Differential K-homology and explicit isomorphisms between \mathbb{R}/\mathbb{Z} -K-homologies

Adnane Elmrabty

Abstract

In this paper, we construct an explicit isomorphism between Deeley \mathbb{R}/\mathbb{Z} -K-homology and flat K-homology. We also describe \mathbb{R}/\mathbb{Z} -K-homology out of $\mathbb{Z}/k\mathbb{Z}$ -bordism theories.

1 Introduction

K-homology is dual to topological K-theory. A geometric model was introduced by Baum-Douglas (see [5]), and proved to be an extremely important tool in index theory and physics (see [15]): one of the main advantages of this geometric formulation is that K-homology cycles encode the most primitive requisite objects that must be carried by any D-brane, such as a *Spin^c*-manifold and a Hermitian vector bundle.

Beside K-theory, there is also the so-called differential K-theory. It combines cohomological information with differential form information in a complicated way. A model for this theory was studied extensively by Freed and Lott (see [9]). Motivated by generalizing pairings between K-theory and K-homology to the case of differential K-theory and K-homology with \mathbb{R}/\mathbb{Z} -coefficients, we introduce an extension of geometric K-homology by continuous current data, called differential K-theory, which encodes Deeley \mathbb{R}/\mathbb{Z} -K-homology as a flat theory (Theorem 3.8), and so through Theorem 2.6 we obtain explicit realizations of this pairing.

Received by the editors in May 2015.

Communicated by J. Fine.

²⁰¹⁰ Mathematics Subject Classification : Primary 19K33, Secondary 19L50.

Key words and phrases : Spin^c-manifold; Chern character; eta invariant; geometric K-homology; differential K-theory; \mathbb{R}/\mathbb{Z} -K-homology.

In the end of this paper, we describe the torsion part of Deeley \mathbb{R}/\mathbb{Z} -K-homology through framed $\mathbb{Z}/k\mathbb{Z}$ -bordism theories (Proposition 4.4), and so the approach of Atiyah-Patodi-Singer to \mathbb{R}/\mathbb{Z} -K-theory presented in [2, 3] leads to another model for \mathbb{R}/\mathbb{Z} -K-homology.

2 Differential K-homology and its pairings with Freed-Lott differential K-theory

In this section we define a differential K-homology.

In all the following, we denote by *X* a smooth compact manifold.

Definition 2.1. A differential K-cycle over *X* is a quadruple $(M, (E, \nabla^E), f, \phi)$ consisting of :

- A smooth closed *Spin^c*-manifold *M*.
- A smooth Hermitian vector bundle *E* over *M* with a unitary connection ∇^{E} .
- A smooth map $f : M \to X$.
- A class of currents $\phi \in \frac{\Omega_*(X)}{img(\partial)}$.

There are no connectedness requirements made upon *M*, and hence the bundle *E* can have different fibre dimensions on the different connected components of *M*. It follows that the disjoint union,

$$(M, (E, \nabla^E), f, \phi) \sqcup (M', (E', \nabla^{E'}), f', \phi') := (M \sqcup M', (E \sqcup E', \nabla^E \sqcup \nabla^{E'}), f \sqcup f', \phi + \phi'),$$

is a well-defined operation on the set of differential K-cycles over X.

A differential K-cycle $(M, (E, \nabla^E), f, \phi)$ is called even (resp. odd), if all connected components of M are of even (resp. odd) dimension and $\phi \in \frac{\Omega_{odd}(X)}{img(\partial)}$ (resp. $\phi \in \frac{\Omega_{ev}(X)}{img(\partial)}$).

We define an equivalence relation on differential K-cycles as follows. First, let $x := (M, (E, \nabla^E), f, \phi)$ be a differential K-cycle over X and V be a $Spin^c$ -vector bundle of even rank over M with an Euclidean connection ∇^V . Let 1_M denote the trivial rank-one real vector bundle over M. We denote by \hat{M} the boundary of the unit disk bundle $\mathbb{D}(V \oplus 1_M)$ of $V \oplus 1_M$. The $Spin^c$ -structures on TM and $V \oplus 1_M$ induce a $Spin^c$ -structure on $T\mathbb{D}(V \oplus 1_M)$ by a direct sum decomposition $T(V \oplus 1_M) \cong \pi^*(V \oplus 1_M) \oplus \pi^*TM$ where π is the bundle projection of $V \oplus 1_M$, and then taking the boundary of this $Spin^c$ -structure to obtain a $Spin^c$ -structure on $T\hat{M}$.

Denote by $S := S_+ \oplus S_-$ the \mathbb{Z}_2 -graded spinor bundle associated with the *Spin^c*-structure on the vertical tangent bundle of \hat{M} carrying a unitary connection

 $\nabla^{S_+} \oplus \nabla^{S_-}$ induced by ∇^V . Define \hat{V} to be the dual of S_+ and $\nabla^{\hat{V}}$ to be the unitary connection on \hat{V} induced by ∇^{S_+} . We denote by x^V the quadruple $(\hat{M}, (\hat{V} \otimes \pi^* E, \nabla^{\hat{V}} \otimes \pi^* \nabla^E), f \circ \pi, \phi)$, called the modification of x by V, which is obviously a differential K-cycle over X.

Now two differential K-cycles ξ and ξ' over X are said to be *equivalent* if there exist a *Spin^c*-vector bundle V of even rank over the manifold in ξ' , a smooth compact *Spin^c*-manifold W, a smooth Hermitian vector bundle ε over W with a unitary connection ∇^{ε} , and a smooth map $g : W \to X$ such that

$$\xi \sqcup {\xi'}_{-}^{V} = (\partial W, (\varepsilon|_{\partial W}, \nabla^{\varepsilon}|_{\partial W}), g|_{\partial W}, [\int_{W} Td(W)ch(\nabla^{\varepsilon})g^{*}]),$$

where $\xi_{-} = (M^{-}, (E, \nabla^{E}), f, -\phi)$ when $\xi = (M, (E, \nabla^{E}), f, \phi)$ and M^{-} denotes M with its *Spin^c* structure reversed, Td(W) is the *Spin^c*-Todd form of the Levi-Civita connection on M and $ch(\nabla^{\varepsilon})$ is the geometric Chern form of ∇^{ε} . In this situation, $(W, (\varepsilon, \nabla^{\varepsilon}), g)$ is called a K-chain over X with differential boundary $\xi \sqcup \xi'_{-}^{V}$.

Definition 2.2. *The differential K-homology group* $\check{K}_*(X)$ is the group of equivalence classes of differential K-cycles over *X*, for the equivalence relation generated by the above relation and the following identification:

Direct sum:

 $(M, (E, \nabla^E), f, \phi) \sqcup (M, (E', \nabla^{E'}), f, \phi') \sim (M, (E \oplus E', \nabla^E \oplus \nabla^{E'}), f, \phi + \phi').$

The group $\check{K}_*(X)$ is Abelian and naturally \mathbb{Z}_2 -graded:

$$\check{K}_*(X) = \check{K}_{ev}(X) \oplus \check{K}_{odd}(X).$$

The construction of differential K-homology is functorial: for every smooth map $\rho : X \to Y$ between two smooth compact manifolds, the homomorphism $\rho_* : \check{K}_*(X) \to \check{K}_*(Y)$ is defined by

$$\rho_*[M, (E, \nabla^E), f, \phi] := [M, (E, \nabla^E), \rho \circ f, \phi \circ \rho^*].$$

Remark 2.3. If $(M, (E, \nabla_0^E), f, \phi)$ and $(M, (E, \nabla_1^E), f, \phi)$ are two differential K-cycles, then

$$[M, (E, \nabla_0^E), f, \phi] = [M, (E, \nabla_1^E), f, \phi - [\int_{M \times [0,1]} Td(M \times [0,1])ch(B)(f \circ p)^*]] (\in \check{K}_*(X)),$$

where *B* is the connection on the pullback of *E* by the projection $p : M \times [0,1] \rightarrow M$, given by $B = (1-t)\nabla_0^E + t\nabla_1^E + dt \frac{d}{dt}$.

