooth homotopy between ρ0 and ρ1, then for all differential K-cycle
(M, (E,∇E), f , φ) over X with trivial curvature we can easily check that
ρ̌0(M, (E, ∇E), f , φ) and ρ̌1(M, (E,∇E), f , φ) are equivalent under (M × [0, 1],
(pM

∗E, pM
∗∇E),ρ ◦ ( f × Id[0,1])) where pM : M × [0, 1] → M is the natural pro-

jection, and then X 7→ Ǩ
f
∗(X) is a homotopy invariant.

Note that we have the exact sequences

0 → Ǩ
f
∗(X) →֒ Ǩ∗(X)

R
→ Ω

0
∗(X) → 0

K
geo
∗+1(X)

Ch∗+1
→ HDR

∗+1(X) → Ǩ
f
∗(X) → T (K

geo
∗ (X)) → 0,

where Ω0
∗(X) denote the group of closed continuous currents whose de Rham

homology class lie in the image of the Chern character Ch∗ : K
geo
∗ (X) → HdR

∗ (X),
T (K

geo
∗ (X)) is the torsion subgroup of K

geo
∗ (X), which can be identified with the

torsion subgroup of K-theory K∗−1(X) ([7]).

Example 2.9. • The group Ǩ
f
ev(pt) is trivial and Ǩodd(pt) ∼= R/Z.

• Since K(S1) ∼= Z ∼= K1(S1), we have

Ǩ
f
ev(S

1) ∼= Ǩ
f
odd(S

1) ∼= R/Z.

We will define a homomorphism Čh∗ : Ǩ
f
∗(X) → H∗+1(X, R/Q) where

H∗+1(X, R/Q) is a certain homology group of X with R/Q-coefficients.

We define Čh∗. First, we construct H∗(X, R/Q). Denote by Ω̄∗(X) the cartesian
product Ω∗(X, R) × Ω∗−1(Y, Q). The boundary map ∂̄∗ : Ω̄∗(X) → Ω̄∗−1(X) is
defined by

∂̄∗(φ, ψ) = (∂φ − j ◦ ψ,−∂ψ),

where j : Q →֒ R is the inclusion. We set

H∗(X, R/Q) :=
Ker(∂̄∗)

img(∂̄∗+1)
.

It fits into the following long exact sequence

· · · // HDR
∗+1(X, R) // H∗+1(X, R/Q) // HDR

∗ (X, Q) // · · ·

where the homomorphisms HDR
∗ (X, R) → H∗(X, R/Q) and H∗(X, R/Q) →

HDR
∗−1(X, Q) are induced respectively by

φ 7→ (φ, 0) and (φ, ψ) 7→ ψ.
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Now let (M, (E,∇E), f , φ) be a differential K-cycle over X with trivial curva-
ture. Then the class of (M, (E,∇E), f ) in K

geo
∗ (X) has vanishing Chern character.

Thus there is a positive integer k such that (M, (kE, k∇E), f ) is the boundary of a
K-chain (W, (ε,∇ε), g). It follows from the definitions that
1
k [
∫

W Td(W)ch(∇ε)g∗] − φ ∈ HDR
∗+1(X, R). Let Čh∗(M, E∇E

, f , φ) be the image of
1
k [
∫

W Td(W)ch(∇ε)g∗] − φ under the homomorphism HDR
∗+1(X, R) −→

H∗+1(X, R/Q). We show that Čh∗(M, (E,∇E), f , φ) is independent of the choice
of (W, (ε,∇ε), g). Suppose that k′ is another positive integer such that

(M, (k′E, k′∇E), f ) is the boundary of a K-chain (W ′, (ε′,∇ε′), g′). Then

(kk′)
(

1
k [
∫

W Td(W)ch(∇ε)g∗]− 1
k′ [
∫

W ′ Td(W ′)ch(∇ε′ )g′∗]
)

= [
∫

k′W
Td(k′W)ch(k′∇ε)k′g

∗
]− [

∫

kW ′
Td(kW ′)ch(∇kε′ )kg′

∗
]

= Ch∗[P, (V,∇V), j],

where (P, (V,∇V), j) is the K-cycle obtained by gluing together the two K-chains

(W, (ε,∇ε), g) and (W ′, (ε′,∇ε′), g′) along their common boundary via the

composed isomorphism k′∂(W, (ε,∇ε), g)
∼=→ kk′(M, (E,∇E), f )

∼=→ k∂(W ′, (ε′,∇ε′),

g′). Then 1
k [
∫

W Td(W)ch(∇ε)g∗] − 1
k′ [
∫

W ′ Td(W ′)ch(∇ε′)g′∗] is the same, up to

multiplication by rational numbers, as the image of Ch∗[P, (V,∇V), j]
(∈ HDR

∗+1(X, Q)), and so vanishes when mapped into H∗+1(X, R/Q)

((Ch∗ [P, (V,∇V), j], 0) = ∂̄(0,−Ch∗[P, (V,∇V), j])). Thus, Čh∗(M, (E,∇E), f , φ)
does not depend on k and (W, (ε,∇ε), g). The assignment

(M, (E,∇E), f , φ) 7→ Čh∗(M, (E,∇E), f , φ)

induces a well-defined odd homomorphism

Čh∗ : Ǩ
f
∗(X) → H∗+1(X, R/Q),

called the flat Chern character. It fits into the commutative diagram

· · · // HDR
∗+1(X, R) a //

−Id
��

	

Ǩ
f
∗(X) ı //

Čh∗
��

	

K
geo
∗ (X) //

Ch∗
��

· · ·

· · · // HDR
∗+1(X, R) // H∗+1(X, R/Q) // HDR

∗ (X, Q) // · · ·

Upon tensoring everything with Q, it follows from the five-lemma that Čh∗ is a
rational isomorphism.

3 An isomorphism between flat K-homology and Deeley

R/Z-K-homology

We recall the construction of the Deeley R/Z-K-homology (see [8]) with some
additional remarks.
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In all the following, we denote by N a II1-factor and τ a faithful normal trace
on N.

Definition 3.1. An R/Z-K-cycle over X is a triple (W, ((H, ε, α), (∇H ,∇ε)), g),
where

• W is a smooth compact Spinc-manifold;

• H is a fiber bundle over W with fibers are finitely generated projective Her-
mitian Hilbert N-modules with a unitary connection ∇H;

• ε is a Hermitian vector bundle over ∂W with a unitary connection ∇ε;

• α is an isomorphism from H|∂W to ε ⊗C N;

• g : W → X is a smooth map.

An R/Z-K-cycle (W, ((H, ε, α), (∇H ,∇ε)), g) is called even (resp. odd), if all
connected components of W are of even (resp. odd) dimension.

The addition operation on the set of R/Z-K-cycles is defined using disjoint
union operations. The semigroup of R/Z-K-cycles over X will be denoted by
Γ∗(X).

A bordism of R/Z-K-cycles over X consists of the following data :

• Z is a smooth compact Spinc-manifold;

• W ⊆ ∂Z is a regular domain;

• V is a fiber bundle over Z with fibers are finitely generated projective Her-
mitian Hilbert N-modules with a unitary connection ∇V , and ϑ is a Her-
mitian vector bundle over ∂Z − int(W) with a unitary connection ∇ϑ, such

that V|∂Z−int(W)

β
∼= ϑ ⊗C N;

• h : Z → X is a smooth map.

Here, a regular domain W of ∂Z means a closed submanifold of ∂Z such that
int(W) 6= ∅ and if x ∈ ∂W, then there exists a coordinate chart ψ : U → Rn

centred at x with ψ(W ∩ U) = {(yi) ∈ ψ(U) | yn ≥ 0}.
The boundary of a bordism (Z, W, ((V, ϑ, β), (∇V ,∇ϑ)), h) is the R/Z-K-cycle

∂(Z, W, ((V, ϑ, β), (∇V ,∇ϑ)), h) := (W, ((V|W , ϑ|∂W , β), (∇V |W ,∇ϑ|∂W)), h|W).

Remark 3.2. If (Z, W, ((V, ϑ, β), (∇V ,∇ϑ)), h) is a bordism, then

∂(∂Z − int(W), (ϑ,∇ϑ), h|∂Z−int(W)) = (∂W, (ϑ|∂W ,∇ϑ|∂W), h|∂W).