Recall that a K-chain (of Baum-Douglas) over *X* is of the form $(W, (\varepsilon, \nabla^{\varepsilon}), g)$, where *W* is a smooth compact *Spin^c*-manifold, ε is a Hermitian vector bundle over *W* with a unitary connection ∇^{ε} , and *g* a smooth map from *W* to *X*. The boundary of a K-chain $(W, (\varepsilon, \nabla^{\varepsilon}), g)$ is defined by $\partial(W, (\varepsilon, \nabla^{\varepsilon}), g) := (\partial W,$ $(\varepsilon|_{\partial W}, \nabla^{\varepsilon}|_{\partial W}), g|_{\partial W})$. A K-cycle is a K-chain without boundary. We refer the reader to [5] for the definition of K-homology group $K^{geo}_*(X)$ out of K-cycles and K-chains. Let $Ch_* : K^{geo}_*(X) \to H^{dR}_*(X)$ be the Chern character, $[M, (E, \nabla^E), f] \stackrel{Ch_*}{\mapsto} [\int_M Td(M)ch(\nabla^E)f^*]$, and $\Omega^0_*(X) := \{\phi \in \Omega_*(X) \mid [\phi] \in img(Ch_*)\}$. The group $\check{K}_*(X)$ fits into the exact sequence

$$0 \to \frac{\Omega_{*+1}(X)}{\Omega_{*+1}^0(X)} \xrightarrow{a} \check{K}_*(X) \xrightarrow{\iota} K^{geo}_*(X) \to 0$$

where *i* is the forgetful map $(i[M, E^{\nabla^E}, f, \phi] = [M, E^{\nabla^E}, f])$, and *a* is induced by the map which associates to each $\phi \in \Omega_{*+1}(X)$ the class $[\emptyset, \emptyset, \emptyset, -\phi] \in \check{K}_*(X)$.

Example 2.4. • The above exact sequence, together with the fact that the only classes in $K_*^{geo}(pt)$ are $[pt, \mathbb{C}^k, id_{pt}]$ with $k \in \mathbb{N}$ implies that

$$\check{K}_{ev}(pt) \cong \mathbb{Z}$$
 and $\check{K}_{odd}(pt) \cong \mathbb{R}/\mathbb{Z}$.

• Since $K_{ev}^{geo}(S^1) \cong \mathbb{Z} \cong K_{odd}^{geo}(S^1)$, we have two short exact sequences

$$0 \to \mathbb{R}/\mathbb{Z} \to K_{ev}(S^1) \to \mathbb{Z} \to 0$$
$$0 \to Hom_c(C^{\infty}(S^1), \mathbb{R})/\mathbb{Z} \to \check{K}_{odd}(S^1) \to \mathbb{Z} \to 0.$$

It follows from the second exact sequence that the homomorphism which associates to each closed curve (in $C^{\infty}(S^1)$) the holonomy around it determines an element in $\check{K}_{odd}(S^1)$.

Definition 2.5. The curvature of a differential K-cycle $(M, (E, \nabla^E), f, \phi)$ is the real-valued current $R(M, (E, \nabla^E), f, \phi)$ given by

$$R(M,(E,\nabla^E),f,\phi) := \int_M Td(M)ch(\nabla^E)f^* - \partial\phi.$$

The assignment

$$(M, (E, \nabla^E), f, \phi) \mapsto R(M, (E, \nabla^E), f, \phi)$$

induces a homomorphism $\check{K}_*(X) \xrightarrow{R} \Omega_*(X)$.

Recall that the Freed-Lott differential K-group $\hat{K}(X)$ ([9]) is the abelian group coming from the following generators and relations: a generators is a pair $((F, \nabla^F), w)$, where F is a Hermitian vector bundle over X with a unitary connection ∇^F and $w \in \frac{\Omega^{odd}(X)}{img(d)}$ is a class of odd differential form. The relation is $((F_2, \nabla^{F_2}), w_2) = ((F_1 \oplus F_3, \nabla^{F_1} \oplus \nabla^{F_3}), w_1 + w_3)$ whenever there is a split short exact sequence of

Hermitian vector bundles over *X*,

$$0 \longrightarrow F_1 \xrightarrow{i} F_2 \xrightarrow{s} F_3 \longrightarrow 0 ,$$

with $w_2 = w_1 + w_3 + CS((i \oplus s)^* \nabla^{F_2}, \nabla^{F_1} \oplus \nabla^{F_3})$ where $CS(\nabla, \nabla') \in \frac{\Omega^{odd}(X)}{img(d)}$ is the relative Chern-Simons form of two connections on a smooth complex vector bundle. It is related to the K-theory group K(X) by the following short exact sequence

$$0 \to \frac{\Omega^{odd}(X)}{\Omega_0^{odd}(X)} \xrightarrow{b} \hat{K}(X) \xrightarrow{l} K(X) \to 0$$

where $\Omega_0^{odd}(X)$ is the space of odd forms on X with integer K-periods, j is the forgetful map $(j([(F, \nabla^F), w] - [(F', \nabla^{F'}), w']) = [F] - [F'])$, and b is the map induced by $w \in \Omega^{odd}(X) \mapsto [(1_n, \nabla^{can}), 0] - [(1_n, \nabla^{can}), w]$. The curvature homomorphism $r : \hat{K}(X) \to \Omega^{ev}(X)$ is given by $[(F, \nabla^F), w] \mapsto ch(\nabla^F) - dw$. The kernel of r is isomorphic to the K-theory with \mathbb{R}/\mathbb{Z} -coefficients $K^{-1}(X, \mathbb{R}/\mathbb{Z})$, given through differential K-characters (see [7]).

Theorem 2.6. There is a unique pairing $\mu : \hat{K}(X) \otimes \check{K}_{odd}(X) \to \mathbb{R}/\mathbb{Z}$ up to torsion in $K^{-1}(X, \mathbb{R}/\mathbb{Z})$, which satisfies

(i)

$$\Omega^{odd}(X) \otimes \check{K}_{odd}(X) \xrightarrow{b \otimes id} \hat{K}(X) \otimes \check{K}_{odd}(X)$$
$$\downarrow^{id \otimes R} \downarrow \qquad \bigcirc \qquad \downarrow^{\mu}$$
$$\Omega^{odd}(X) \otimes \Omega_{odd}(X) \xrightarrow{\alpha} \mathbb{R}/\mathbb{Z}$$

(ii)

$$\begin{array}{c|c} \hat{K}(X) \otimes \Omega_{ev}(X) \xrightarrow{id \otimes a} \hat{K}(X) \otimes \check{K}_{odd}(X) \\ & & \\ r \otimes id & \downarrow & \downarrow \\ \Omega^{ev}(X) \otimes \Omega_{ev}(X) \xrightarrow{\alpha} \mathbb{R}/\mathbb{Z} \end{array}$$

where $\alpha(w, \phi) = \phi(w) \mod \mathbb{Z}$ for all $(w, \phi) \in \Omega^*(X) \times \Omega_*(X)$.

Proof. For every $[(F, \nabla^F), w] \in \hat{K}(X)$ and $[M, (E, \nabla^E), f, \phi] \in \check{K}_{odd}(X)$, we set

$$\mu(((F,\nabla^F),w))((M,(E,\nabla^E),f,\phi)) := \bar{\eta}_{E\otimes f^*F} - \int_M Td(M)ch(\nabla^E)f^*(w) - \phi(r[(F,\nabla^F),w]) \mod \mathbb{Z},$$

where $\bar{\eta}_{E\otimes f^*F}$ is the eta (spectral) invariant of the Dirac operator $\mathcal{D}^{E\otimes f^*F}$ on M twisted by $E\otimes f^*F$ ([7]). It is apparent that μ is bi-additive. We show that μ is compatible with the equivalence relation on differential K-cycles. Compatibility with direct sum relation is straightforward. Let $((F, \nabla^F), w)$ be a differential K-cocycle over X, and let $(W, (\varepsilon, \nabla^{\varepsilon}), g)$ be a K-chain over X. The Atiyah-Patodi-Singer index theorem [2, 3, 4] implies that

$$\bar{\eta}_{(\varepsilon \otimes g^*F)|_{\partial W}} - \int_W Td(W)ch(\nabla^{\varepsilon \otimes g^*F}) = -Ind(\mathcal{D}_+^{\varepsilon \otimes g^*F}) \in \mathbb{Z}_A$$

and then

$$\mu((F,\nabla^F),w)(\partial W,(\varepsilon|_{\partial W},\nabla^{\varepsilon}|_{\partial W}),g|_{\partial W},[\int_W Td(W)ch(\nabla^{\varepsilon})g^*])=0.$$

Now let $V \to M$ be an even $Spin^c$ -vector bundle of dimension 2p. We consider the smooth closed manifold \hat{M} defined above, which is an \mathbb{S}^{2p} -fibration over M,

$$\pi: \hat{M} \to M.$$

If $S_{S^{2p}} = S_{S^{2p}}^+ \oplus S_{S^{2p}}^-$ and $S_M = S_M^+ \oplus S_M^-$ are the spinor bundles associated with the *Spin^c*-structures on the tangent vector bundles TS^{2p} and TM respectively, then the spinor bundle $S_{\hat{M}}$ associated with the tangent vector bundle $T\hat{M}$ is isomorphic to the graded tensor product vector bundle $\tilde{S}_{S^{2p}} \otimes \tilde{S}_M$, where $\tilde{S}_{S^{2p}}$ and \tilde{S}_M are

corresponding lifts to \hat{M} . Let *b* be the Bott bundle over \mathbb{S}^{2p} (see [1] for the

construction of this element). We denote by \mathcal{D}^b the self-adjoint Dirac operator on S^{2p} twisted by *b*. The index of \mathcal{D}^b_+ is equal to 1. According to [4], we get out of \mathcal{D}^b a differential operator $\hat{\mathcal{D}}^b$ on $\hat{\mathcal{M}}$ acting on smooth sections of the vector bundle $S_{\hat{\mathcal{M}}} \otimes \hat{V} \otimes \pi^* E$. In the same way and following the same reference ([4]), we get out of the Dirac operator on \mathcal{M} twisted by E, \mathcal{D}^E , a differential operator $\hat{\mathcal{D}}^E$ over $\hat{\mathcal{M}}$ acting on smooth sections of $S_{\hat{\mathcal{M}}} \otimes \hat{V} \otimes \pi^* E$.

The sharp product of $\hat{\mathcal{D}}^b$ and $\hat{\mathcal{D}}^{E}$ yields an elliptic differential operator $\hat{\mathcal{D}}^b \sharp \hat{\mathcal{D}}^E$ acting on sections of $S_{\hat{M}} \otimes \hat{V} \otimes \pi^* E$. This operator can be identified with the Dirac operator on \hat{M} twisted by $\hat{V} \otimes \pi^* E$:

$$\mathcal{D}^{\hat{V}\otimes\pi^*E}=\hat{\mathcal{D}}^b\sharp\hat{\mathcal{D}}^E.$$

We can work locally and assume that the fibration $\pi : \hat{M} \to M$ is trivial: π is the projection $\mathbb{S}^{2p} \times M \to M$. The Hilbert space on which $\mathcal{D}^{\hat{V} \otimes \pi^* E}$ acts is the graded tensor product

$$L^{2}(\mathbb{S}^{2p} \times M, S_{\hat{M}} \otimes \hat{V} \otimes \pi^{*}E) = L^{2}(\mathbb{S}^{2p}, S_{\mathbb{S}^{2p}} \otimes b) \hat{\otimes} L^{2}(M, S_{M} \otimes E).$$

We have

$$\begin{split} \int_{\hat{M}} Td(\hat{M})ch(\nabla^{\hat{V}})(f\circ\pi)^* &= \int_M \left(\int_{\hat{M}} Td(\hat{M})ch(\nabla^{\hat{V}}) \right) ch(\nabla^E) f^* \\ &= \int_M \left(\int_{S^2} Td(S^2)ch(b) \right) ch(\nabla^E) f^* \\ &= index(\mathcal{D}^b_+) \times \int_M Td(M)ch(\nabla^E) f^* \\ &= \int_M Td(M)ch(\nabla^E) f^*. \end{split}$$

On the other hand, if we split the first factor, $L^2(\mathbb{S}^{2p}, S_{\mathbb{S}^{2p}} \otimes b)$, as ker (\mathcal{D}^b_+) plus its orthogonal complement, then we obtain a corresponding direct sum decomposition of $L^2(\mathbb{S}^{2p} \times M, S_{\hat{M}} \otimes \hat{V} \otimes \pi^* E)$. We therefore obtain a decomposition

of $\mathcal{D}^{\hat{V}\otimes\pi^*E}$ as a direct sum of two operators. Since the kernel of \mathcal{D}^b_+ is onedimensional, the first operator acts on ker $(\mathcal{D}^b_+)\hat{\otimes}L^2(M, S_M\otimes E) \cong L^2(M, S_M\otimes E)$ and is equal to \mathcal{D}^E . The second operator has a antisymmetric spectrum. To see this, if *T* is the partial isometry part of \mathcal{D}^b_+ in the polar decomposition, and if γ is the grading operator on $L^2(M, S_M \otimes E)$, then the odd-graded involution $iT\hat{\otimes}\gamma$ on the Hilbert space ker $(\mathcal{D}^b_+)^{\perp}\hat{\otimes}L^2(M, S_M \otimes E)$ anticommutes with the restriction of $\mathcal{D}^{\hat{V}\otimes\pi^* E}$ to ker $(\mathcal{D}^b_+)^{\perp}\hat{\otimes}L^2(M, S_M \otimes E)$. Furthermore, the kernel of $\mathcal{D}^{\hat{V}\otimes\pi^* E}_+$ coincides with the kernel of \mathcal{D}^E_+ . Since the same relation holds for the adjoint, we deduce that

$$\bar{\eta}_{E\otimes f^*F}=\bar{\eta}_{\hat{V}\otimes\pi^*(E\otimes f^*F)}.$$

Then μ is defined up to the equivalence relation on differential K-cycles.

We show that μ is compatible with the equivalence relation used to define the Freed-Lott differential K-theory. Let $(M, (E, \nabla^E), f, \phi)$ be a differential K-cycle over X, and let $((F, \nabla^F), w)$ and $((F', \nabla^{F'}), w')$ be two K-cocycles over X which define the same class in $\hat{K}(X)$. Since the map $\mu(\cdot)(M, (E, \nabla^E), f, \phi)$ is additive, we can assume that there exists an isomorphism of Hermitian vector bundles $h : F \to F'$ such that $CS(\nabla^F, h^*\nabla^{F'}) = w - w'$. It follows by Fubini and APS-index theorem ([2, 3, 4]) that

$$\begin{split} \mu((F, \nabla^{F}), w)(M, (E, \nabla^{E}), f, \phi) &- \mu((F', \nabla^{F'}), w')(M, (E, \nabla^{E}), f, \phi) \\ &= \bar{\eta}_{E \otimes f^{*}F} - \bar{\eta}_{E \otimes f^{*}F'} - \int_{M} Td(M)ch(\nabla^{E}) \wedge CS(f^{*}\nabla^{F}, (h \circ f)^{*}\nabla^{F'}) \bmod \mathbb{Z} \\ &= \bar{\eta}_{p^{*}(E \otimes f^{*}F)|_{\partial M \times [0,1]}} - \int_{M \times [0,1]} Td(M \times [0,1])ch(B) \bmod \mathbb{Z} = \bar{0}, \end{split}$$

where *B* is the connection on the pullback of $E \otimes f^*F$ by the projection p: $M \times [0,1] \to M$ given by $B = t \left(\nabla^E \otimes f^* \nabla^F \right) + (1-t) \left(\nabla^E \otimes (h \circ f)^* \nabla^{F'} \right) + dt \frac{d}{dt}.$

It is clear that μ is natural map and satisfies (i) and (ii).

Now assume that we have two natural pairings μ^k , k = 0, 1, which satisfy (i) and (ii). We consider the bilinear map $B : \hat{K}(X) \otimes \check{K}_{odd}(X) \to \mathbb{R}/\mathbb{Z}$ given by

$$(x,\xi)\mapsto B(x,\xi):=\mu^0(x,\xi)-\mu^1(x,\xi).$$

For $w \in \Omega^{odd}(X)$, we have by *i*),

$$B(b(w),\xi) = \alpha(w,\xi) - \alpha(w,\xi) = 0.$$

Similarly, $B(x, a(\phi)) = 0$ for all $\phi \in \Omega_{ev}(X)$. Therefore, *B* factors over a pairing

$$\bar{B}: K(X) \to Hom(K^{geo}_{odd}(X), \mathbb{R}/\mathbb{Z}) \stackrel{\theta}{\cong} K^{-1}(X, \mathbb{R}/\mathbb{Z}),$$

where θ^{-1} : $K^{-1}(X, \mathbb{R}/\mathbb{Z}) \cong Hom(K^{geo}_{odd}(X), \mathbb{R}/\mathbb{Z})$ is the isomorphism constructed in [7]. Using the rational isomorphism $Ch_{\mathbb{R}/\mathbb{Q}}$ constructed in [13, p.9], \overline{B} induces a natural transformation from K(X) to the cohomology group $H^{odd}(X, \mathbb{R}/\mathbb{Q})$, denoted by

$$\widetilde{B}: K(X) \to H^{odd}(X, \mathbb{R}/\mathbb{Q}).$$

Let $Gr := \lim_{\to} G_n(\mathbb{C}^\infty)$ where $G_n(\mathbb{C}^\infty)$ are the complex Grassmannians of *n*-dimensional vector subspaces. Since $K(X) \cong [X, \mathbb{Z} \times Gr]$, then from Yoneda's lemma \widetilde{B} is necessarily induced by a class $\mathcal{N} \in H^{odd}(\mathbb{Z} \times Gr, \mathbb{R}/\mathbb{Q}) = 0$, and hence *B* vanishes up to torsion in $K^{-1}(X, \mathbb{R}/\mathbb{Z})$.