The modification of an R/Z-K-cycle y by a Spinc-vector bundle V of even
rank with an Euclidean connection ∇V , is denoted by yV , and is defined in the
same way as that on differential K-cycles.
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Definition 3.3. Two R/Z-K-cycles (W0, ((H0, ε0, α0), (∇H0 ,∇ε0)), g0) and
(W1, ((H1,ε1, α1), (∇

H1 ,∇ε1)), g1) are equivalent if there exist a Spinc-vector bun-
dle V → W1 of even rank and a bordism ζ over X such that

(W0, ((H0, ε0, α0), (∇
H0 ,∇ε0)), g0) ⊔ (W−

1 , ((H1, ε1, α1), (∇
H1 ,∇ε1)), g1)

V = ∂ζ.

Remark 3.4. (i) If (W, ((H, ε, α), (∇H ,∇ε)), g) and (W, ((H′, ε′, α′), (∇H ′
,∇ε′))

, g) are two R/Z-cycles over X with the same Spinc-manifold W and map

g, then
(
(W, ((H, ε, α), (∇H ,∇ε)), g) ⊔ (W, ((H′, ε′, α′), (∇H ′

,∇ε′)), g)
)12

W⊔W

and (W,((H ⊕ H′, ε ⊕ ε′, α ⊕ α′), (∇H ⊕ ∇H ′
,∇ε ⊕ ∇ε′)), g) are equivalent

([8, Proposition 4.11]).

(ii) If (M, (E,∇E), f ) is a cycle of Baum-Douglas over X, then the R/Z-K-cycle
(M, ((E ⊗ N, ∅, ∅), (∇E, ∅)), f ) is equivalent to the trivial R/Z-K-cycle,
(∅, (∅, ∅), ∅), where a bordism is given by (M× [0, 1], M, ((p∗ME⊗N, E, idM),
(p∗M∇E,∇E)), f ◦ pM) with pM : M × [0, 1] → M is the natural projection.

Definition 3.5. The Deeley R/Z-K-homology group K∗(X, R/Z) is the quotient
of Γ∗(X) by the equivalence relation on R/Z-K-cycles.

The group K∗(X, R/Z) is Abelian and naturally Z2-graded.

Remark 3.6. If moreover X is a Spin-manifold, then K∗(X, R/Z) is identified
with the Kasparov K-homology group KK∗−1(C(X), C) where C is the mapping
cone of the inclusion C →֒ N ([8, Theorem 5.2]).

Example 3.7. Note that the trace τ on N extends to Mn(N) ∼= N⊗ Mn(C), also de-
noted by τ, with the property that two projections p, q ∈ Mn(N) are Murray-von
Neumann equivalent if and only if τ(p) = τ(q). Then it induces an isomorphism
from the K-theory group K0(N) to R. Moreover, K1(N) is trivial.
Let Kan,∗(A) denote the analytic K-homology group of a C∗-algebra A (for more
details we refer the reader to [11]). Following the universal coefficients theorem
for K-homology,

0 → Ext(K∗(N), R) → Kan,∗+1(N) → Hom(K∗+1(N), R) → 0,

together with R is divisible, we get

Kan,0(N) = R and Kan,1(N) = 0.

Because the ∗-algebra C is null-homotopic, we have Kan,0(C) = 0. On the other
hand, the six-term exact sequence for K-homology associated to the short exacte

sequence 0 → C0(]0, 1[) ⊗C N →֒ C
ev1→ C → 0, implies that Kan,1(C) ∼= R/Z.

From the above remark, we obtain that

Kev(pt, R/Z) ∼= R/Z et Kodd(pt, R/Z) = 0.
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Note that from [8] and [16], cocycles in KK∗(C(X),N) can be described by
geometric cycles of the form (M, (H,∇H), f ), where M is a smooth closed Spinc-
manifold, H is a fiber bundle over M with fibers are finitely generated projective
Hermitian Hilbert N-modules, with a unitary connection ∇H, and f : M → X
is a smooth map. The group KK∗(C(X),N) is nothing more than an analytic
model for the real K-homology of X. An isomorphism between K

geo
∗ (X) ⊗Z R

and KK∗(C(X),N) is given at level of cycles by

ν((M, (E,∇E), f ), t) = [M, (E ⊗ ptN
n,∇E), f ],

where pt ∈ Mn(N) is a projection with τ(pt) = t.