Remark 2.7. If μ' is a natural pairing such that (i) and (ii) from Theorem 2.6 hold and μ is the pairing defined in the same theorem, upon eta invariant, then the Atiyah-Singer index theorem and the surjectivity of the usual Atiyah-Singer homomorphism $K(S^1 \times X) \rightarrow Hom(K_{odd}^{geo}(X), \mathbb{Z})$, imply that for each $[(F, \nabla^F), w] \in \hat{K}(X)$, the homomorphism $(\mu' - \mu)([(F, \nabla^F), w])(\cdot)$ is identified with an odd form on X with periods in the image of an injection $\mathbb{Z} \hookrightarrow \mathbb{Q}$: for certain $q \in \mathbb{N}^*$ and $v \in \Omega_0^{odd}(X)$,

$$(\mu' - \mu)([(F, \nabla^F), w], [M, (E, \nabla^E), f, \phi]) = \frac{1}{q} \int_M Td(M)ch(\nabla^E)f^*(v) \mod \mathbb{Z}$$

for all $[M, (E, \nabla^E), f, \phi] \in \check{K}_{odd}(X)$.

A natural pairing $m : \hat{K}(X) \otimes \check{K}_*(X) \to \check{K}_*(X)$ can be defined as follows: for every K-cocycle $((F, \nabla^F), w)$ over X and differential K-cycle $(M, (E, \nabla^E), f, \phi)$ over X,

$$m([(F,\nabla^F),w],[M,(E,\nabla^E),f,\phi]) := [M,(E \otimes f^*F,\nabla^{E \otimes f^*F}),f,\int_M Td(M)ch(\nabla^E) \wedge f^*(w \wedge \cdot) + \phi(r[(F,\nabla^F),w] \wedge \cdot) + \partial(\phi(w \wedge \cdot))].$$

Let us consider the collapse map $\epsilon : X \to pt$. It is obvious that the pairing $\epsilon_* \circ m_{odd} : \hat{K}(X) \otimes \check{K}_{odd}(X) \to \check{K}_{odd}(pt) \cong \mathbb{R}/\mathbb{Z}$ satisfies (i) and (ii) from Theorem 2.6. Following the same Theorem, for all $[M, (E, \nabla^E), f, 0] \in \check{K}_*(X)$ we have

$$\bar{\eta}_E \mod \mathbb{Z} = \mu([(1, \nabla^{can}), 0], [M, (E, \nabla^E), f, 0]) = \\\epsilon_* \circ m_{odd}([(1, \nabla^{can}), 0], [M, (E, \nabla^E), f, 0]) + \frac{1}{q} Ch_{odd}([M, (E, \nabla^E), f])(v) \mod \mathbb{Z}$$

for certain $q \in \mathbb{N}^*$ and $v \in \Omega_0^{odd}(X)$. By the Hopkins theorem [12, Theorem 8.1]), the form v is with periods in $q\mathbb{Z}$, and then the following diagram commutes:

where $\eta'[M, (E, \nabla^E), f, \phi] = \overline{\eta}_E - \phi(1) \mod \mathbb{Z}$.

Definition 2.8. The flat K-homology group $\check{K}^f_*(X)$ is defined as the kernel of $R : \check{K}_*(X) \to \Omega_*(X)$.

The construction of flat K-homology is functorial. Let $\rho_0, \rho_1 : X \mapsto Y$ be two smooth homotopic maps between two smooth compact manifolds. If $\rho : X \times [0,1]$ $\mapsto Y$ is a smooth homotopy between ρ_0 and ρ_1 , then for all differential K-cycle $(M, (E, \nabla^E), f, \phi)$ over X with trivial curvature we can easily check that $\check{\rho}_0(M, (E, \nabla^E), f, \phi)$ and $\check{\rho}_1(M, (E, \nabla^E), f, \phi)$ are equivalent under $(M \times [0, 1],$ $(p_M^*E, p_M^*\nabla^E), \rho \circ (f \times Id_{[0,1]}))$ where $p_M : M \times [0, 1] \to M$ is the natural projection, and then $X \mapsto \check{K}^f_*(X)$ is a homotopy invariant.

Note that we have the exact sequences

$$0 \to \check{K}^{f}_{*}(X) \hookrightarrow \check{K}_{*}(X) \xrightarrow{R} \Omega^{0}_{*}(X) \to 0$$
$$K^{geo}_{*+1}(X) \xrightarrow{Ch_{*+1}} H^{DR}_{*+1}(X) \to \check{K}^{f}_{*}(X) \to \mathcal{T}(K^{geo}_{*}(X)) \to 0,$$

where $\Omega^0_*(X)$ denote the group of closed continuous currents whose de Rham homology class lie in the image of the Chern character $Ch_* : K^{geo}_*(X) \to H^{dR}_*(X)$, $\mathcal{T}(K^{geo}_*(X))$ is the torsion subgroup of $K^{geo}_*(X)$, which can be identified with the torsion subgroup of K-theory $K^{*-1}(X)$ ([7]).

Example 2.9. • The group $\check{K}_{ev}^{t}(pt)$ is trivial and $\check{K}_{odd}(pt) \cong \mathbb{R}/\mathbb{Z}$.

• Since $K(S^1) \cong \mathbb{Z} \cong K^1(S^1)$, we have

$$\check{K}^f_{ev}(S^1) \cong \check{K}^f_{odd}(S^1) \cong \mathbb{R}/\mathbb{Z}.$$

We will define a homomorphism $\check{C}h_* : \check{K}^f_*(X) \to H_{*+1}(X, \mathbb{R}/\mathbb{Q})$ where $H_{*+1}(X, \mathbb{R}/\mathbb{Q})$ is a certain homology group of X with \mathbb{R}/\mathbb{Q} -coefficients. We define $\check{C}h_*$. First, we construct $H_*(X, \mathbb{R}/\mathbb{Q})$. Denote by $\bar{\Omega}_*(X)$ the cartesian product $\Omega_*(X, \mathbb{R}) \times \Omega_{*-1}(Y, \mathbb{Q})$. The boundary map $\bar{\partial}_* : \bar{\Omega}_*(X) \to \bar{\Omega}_{*-1}(X)$ is

$$\bar{\partial}_*(\phi,\psi) = (\partial \phi - j \circ \psi, -\partial \psi),$$

where $j : \mathbb{Q} \hookrightarrow \mathbb{R}$ is the inclusion. We set

defined by

$$H_*(X, \mathbb{R}/\mathbb{Q}) := \frac{Ker(\partial_*)}{img(\bar{\partial}_{*+1})}.$$

It fits into the following long exact sequence

$$\cdots \longrightarrow H^{DR}_{*+1}(X, \mathbb{R}) \longrightarrow H_{*+1}(X, \mathbb{R}/\mathbb{Q}) \longrightarrow H^{DR}_{*}(X, \mathbb{Q}) \longrightarrow \cdots$$

where the homomorphisms $H^{DR}_*(X,\mathbb{R}) \to H_*(X,\mathbb{R}/\mathbb{Q})$ and $H_*(X,\mathbb{R}/\mathbb{Q}) \to H^{DR}_{*-1}(X,\mathbb{Q})$ are induced respectively by

$$\phi \mapsto (\phi, 0) \text{ and } (\phi, \psi) \mapsto \psi.$$

Now let $(M, (E, \nabla^E), f, \phi)$ be a differential K-cycle over X with trivial curvature. Then the class of $(M, (E, \nabla^E), f)$ in $K_*^{geo}(X)$ has vanishing Chern character. Thus there is a positive integer k such that $(M, (kE, k\nabla^E), f)$ is the boundary of a K-chain $(W, (\varepsilon, \nabla^\varepsilon), g)$. It follows from the definitions that $\frac{1}{k}[\int_W Td(W)ch(\nabla^\varepsilon)g^*] - \phi \in H^{DR}_{*+1}(X, \mathbb{R})$. Let $\check{C}h_*(M, E^{\nabla^E}, f, \phi)$ be the image of $\frac{1}{k}[\int_W Td(W)ch(\nabla^\varepsilon)g^*] - \phi$ under the homomorphism $H^{DR}_{*+1}(X, \mathbb{R}) \longrightarrow$ $H_{*+1}(X, \mathbb{R}/\mathbb{Q})$. We show that $\check{C}h_*(M, (E, \nabla^E), f, \phi)$ is independent of the choice of $(W, (\varepsilon, \nabla^\varepsilon), g)$. Suppose that k' is another positive integer such that $(M, (k'E, k'\nabla^E), f)$ is the boundary of a K-chain $(W', (\varepsilon', \nabla^{\varepsilon'}), g')$. Then

$$\begin{aligned} (kk') \left(\frac{1}{k} [\int_{W} Td(W) ch(\nabla^{\varepsilon}) g^{*}] - \frac{1}{k'} [\int_{W'} Td(W') ch(\nabla^{\varepsilon'}) g'^{*}] \right) \\ &= [\int_{k'W} Td(k'W) ch(k'\nabla^{\varepsilon}) k' g^{*}] - [\int_{kW'} Td(kW') ch(\nabla^{k\varepsilon'}) k {g'}^{*}] \\ &= Ch_{*} [P, (V, \nabla^{V}), j], \end{aligned}$$