The Chern character Chτ,∗ : KK∗(C(X),N) → HdR
∗ (X, R) is giving by

Chτ,∗[M, (H,∇H), f ] := [
∫

M
Td(M)chτ(∇

H) f ∗(·)],

where chτ(∇H) := τ∗

(
Tr(e

−∇H2

2iπ )

)
∈ Ω2∗(X, R) and τ∗ : Ω∗(X,N) → Ω∗(X, R)

is the homomorphism associated by fonctoriality to the trace τ : N → R. It fits
into the commutative diagram

K
geo
∗ (X)⊗ R

ChR
∗
��

ν

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

HdR
∗ (X, R) KK∗(C(X),N)

Chτ,∗
oo

where ChR
∗ : K

geo
∗ (X) ⊗ R

Ch∗×·
→ HdR

∗ (X, R), and then Chτ,∗ turns out to be an
isomorphism.

Using the above commutative diagram, Remark 3.2 and the Atiyah-Singer

index theorem on even spheres, we obtain that γ : K∗(X, R/Z) → Ǩ
f
∗(X) given

by

γ[W, ((H, ε, α), (∇H ,∇ε)), g] := [∂W, (ε,∇ε), g|∂W , [
∫

W
Td(W)chτ(∇

H)g∗]]

is a well-defined homomorphism.
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Theorem 3.8. The homomorphism γ is an isomorphism.

Proof. We construct the inverse of γ, denoted by υ : Ǩ
f
∗(X) → K∗+1(X, R/Z), as

follows. Let (M, (E,∇E), f , φ) be a differential K-cycle over X with trivial cur-
vature. Since the diagram relating Chτ,∗ with ChR

∗ is commutatif and Chτ,∗ is an
isomorphism, there exist a smooth compact Spinc-manifold W, a fiber bundle H
over W with fibers are finitely generated projective Hermitian Hilbert N-modules
with a unitary connection ∇H, and a smooth map g : W → X such that

(M, (E ⊗ N,∇E), f )
h
∼= (∂W, (H|∂W ,∇H|∂W), g|∂W).

This implies that

∂(φ −
∫

W
Td(W)chτ(∇

H)g∗) =
∫

M
Td(M)ch(∇E) f ∗

−
∫

∂W
Td(∂W)chτ(∇

H |∂W)g|∂W
∗ = 0.

Let then [N, (F,∇F), j] ∈ KK∗(C(X),N) with

Chτ,∗([N, (F,∇F), j]) = φ − [
∫

W
Td(W)chτ(∇

H)g∗].

We set

υ(M, (E,∇E), f , φ) := [W ⊔ N, ((H ⊔ F, α∗E, β), (∇H ⊔∇F, α∗∇E)), g ⊔ j],

where α : ∂W → M and β : H|∂W → α∗E ⊗ N are isomorphisms induced by h.

We show that υ is well defined on Ǩ
f
∗(X). From (i) in Remark 3.4, υ is compatible

with the relation of direct sum in Definition 2.2, and from definitions, the image
of every modification of (M, (E,∇E), f , φ) under υ is equal to the modification of
υ(M, (E,∇E), f , φ).
Let (W, (ε,∇ε), g) be a K-chain over X. We have

υ(∂W, (ε|∂W ,∇ε|∂W), g|∂W ,
∫

W
Td(W)ch(∇ε)g∗) = [W, ((ε ⊗ N, ε|∂W , (id∗∂W ⊗ 1)),

(∇ε,∇ε|∂W)), g].

If p : W × [0, 1] → W is the projection and i : (W ⊔ W−)×]0, 1] ⊔ (∂W × [0, 1]) ⊔
∂W →֒ W × [0, 1] the inclusion, then (W × [0, 1], W, ((p∗ε, (p ◦ i)∗ε),
(p∗∇ε, (p ◦ i)∗∇ε)), g ◦ p) is a bordism between (W, ((ε ⊗ N, ε|∂W , (id∗∂W ⊗ idN)),
(∇ε,∇ε|∂W)), g) and the trivial cycle, and then the class υ(∂W, (ε|∂W ,∇ε|∂W),
g|∂W , [

∫
W Td(W)ch(∇ε)g∗]) is trivial.