where $(P, (V, \nabla^V), j)$ is the K-cycle obtained by gluing together the two K-chains $(W, (\varepsilon, \nabla^{\varepsilon}), g)$ and $(W', (\varepsilon', \nabla^{\varepsilon'}), g')$ along their common boundary via the composed isomorphism $k'\partial(W, (\varepsilon, \nabla^{\varepsilon}), g) \xrightarrow{\cong} kk'(M, (E, \nabla^E), f) \xrightarrow{\cong} k\partial(W', (\varepsilon', \nabla^{\varepsilon'}), g')$. Then $\frac{1}{k}[\int_W Td(W)ch(\nabla^{\varepsilon})g^*] - \frac{1}{k'}[\int_{W'} Td(W')ch(\nabla^{\varepsilon'})g'^*]$ is the same, up to multiplication by rational numbers, as the image of $Ch_*[P, (V, \nabla^V), j]$ $(\in H^{DR}_{*+1}(X, \mathbb{Q}))$, and so vanishes when mapped into $H_{*+1}(X, \mathbb{R}/\mathbb{Q})$ $((Ch_*[P, (V, \nabla^V), j], 0) = \overline{\partial}(0, -Ch_*[P, (V, \nabla^V), j]))$. Thus, $\check{Ch}_*(M, (E, \nabla^E), f, \phi)$ does not depend on k and $(W, (\varepsilon, \nabla^{\varepsilon}), g)$. The assignment

$$(M, (E, \nabla^E), f, \phi) \mapsto Ch_*(M, (E, \nabla^E), f, \phi)$$

induces a well-defined odd homomorphism

$$\check{Ch}_*:\check{K}^j_*(X)\to H_{*+1}(X,\mathbb{R}/\mathbb{Q}),$$

called the flat Chern character. It fits into the commutative diagram

Upon tensoring everything with \mathbb{Q} , it follows from the five-lemma that Ch_* is a rational isomorphism.

3 An isomorphism between flat K-homology and Deeley \mathbb{R}/\mathbb{Z} -K-homology

We recall the construction of the Deeley \mathbb{R}/\mathbb{Z} -K-homology (see [8]) with some additional remarks.

In all the following, we denote by N a II₁-factor and τ a faithful normal trace on N.

Definition 3.1. An \mathbb{R}/\mathbb{Z} -K-cycle over *X* is a triple $(W, ((H, \varepsilon, \alpha), (\nabla^H, \nabla^{\varepsilon})), g)$, where

- *W* is a smooth compact *Spin^c*-manifold;
- *H* is a fiber bundle over *W* with fibers are finitely generated projective Hermitian Hilbert N-modules with a unitary connection ∇^{*H*};
- ε is a Hermitian vector bundle over ∂W with a unitary connection ∇^{ε} ;
- α is an isomorphism from $H|_{\partial W}$ to $\varepsilon \otimes_{\mathbb{C}} N$;
- $g: W \to X$ is a smooth map.

An \mathbb{R}/\mathbb{Z} -K-cycle (W, ((H, ε, α), ($\nabla^H, \nabla^\varepsilon$)), g) is called even (resp. odd), if all connected components of W are of even (resp. odd) dimension.

The addition operation on the set of \mathbb{R}/\mathbb{Z} -K-cycles is defined using disjoint union operations. The semigroup of \mathbb{R}/\mathbb{Z} -K-cycles over *X* will be denoted by $\Gamma_*(X)$.

A bordism of \mathbb{R}/\mathbb{Z} -K-cycles over X consists of the following data :

- *Z* is a smooth compact *Spin^c*-manifold;
- $W \subseteq \partial Z$ is a regular domain;
- *V* is a fiber bundle over *Z* with fibers are finitely generated projective Hermitian Hilbert N-modules with a unitary connection ∇^V , and ϑ is a Hermitian vector bundle over $\partial Z int(W)$ with a unitary connection ∇^{ϑ} , such
 - that $V|_{\partial Z int(W)} \stackrel{\beta}{\cong} \vartheta \otimes_{\mathbb{C}} \mathsf{N};$
- $h: Z \to X$ is a smooth map.

Here, a regular domain *W* of ∂Z means a closed submanifold of ∂Z such that $int(W) \neq \emptyset$ and if $x \in \partial W$, then there exists a coordinate chart $\psi : U \to \mathbb{R}^n$ centred at *x* with $\psi(W \cap U) = \{(y_i) \in \psi(U) \mid y_n \ge 0\}$. The boundary of a bordism $(Z, W, ((V, \vartheta, \beta), (\nabla^V, \nabla^\vartheta)), h)$ is the \mathbb{R}/\mathbb{Z} -K-cycle

$$\partial(Z, W, ((V, \vartheta, \beta), (\nabla^V, \nabla^\vartheta)), h) := (W, ((V|_W, \vartheta|_{\partial W}, \beta), (\nabla^V|_W, \nabla^\vartheta|_{\partial W})), h|_W).$$

Remark 3.2. If $(Z, W, ((V, \vartheta, \beta), (\nabla^V, \nabla^\vartheta)), h)$ is a bordism, then

$$\partial(\partial Z - int(W), (\vartheta, \nabla^{\vartheta}), h|_{\partial Z - int(W)}) = (\partial W, (\vartheta|_{\partial W}, \nabla^{\vartheta}|_{\partial W}), h|_{\partial W}).$$

The modification of an \mathbb{R}/\mathbb{Z} -K-cycle *y* by a *Spin^c*-vector bundle *V* of even rank with an Euclidean connection ∇^V , is denoted by y^V , and is defined in the same way as that on differential K-cycles.

Definition 3.3. Two \mathbb{R}/\mathbb{Z} -K-cycles $(W_0, ((H_0, \varepsilon_0, \alpha_0), (\nabla^{H_0}, \nabla^{\varepsilon_0})), g_0)$ and $(W_1, ((H_1, \varepsilon_1, \alpha_1), (\nabla^{H_1}, \nabla^{\varepsilon_1})), g_1)$ are equivalent if there exist a *Spin^c*-vector bundle $V \to W_1$ of even rank and a bordism ζ over X such that

 $(W_0,((H_0,\varepsilon_0,\alpha_0),(\nabla^{H_0},\nabla^{\varepsilon_0})),g_0)\sqcup(W_1^-,((H_1,\varepsilon_1,\alpha_1),(\nabla^{H_1},\nabla^{\varepsilon_1})),g_1)^V=\partial\zeta.$

Remark 3.4. (i) If $(W, ((H, \varepsilon, \alpha), (\nabla^H, \nabla^\varepsilon)), g)$ and $(W, ((H', \varepsilon', \alpha'), (\nabla^{H'}, \nabla^{\varepsilon'}))$, g) are two \mathbb{R}/\mathbb{Z} -cycles over X with the same $Spin^c$ -manifold W and map g, then $((W, ((H, \varepsilon, \alpha), (\nabla^H, \nabla^\varepsilon)), g) \sqcup (W, ((H', \varepsilon', \alpha'), (\nabla^{H'}, \nabla^{\varepsilon'})), g))^{\mathbb{1}^2_{W \sqcup W}}$ and $(W, ((H \oplus H', \varepsilon \oplus \varepsilon', \alpha \oplus \alpha'), (\nabla^H \oplus \nabla^{H'}, \nabla^\varepsilon \oplus \nabla^{\varepsilon'})), g)$ are equivalent ([8, Proposition 4.11]).

(ii) If $(M, (E, \nabla^E), f)$ is a cycle of Baum-Douglas over X, then the \mathbb{R}/\mathbb{Z} -K-cycle $(M, ((E \otimes N, \emptyset, \emptyset), (\nabla^E, \emptyset)), f)$ is equivalent to the trivial \mathbb{R}/\mathbb{Z} -K-cycle, $(\emptyset, (\emptyset, \emptyset), \emptyset)$, where a bordism is given by $(M \times [0, 1], M, ((p_M^*E \otimes N, E, id_M), (p_M^*\nabla^E, \nabla^E)), f \circ p_M)$ with $p_M : M \times [0, 1] \to M$ is the natural projection.

Definition 3.5. The Deeley \mathbb{R}/\mathbb{Z} -K-homology group $K_*(X, \mathbb{R}/\mathbb{Z})$ is the quotient of $\Gamma_*(X)$ by the equivalence relation on \mathbb{R}/\mathbb{Z} -K-cycles.

The group $K_*(X, \mathbb{R}/\mathbb{Z})$ is Abelian and naturally \mathbb{Z}_2 -graded.

Remark 3.6. If moreover *X* is a *Spin*-manifold, then $K_*(X, \mathbb{R}/\mathbb{Z})$ is identified with the Kasparov K-homology group $KK^{*-1}(C(X), C)$ where *C* is the mapping cone of the inclusion $\mathbb{C} \hookrightarrow N$ ([8, Theorem 5.2]).