Now we show that υ(M, (E,∇E), f , φ) does not depend on choice of

(W, (H,∇H), g). Let (W ′, (H′,∇H′
), g′) be an N-K-chain over X such that

(M, (E ⊗ N,∇E), f )
h
∼= (∂W, (H|∂W ,∇H|∂W), g|∂W)

h′
∼=

(∂W ′, (H′|∂W ′ ,∇H′
|∂W ′), g′|∂W ′),
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and let [N′, (F′,∇F′
), j′] ∈ KK∗(C(X),N) with

Chτ,∗([N
′, (F′,∇F′

), j′]) = φ − [
∫

W ′
Td(W ′)chτ(∇

H′
)g′

∗
].

We claim that x := (W ⊔ N, ((H ⊔ F, α∗E, β), (∇H ⊔ ∇F, α∗∇E)), g ⊔ j) and y :=

(W ′ ⊔ N′, ((H′ ⊔ F′, α′∗E, β′), (∇H′
⊔∇F′

, α′∗∇E)), g′ ⊔ j′) are equivalent. We con-
sider the R/Z-K-cycle

(W̃, ((H̃, Ẽ, β̃), (∇H̃ ,∇Ẽ)), g̃) := x ⊔ y−,

and let (Z, (ζ,∇ζ ), h) be the N-K-cycle where,

Z := W̃ ∪
∂W∼=M×{0};∂W ′∼=M×{1}

M × [0, 1], ζ := H̃ ∪
∂W∼=M×{0};∂W ′∼=M×{1}

p∗ME ⊗C N,

∇ζ := ∇H̃ ∪ p∗M∇E, and h := g̃ ∪ ( f ◦ pM).

Here, pM : M × [0, 1] → M denotes the canonical projection.

A bordism between (Z, ((ζ, ∅, ∅), (∇ζ , ∅)), h) and (W̃, ((H̃, Ẽ, β̃), (∇H̃ ,∇Ẽ)), g̃)
is given by the following quadruple

(Z × [0, 1], Z ⊔ W̃, ((p∗Zζ, p∗ME), (p∗Z∇
ζ , p∗M∇E)), h ◦ pZ).

Furthermore,

Chτ,∗([Z, (ζ,∇ζ ), h]) = [
∫

W
Td(W)chτ(∇

H)g∗] + Chτ,∗([N, (F,∇F), j])

− [
∫

W ′
Td(W ′)chτ(∇

H′
)g′

∗
]− Chτ,∗([N

′, (F′,∇F′
), j′])

= φ − φ = 0.

Hence, υ(M, (E,∇E), f , φ) depends only on (M, (E,∇E), f , φ).

We check that υ ◦ γ = idK∗(X,R/Z) and γ ◦ υ = id
Ǩ

f
∗(X)

. The first equality is

straightforward, and the second is obtained as follows. For all [M, (E,∇E), f , φ] ∈

Ǩ
f
∗(X),

γ(υ[M, (E,∇E), f , φ])

= γ([W ⊔ N, ((H ⊔ F, α∗E, β), (∇H ⊔∇F, α∗∇E)), g ⊔ j])

= [∂W, (α∗E, α∗∇E), g|∂W , [
∫

W⊔N
Td(W ⊔ N)chτ(∇

H ⊔∇F)(g ⊔ j)∗]]

= [∂W, (α∗E, α∗∇E), g|∂W , [
∫

W
Td(W)chτ(∇

H)g∗] + Chτ,∗[N, (F,∇F), j]].

Since Chτ,∗([N, (F,∇F), j]) = φ − [
∫

W Td(W)chτ(∇H)g∗], we have

γ(υ[M, (E,∇E), f , φ]) = [M, (E,∇E), f , φ].
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4 The torsion part of Deeley R/Z-K-homology

The aim of this section is to describe the torsion subgroup of K∗(X, R/Z) via
Q/Z-bordism theory.

We start by recalling the notions of Zk-manifold and Zk-vector bundle.

Definition 4.1. • A Zk-manifold is a triple (M, N, k) where (M, N) is a pair of
smooth compact manifolds such that ∂M = kN . We often drop the integers
from this notation and denote a Zk-manifold by (M, N).