Example 3.7. Note that the trace τ on N extends to $M_n(\mathbb{N}) \cong \mathbb{N} \otimes M_n(\mathbb{C})$, also denoted by τ , with the property that two projections $p, q \in M_n(\mathbb{N})$ are Murray-von Neumann equivalent if and only if $\tau(p) = \tau(q)$. Then it induces an isomorphism from the K-theory group $K_0(\mathbb{N})$ to \mathbb{R} . Moreover, $K_1(\mathbb{N})$ is trivial.

Let $K^{an,*}(A)$ denote the analytic K-homology group of a C^* -algebra A (for more details we refer the reader to [11]). Following the universal coefficients theorem for K-homology,

$$0 \to Ext(K_*(\mathsf{N}), \mathbb{R}) \to K^{an, *+1}(\mathsf{N}) \to Hom(K_{*+1}(\mathsf{N}), \mathbb{R}) \to 0,$$

together with \mathbb{R} is divisible, we get

$$K^{an,0}(\mathsf{N}) = \mathbb{R} \text{ and } K^{an,1}(\mathsf{N}) = 0.$$

Because the *-algebra \mathcal{C} is null-homotopic, we have $K^{an,0}(\mathcal{C}) = 0$. On the other hand, the six-term exact sequence for K-homology associated to the short exact sequence $0 \to C_0(]0,1[) \otimes_{\mathbb{C}} \mathbb{N} \hookrightarrow \mathcal{C} \xrightarrow{ev_1} \mathbb{C} \to 0$, implies that $K^{an,1}(\mathcal{C}) \cong \mathbb{R}/\mathbb{Z}$. From the above remark, we obtain that

$$K_{ev}(pt, \mathbb{R}/\mathbb{Z}) \cong \mathbb{R}/\mathbb{Z}$$
 et $K_{odd}(pt, \mathbb{R}/\mathbb{Z}) = 0$.

Note that from [8] and [16], cocycles in $KK^*(C(X), \mathbb{N})$ can be described by geometric cycles of the form $(M, (H, \nabla^H), f)$, where M is a smooth closed $Spin^c$ -manifold, H is a fiber bundle over M with fibers are finitely generated projective Hermitian Hilbert N-modules, with a unitary connection ∇^H , and $f : M \to X$ is a smooth map. The group $KK^*(C(X), \mathbb{N})$ is nothing more than an analytic model for the real K-homology of X. An isomorphism between $K^{geo}_*(X) \otimes_{\mathbb{Z}} \mathbb{R}$ and $KK^*(C(X), \mathbb{N})$ is given at level of cycles by

$$\nu((M, (E, \nabla^E), f), t) = [M, (E \otimes p_t \mathsf{N}^n, \nabla^E), f],$$

where $p_t \in M_n(N)$ is a projection with $\tau(p_t) = t$.

The Chern character $Ch_{\tau,*}: KK^*(C(X), \mathbb{N}) \to H^{dR}_*(X, \mathbb{R})$ is giving by

$$Ch_{\tau,*}[M,(H,\nabla^H),f] := [\int_M Td(M)ch_\tau(\nabla^H)f^*(\cdot)],$$

where $ch_{\tau}(\nabla^{H}) := \tau_{*}\left(Tr(e^{\frac{-\nabla^{H^{2}}}{2i\pi}})\right) \in \Omega^{2*}(X,\mathbb{R})$ and $\tau_{*}: \Omega^{*}(X,\mathbb{N}) \to \Omega^{*}(X,\mathbb{R})$ is the homomorphism associated by fonctoriality to the trace $\tau: \mathbb{N} \to \mathbb{R}$. It fits

into the commutative diagram

where $Ch_*^{\mathbb{R}} : K_*^{geo}(X) \otimes \mathbb{R} \xrightarrow{Ch_* \times \cdot} H_*^{dR}(X, \mathbb{R})$, and then $Ch_{\tau,*}$ turns out to be an isomorphism.

Using the above commutative diagram, Remark 3.2 and the Atiyah-Singer index theorem on even spheres, we obtain that $\gamma : K_*(X, \mathbb{R}/\mathbb{Z}) \to \check{K}^f_*(X)$ given by

$$\gamma[W,((H,\varepsilon,\alpha),(\nabla^{H},\nabla^{\varepsilon})),g] := [\partial W,(\varepsilon,\nabla^{\varepsilon}),g|_{\partial W},[\int_{W} Td(W)ch_{\tau}(\nabla^{H})g^{*}]]$$

is a well-defined homomorphism.

Theorem 3.8. The homomorphism γ is an isomorphism.

Proof. We construct the inverse of γ , denoted by $v : \check{K}^f_*(X) \to K_{*+1}(X, \mathbb{R}/\mathbb{Z})$, as follows. Let $(M, (E, \nabla^E), f, \phi)$ be a differential K-cycle over X with trivial curvature. Since the diagram relating $Ch_{\tau,*}$ with $Ch_*^{\mathbb{R}}$ is commutatif and $Ch_{\tau,*}$ is an isomorphism, there exist a smooth compact $Spin^c$ -manifold W, a fiber bundle H over W with fibers are finitely generated projective Hermitian Hilbert N-modules with a unitary connection ∇^H , and a smooth map $g : W \to X$ such that

$$(M, (E \otimes \mathsf{N}, \nabla^E), f) \stackrel{h}{\cong} (\partial W, (H|_{\partial W}, \nabla^H|_{\partial W}), g|_{\partial W}).$$

This implies that

$$\begin{split} \partial(\phi - \int_{W} Td(W)ch_{\tau}(\nabla^{H})g^{*}) &= \int_{M} Td(M)ch(\nabla^{E})f^{*} \\ &- \int_{\partial W} Td(\partial W)ch_{\tau}(\nabla^{H}|_{\partial W})g|_{\partial W}^{*} = 0. \end{split}$$

Let then $[N, (F, \nabla^F), j] \in KK^*(C(X), \mathbb{N})$ with

$$Ch_{\tau,*}([N,(F,\nabla^F),j]) = \phi - [\int_W Td(W)ch_\tau(\nabla^H)g^*].$$

We set

$$v(M, (E, \nabla^E), f, \phi) := [W \sqcup N, ((H \sqcup F, \alpha^* E, \beta), (\nabla^H \sqcup \nabla^F, \alpha^* \nabla^E)), g \sqcup j],$$

where $\alpha : \partial W \to M$ and $\beta : H|_{\partial W} \to \alpha^* E \otimes \mathbb{N}$ are isomorphisms induced by *h*. We show that *v* is well defined on $\check{K}^f_*(X)$. From (i) in Remark 3.4, *v* is compatible with the relation of direct sum in Definition 2.2, and from definitions, the image of every modification of $(M, (E, \nabla^E), f, \phi)$ under *v* is equal to the modification of $v(M, (E, \nabla^E), f, \phi)$.

Let $(W, (\varepsilon, \nabla^{\varepsilon}), g)$ be a K-chain over *X*. We have

$$\begin{split} v(\partial W,(\varepsilon|_{\partial W},\nabla^{\varepsilon}|_{\partial W}),g_{|\partial W},\int_{W}Td(W)ch(\nabla^{\varepsilon})g^{*}) &= [W,((\varepsilon\otimes\mathsf{N},\varepsilon|_{\partial W},(id_{\partial W}^{*}\otimes1)),\\ (\nabla^{\varepsilon},\nabla^{\varepsilon}|_{\partial W})),g]. \end{split}$$

If $p: W \times [0,1] \to W$ is the projection and $i: (W \sqcup W^-) \times [0,1] \sqcup (\partial W \times [0,1]) \sqcup (\partial W \times [0,1]) \sqcup (\partial W \to W \times [0,1])$ the inclusion, then $(W \times [0,1], W, ((p^*\varepsilon, (p \circ i)^*\varepsilon), (p^*\nabla^{\varepsilon}, (p \circ i)^*\nabla^{\varepsilon})), g \circ p)$ is a bordism between $(W, ((\varepsilon \otimes N, \varepsilon|_{\partial W}, (id^*_{\partial W} \otimes id_N)), (\nabla^{\varepsilon}, \nabla^{\varepsilon}|_{\partial W})), g)$ and the trivial cycle, and then the class $v(\partial W, (\varepsilon|_{\partial W}, \nabla^{\varepsilon}|_{\partial W}), g_{|\partial W}, [\int_W Td(W)ch(\nabla^{\varepsilon})g^*])$ is trivial.