• A Zk-vector bundle over (M, N) is a pair of vector bundles, (E, F), over M
and N respectively such that E|∂M decomposes into k copies of F.

Additionally, we have natural definitions of (Hermitian) connections on (Her-
mitian) Zk-vector bundles, Spinc-Zk-manifolds, and framed Zk-manifolds. We
refer the reader to [10] for supplementary details.

Now, if Y is any paracompact Hausdorff space then we shall denote by Ω
F,k
n (Y)

the n-th framed Zk-bordism group of Y. Thus Ω
F,k
n (Y) is the set of all bordism

classes of maps from framed n-dimensional Zk-manifolds into Y. Here, a smooth
map f from a Zk-manifold (M, N) to Y is a pair of smooth maps fM : M → Y and
fN : N → Y where fM : M → Y is an extension of fN .

The set Ω
F,k
n (Y) is an Abelian group under the disjoint union operation.

For l ∈ N∗, the assignment

(( fM, fN) : (M, Nn) → Y) 7→ ((l. fM , fN) : (l.M, Nn) → Y)

induces a well-defined homomorphism Ll : Ω
F,k
n (Y) → Ω

F,lk
n (Y). Denote by

Ω̃F
n(Y) the limit of the direct system (ΩF,k!

n (Y), Lk+1).
Let (S3,k , S2) be the Spinc-Zk-manifold obtained by removing k open balls int(D3)
from the 3-sphere, equipped with its standard Spinc-structure, S → (M, N), as
the boundary of the couple of balls (D4, D3): ∂k(D

4, D3) := (∂D4 − k.int(D3),
∂D3) = (S3,k, S2). It is also a framed manifold. Denote by c : (S3,k, S2) →
BU, where BU is the classifying space of the unitary group U(∞), a basepoint-

preserving map which, under the isomorphism [(S3,k, S2),BU] ∼= K̃(S3,k, S2), cor-
responds to the difference [S∗

+]− 1(S3,k,S2). Consider the direct system of Abelian
groups

Ω
F,k
n (BU × X) → Ω

F,k
n+2(BU × X) → Ω

F,k
n+4(BU × X) → · · ·

given as follows: for f : (M, Nn) → BU × X be a smooth map from a framed
n-dimensional Zk-manifold (M, N) to Y, the composition

(M, N)× (S3,k, S2)
c× f
→ BU ×BU × X

m×idX→ BU × X

is a cycle for Ω
F,k
n+2(BU × X) where m is the map defined through tensor product

of Hermitian vector spaces. This defines a map from Ω̃F
n(BU × X) to
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Ω̃
F
n+2(BU × X). Denote by Ω̃

F
∗(BU × X), with ∗ ∈ {ev, odd}, the direct limit

of the above directed system.

Let β : ΩF(BU × X) → Ω̃F
∗(BU × X) be the homomorphism from the framed

bordism group of BU × X to Ω̃
F
∗(BU × X) which associates to each [ f : M →

BU × X] the class [( f , ∅) : (M, ∅) → BU × X].

Definition 4.2. Denote by Ω̃F
∗(BU × X, Q/Z) the cokernel of β.

Remark 4.3. By the Pontrjagin-Thom isomorphism [14], we can identify

Ω̃F
∗(BU × X, Q/Z) with the stable homotopy group of the (base-pointed) topo-

logical space BU × X.

Let f : (M, Nn) → BU × X be a cycle in Ω
F,k
n (BU × X). It determines a

Hermitian Zk-vector bundle (E, F) over (M, N) and a smooth map ( f ′M, f ′N) :

(M, N) → X. We choose a unitary connection (∇E,∇F) on (E, F). Recall that
the framing T(M, Nn)⊕ 1k ∼= 1n+k of the framed Zk-manifold (M, N) defines a
Spinc-structure on (M, N). We obtain that the quadruple
(N, (F,∇F), f ′N , [ 1

k

∫
M Td(M)ch(∇E) f ′M

∗]) is a differential K-cycle over X. More-
over,

k

(∫

N
Td(N)ch(∇F) f ′N

∗
−

1

k
∂(

∫

M
Td(M)ch(∇E) f ′M

∗
)

)
=

∫

kN
Td(kN)ch(∇kF )(k f ′N)

∗
−

∫

∂M
Td(∂M)ch(∇E|∂M ) ∧ ∧( f ′M|∂M)

∗
= 0.