Now we show that $v(M, (E, \nabla^E), f, \phi)$ does not depend on choice of $(W, (H, \nabla^H), g)$. Let $(W', (H', \nabla^{H'}), g')$ be an N-K-chain over X such that

$$(M, (E \otimes \mathsf{N}, \nabla^E), f) \stackrel{h}{\cong} (\partial W, (H|_{\partial W}, \nabla^H|_{\partial W}), g|_{\partial W}) \stackrel{h'}{\cong} (\partial W', (H'|_{\partial W'}, \nabla^{H'}|_{\partial W'}), g'|_{\partial W'}),$$

and let $[N', (F', \nabla^{F'}), j'] \in KK^*(C(X), \mathbb{N})$ with

$$Ch_{\tau,*}([N', (F', \nabla^{F'}), j']) = \phi - [\int_{W'} Td(W')ch_{\tau}(\nabla^{H'}){g'}^*].$$

We claim that $x := (W \sqcup N, ((H \sqcup F, \alpha^* E, \beta), (\nabla^H \sqcup \nabla^F, \alpha^* \nabla^E)), g \sqcup j)$ and $y := (W' \sqcup N', ((H' \sqcup F', \alpha'^* E, \beta'), (\nabla^{H'} \sqcup \nabla^{F'}, \alpha'^* \nabla^E)), g' \sqcup j')$ are equivalent. We consider the \mathbb{R}/\mathbb{Z} -K-cycle

$$(\widetilde{W}, ((\widetilde{H}, \widetilde{E}, \widetilde{\beta}), (\nabla^{\widetilde{H}}, \nabla^{\widetilde{E}})), \widetilde{g}) := x \sqcup y^{-},$$

and let $(Z, (\zeta, \nabla^{\zeta}), h)$ be the N-K-cycle where,

$$Z := \widetilde{W} \bigcup_{\partial W \cong M \times \{0\}; \partial W' \cong M \times \{1\}} M \times [0, 1], \ \zeta := \widetilde{H} \bigcup_{\partial W \cong M \times \{0\}; \partial W' \cong M \times \{1\}} p_M^* E \otimes_{\mathbb{C}} \mathsf{N},$$
$$\nabla^{\zeta} := \nabla^{\widetilde{H}} \cup p_M^* \nabla^E, \text{ and } h := \widetilde{g} \cup (f \circ p_M).$$

Here, $p_M : M \times [0,1] \to M$ denotes the canonical projection. A bordism between $(Z, ((\zeta, \emptyset, \emptyset), (\nabla^{\zeta}, \emptyset)), h)$ and $(\widetilde{W}, ((\widetilde{H}, \widetilde{E}, \widetilde{\beta}), (\nabla^{\widetilde{H}}, \nabla^{\widetilde{E}})), \widetilde{g})$ is given by the following quadruple

$$(Z \times [0,1], Z \sqcup \widetilde{W}, ((p_Z^*\zeta, p_M^*E), (p_Z^*\nabla^\zeta, p_M^*\nabla^E)), h \circ p_Z).$$

Furthermore,

$$Ch_{\tau,*}([Z,(\zeta,\nabla^{\zeta}),h]) = [\int_{W} Td(W)ch_{\tau}(\nabla^{H})g^{*}] + Ch_{\tau,*}([N,(F,\nabla^{F}),j]) - [\int_{W'} Td(W')ch_{\tau}(\nabla^{H'})g'^{*}] - Ch_{\tau,*}([N',(F',\nabla^{F'}),j']) = \phi - \phi = 0.$$

Hence, $v(M, (E, \nabla^E), f, \phi)$ depends only on $(M, (E, \nabla^E), f, \phi)$.

We check that $v \circ \gamma = id_{K_*(X,\mathbb{R}/\mathbb{Z})}$ and $\gamma \circ v = id_{\check{K}^f_*(X)}$. The first equality is straightforward, and the second is obtained as follows. For all $[M, (E, \nabla^E), f, \phi] \in \check{K}^f_*(X)$,

$$\begin{split} \gamma(v[M,(E,\nabla^{E}),f,\phi]) &= \gamma([W \sqcup N,((H \sqcup F,\alpha^{*}E,\beta),(\nabla^{H} \sqcup \nabla^{F},\alpha^{*}\nabla^{E})),g \sqcup j]) \\ &= [\partial W,(\alpha^{*}E,\alpha^{*}\nabla^{E}),g|_{\partial W},[\int_{W \sqcup N} Td(W \sqcup N)ch_{\tau}(\nabla^{H} \sqcup \nabla^{F})(g \sqcup j)^{*}]] \\ &= [\partial W,(\alpha^{*}E,\alpha^{*}\nabla^{E}),g|_{\partial W},[\int_{W} Td(W)ch_{\tau}(\nabla^{H})g^{*}] + Ch_{\tau,*}[N,(F,\nabla^{F}),j]]. \end{split}$$

Since $Ch_{\tau,*}([N,(F,\nabla^F),j]) = \phi - [\int_W Td(W)ch_{\tau}(\nabla^H)g^*]$, we have

$$\gamma(v[M, (E, \nabla^E), f, \phi]) = [M, (E, \nabla^E), f, \phi].$$

4 The torsion part of Deeley \mathbb{R}/\mathbb{Z} -K-homology

The aim of this section is to describe the torsion subgroup of $K_*(X, \mathbb{R}/\mathbb{Z})$ via \mathbb{Q}/\mathbb{Z} -bordism theory.

We start by recalling the notions of \mathbb{Z}_k -manifold and \mathbb{Z}_k -vector bundle.

- **Definition 4.1.** A \mathbb{Z}_k -manifold is a triple (M, N, k) where (M, N) is a pair of smooth compact manifolds such that $\partial M = kN$. We often drop the integers from this notation and denote a \mathbb{Z}_k -manifold by (M, N).
 - A Z_k-vector bundle over (M, N) is a pair of vector bundles, (E, F), over M and N respectively such that E_{∂M} decomposes into k copies of F.

Additionally, we have natural definitions of (Hermitian) connections on (Hermitian) \mathbb{Z}_k -vector bundles, $Spin^c$ - \mathbb{Z}_k -manifolds, and framed \mathbb{Z}_k -manifolds. We refer the reader to [10] for supplementary details.

Now, if *Y* is any paracompact Hausdorff space then we shall denote by $\Omega_n^{F,k}(Y)$ the *n*-th framed \mathbb{Z}_k -bordism group of *Y*. Thus $\Omega_n^{F,k}(Y)$ is the set of all bordism classes of maps from framed *n*-dimensional \mathbb{Z}_k -manifolds into *Y*. Here, a smooth map *f* from a \mathbb{Z}_k -manifold (M, N) to *Y* is a pair of smooth maps $f_M : M \to Y$ and $f_N : N \to Y$ where $f_M : M \to Y$ is an extension of f_N . The set $\Omega_n^{F,k}(Y)$ is an Abelian group under the disjoint union operation.

For $l \in \mathbb{N}^*$, the assignment

$$((f_M, f_N) : (M, N^n) \to Y) \mapsto ((l.f_M, f_N) : (l.M, N^n) \to Y)$$

induces a well-defined homomorphism $L_l : \Omega_n^{F,k}(Y) \to \Omega_n^{F,lk}(Y)$. Denote by $\widetilde{\Omega}_n^F(Y)$ the limit of the direct system $(\Omega_n^{F,k!}(Y), L_{k+1})$.

Let $(S^{3,k}, S^2)$ be the $Spin^c \cdot \mathbb{Z}_k$ -manifold obtained by removing k open balls $int(D^3)$ from the 3-sphere, equipped with its standard $Spin^c$ -structure, $S \to (M, N)$, as the boundary of the couple of balls (D^4, D^3) : $\partial_k(D^4, D^3) := (\partial D^4 - k.int(D^3),$ $\partial D^3) = (S^{3,k}, S^2)$. It is also a framed manifold. Denote by $c : (S^{3,k}, S^2) \to$ $\mathcal{B}U$, where $\mathcal{B}U$ is the classifying space of the unitary group $U(\infty)$, a basepointpreserving map which, under the isomorphism $[(S^{3,k}, S^2), \mathcal{B}U] \cong \widetilde{K}(S^{3,k}, S^2)$, corresponds to the difference $[S^*_+] - 1_{(S^{3,k}, S^2)}$. Consider the direct system of Abelian groups

$$\Omega_n^{F,k}(\mathcal{B}U\times X)\to\Omega_{n+2}^{F,k}(\mathcal{B}U\times X)\to\Omega_{n+4}^{F,k}(\mathcal{B}U\times X)\to\cdots$$

given as follows: for $f : (M, N^n) \to \mathcal{B}U \times X$ be a smooth map from a framed *n*-dimensional \mathbb{Z}_k -manifold (M, N) to *Y*, the composition

$$(M,N) \times (S^{3,k},S^2) \stackrel{c \times f}{\to} \mathcal{B}U \times \mathcal{B}U \times X \stackrel{m \times id_X}{\to} \mathcal{B}U \times X$$

is a cycle for $\Omega_{n+2}^{F,k}(\mathcal{B}U \times X)$ where *m* is the map defined through tensor product of Hermitian vector spaces. This defines a map from $\widetilde{\Omega}_n^F(\mathcal{B}U \times X)$ to

 $\widetilde{\Omega}_{n+2}^{F}(\mathcal{B}U \times X)$. Denote by $\widetilde{\Omega}_{*}^{F}(\mathcal{B}U \times X)$, with $* \in \{ev, odd\}$, the direct limit of the above directed system.