Then the class [N, (F,∇F), fN , 1
k ([

∫
M Td(M)ch(∇E) f ′M

∗])] lies in Ǩ
f

n[2]
(X), and

from Remark 2.3, it is independent of the choice of geometry.

Proposition 4.4. The correspondence

[ f : (M, N) → BU × X] 7→ [N, (F,∇F), fN ,
1

k
[
∫

M
Td(M)ch(∇E) f ′M

∗
]]

determines an injective homomorphism

τ : Ω̃
F
∗(BU × X, Q/Z) → Ǩ

f
∗(X).

Proof. It is clear that τ is an additive map and well-defined on Ω̃F
n(BU ×X). Since

every cycle in differential K-homology is identified with its modifications, τ is

also well-defined on Ω̃F
∗(BU × X) (∗ ∈ {ev, odd}). Moreover, τ sends img(β) to

the trivial subgroup of Ǩ
f
∗(X).

τ is injective. In fact let f : (M, Nn) → BU × X be a cycle in Ω
F,k
n (BU × X) where

[N, (F,∇F), fN , 1
k [
∫

M Td(M)ch(∇E) f ′M
∗]] = 0. Without loss of generality, we re-

duce to the case when there is a smooth compact Spinc-manifold W, a smooth
Hermitian vector bundle ε over W with a unitary connection ∇ε, and a smooth
map g : W → X such that

(N, (F,∇F), fN ,
1

k
[
∫

M
Td(M)ch(∇E) f ′M

∗
]) = (∂W, (ε|∂W ,∇ε|∂W), g|∂W ,

[
∫

W
Td(∇W)ch(∇ε)g∗]).
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As Spinc-bordism relation is equivalent to framed bordism relation ([6, p.21]), we
will consider W as a framed manifold. Let (P, (V,∇V), h) be the K-cycle
obtained by gluing together the two K-chains of Baum-Douglas (M, (E,∇E), f ′M)

and (kW, (kε,∇kε), kg) along their common boundary. Let (P̃, (Ṽ,∇Ṽ), h̃) be a
bordism between two copies of (P, (V,∇V), h). We have

∂P̃ = P ⊔ P−

= P ⊔ M− ∪∂M−∼=∂(k.W−) k.W−.

Denote by hṼ : (P̃, W−) → BU a map which determines the class in the Zk-K-

theory of (P̃, W−) represented by Ṽ.

Since (P̃, W−) is a framed Zk-manifold with ∂k(P̃, W−) = (P ⊔ M−, N−), and

the fiber bundle Ṽ and map h̃ respect this Zk-structure so that (hṼ : (P̃, W−) →

BU, h̃ : (P̃, W−) → X) is a bordism between (hV : (P, ∅) → BU, (h, ∅) : (P, ∅) →
X) and f : (M, N) → BU × X, which implies that [ f : (M, N) → BU × X] ∈
Img(β), and this finishes the proof.

Theorem 3.8 leads to an injective homomorphism

τ̄ : Ω̃
F
∗(BU × X, Q/Z) → K∗(X, R/Z).

Furthermore, from the construction of the flat Chern character Čh∗ : Ǩ
f
∗(X) →

H∗+1(X, R/Q) we have the exact sequence

0 −→ Ω̃
F
∗(BU × X, Q/Z)

τ̄
−→ K∗(X, R/Z)

Čh∗◦γ
−→ H∗+1(X, R/Q).

Corollary 4.5. The torsion part of K∗(X, R/Z) is isomorphic to Ω̃
F
∗(BU × X, Q/Z).

Remark 4.6. We can use the approach of Atiyah-Patodi-Singer [2, 3] to R/Z-K-
theory, to obtain a third model for R/Z-K-homology by regarding

Ω̃F
∗(BU ×X, Q/Z) as a K-homology of X with Q/Z-coefficients and H∗(X, R/Q)

as the cokernel of the natural injection K
geo
∗ (X, Q) → K

geo
∗ (X)⊗ R.
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