Let $\beta : \Omega^F(\mathcal{B}U \times X) \to \widetilde{\Omega}^F_*(\mathcal{B}U \times X)$ be the homomorphism from the framed bordism group of $\mathcal{B}U \times X$ to $\widetilde{\Omega}^F_*(\mathcal{B}U \times X)$ which associates to each $[f : M \to \mathcal{B}U \times X]$ the class $[(f, \emptyset) : (M, \emptyset) \to \mathcal{B}U \times X]$.

Definition 4.2. Denote by $\widetilde{\Omega}_*^F(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z})$ the cokernel of β .

Remark 4.3. By the Pontrjagin-Thom isomorphism [14], we can identify $\widetilde{\Omega}_*^F(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z})$ with the stable homotopy group of the (base-pointed) topological space $\mathcal{B}U \times X$.

Let $f : (M, N^n) \to \mathcal{B}U \times X$ be a cycle in $\Omega_n^{F,k}(\mathcal{B}U \times X)$. It determines a Hermitian \mathbb{Z}_k -vector bundle (E, F) over (M, N) and a smooth map $(f'_M, f'_N) :$ $(M, N) \to X$. We choose a unitary connection (∇^E, ∇^F) on (E, F). Recall that the framing $T(M, N^n) \oplus 1^k \cong 1^{n+k}$ of the framed \mathbb{Z}_k -manifold (M, N) defines a $Spin^c$ -structure on (M, N). We obtain that the quadruple $(N, (F, \nabla^F), f'_N, [\frac{1}{k} \int_M Td(M)ch(\nabla^E) f'_M{}^*])$ is a differential K-cycle over X. Moreover,

$$k\left(\int_{N} Td(N)ch(\nabla^{F})f_{N}^{\prime *} - \frac{1}{k}\partial(\int_{M} Td(M)ch(\nabla^{E})f_{M}^{\prime *})\right) = \int_{kN} Td(kN)ch(\nabla^{kF})(kf_{N}^{\prime})^{*} - \int_{\partial M} Td(\partial M)ch(\nabla^{E|_{\partial M}}) \wedge \wedge (f_{M}^{\prime}|_{\partial M})^{*} = 0.$$

Then the class $[N, (F, \nabla^F), f_N, \frac{1}{k}([\int_M Td(M)ch(\nabla^E)f'_M])]$ lies in $\check{K}^f_{n[2]}(X)$, and from Remark 2.3, it is independent of the choice of geometry.

Proposition 4.4. The correspondence

$$[f:(M,N) \to \mathcal{B}U \times X] \mapsto [N,(F,\nabla^F),f_N,\frac{1}{k}[\int_M Td(M)ch(\nabla^E)f'_M]]$$

determines an injective homomorphism

$$\tau: \widetilde{\Omega}^F_*(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z}) \to \check{K}^f_*(X).$$

Proof. It is clear that τ is an additive map and well-defined on $\widetilde{\Omega}_n^F(\mathcal{B}U \times X)$. Since every cycle in differential K-homology is identified with its modifications, τ is also well-defined on $\widetilde{\Omega}_*^F(\mathcal{B}U \times X)$ ($* \in \{ev, odd\}$). Moreover, τ sends $img(\beta)$ to the trivial subgroup of $\check{K}_*^f(X)$.

 τ is injective. In fact let $f : (M, N^n) \to \mathcal{B}U \times X$ be a cycle in $\Omega_n^{F,k}(\mathcal{B}U \times X)$ where $[N, (F, \nabla^F), f_N, \frac{1}{k}[\int_M Td(M)ch(\nabla^E)f'_M]] = 0$. Without loss of generality, we reduce to the case when there is a smooth compact $Spin^c$ -manifold W, a smooth Hermitian vector bundle ε over W with a unitary connection ∇^{ε} , and a smooth map $g : W \to X$ such that

$$(N, (F, \nabla^{F}), f_{N}, \frac{1}{k} [\int_{M} Td(M)ch(\nabla^{E}) f'_{M}{}^{*}]) = (\partial W, (\varepsilon|_{\partial W}, \nabla^{\varepsilon}|_{\partial W}), g|_{\partial W}, [\int_{W} Td(\nabla^{W})ch(\nabla^{\varepsilon}) g^{*}]).$$

As $Spin^c$ -bordism relation is equivalent to framed bordism relation ([6, p.21]), we will consider W as a framed manifold. Let $(P, (V, \nabla^V), h)$ be the K-cycle obtained by gluing together the two K-chains of Baum-Douglas $(M, (E, \nabla^E), f'_M)$ and $(kW, (k\varepsilon, \nabla^{k\varepsilon}), kg)$ along their common boundary. Let $(\tilde{P}, (\tilde{V}, \nabla^{\tilde{V}}), \tilde{h})$ be a bordism between two copies of $(P, (V, \nabla^V), h)$. We have

$$\partial \widetilde{P} = P \sqcup P^{-}$$

= $P \sqcup M^{-} \cup_{\partial M^{-} \cong \partial(k,W^{-})} k.W^{-}.$

Denote by $h_{\widetilde{V}} : (\widetilde{P}, W^-) \to \mathcal{B}U$ a map which determines the class in the \mathbb{Z}_k -K-theory of (\widetilde{P}, W^-) represented by \widetilde{V} .

Since (\tilde{P}, W^-) is a framed \mathbb{Z}_k -manifold with $\partial_k(\tilde{P}, W^-) = (P \sqcup M^-, N^-)$, and the fiber bundle \tilde{V} and map \tilde{h} respect this \mathbb{Z}_k -structure so that $(h_{\tilde{V}} : (\tilde{P}, W^-) \to \mathcal{B}U, \tilde{h} : (\tilde{P}, W^-) \to X)$ is a bordism between $(h_V : (P, \emptyset) \to \mathcal{B}U, (h, \emptyset) : (P, \emptyset) \to X)$ and $f : (M, N) \to \mathcal{B}U \times X$, which implies that $[f : (M, N) \to \mathcal{B}U \times X] \in Img(\beta)$, and this finishes the proof.

Theorem 3.8 leads to an injective homomorphism

$$\overline{\tau}: \widetilde{\Omega}^F_*(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z}) \to K_*(X, \mathbb{R}/\mathbb{Z}).$$

Furthermore, from the construction of the flat Chern character $\check{C}h_* : \check{K}^f_*(X) \to H_{*+1}(X, \mathbb{R}/\mathbb{Q})$ we have the exact sequence

$$0\longrightarrow \widetilde{\Omega}^F_*(\mathcal{B}U\times X,\mathbb{Q}/\mathbb{Z})\stackrel{\overline{\tau}}{\longrightarrow} K_*(X,\mathbb{R}/\mathbb{Z})\stackrel{Ch_*\circ\gamma}{\longrightarrow} H_{*+1}(X,\mathbb{R}/\mathbb{Q}).$$

Corollary 4.5. The torsion part of $K_*(X, \mathbb{R}/\mathbb{Z})$ is isomorphic to $\widetilde{\Omega}^F_*(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z})$.

Remark 4.6. We can use the approach of Atiyah-Patodi-Singer [2, 3] to \mathbb{R}/\mathbb{Z} -K-theory, to obtain a third model for \mathbb{R}/\mathbb{Z} -K-homology by regarding $\widetilde{\Omega}^F_*(\mathcal{B}U \times X, \mathbb{Q}/\mathbb{Z})$ as a K-homology of X with \mathbb{Q}/\mathbb{Z} -coefficients and $H_*(X, \mathbb{R}/\mathbb{Q})$ as the cokernel of the natural injection $K^{geo}_*(X, \mathbb{Q}) \to K^{geo}_*(X) \otimes \mathbb{R}$.

References

- [1] M. F. Atiyah, *Bott periodicity and the index of elliptic operators*, Quart. J. Math. Oxford **19**(1968), 113–140.
- [2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry-I. Math. Proc. Cambridge Philos. Soc. 77(1975), 43–69.
- [3] M. F. Atiyah, V. K. Patodi and I. M. Singer, *Spectral asymmetry and Riemannian geometry-II.* Math. Proc. Cambridge Philos. Soc. **78**(1975), 405–432.
- [4] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry-III. Math. Proc. Cambridge Philos. Soc. 79(1976), 71–99.

- [5] P. Baum and R. Douglas, *K-homology and index theory*. Operator Algebras and Applications, Proceedings of Symposia in Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 117–173.
- [6] P. Baum, N. Higson and T. Schick, *On the equivalence of geometric and analytic K-homology*. Pure Appl. Math. Q. **3**(2007), no. 1, 1–24.
- [7] M. T. Benameur and M. Maghfoul, *Differential characters in k-theory*. Differential Geom. Appl. **24**(2006), 417–432.
- [8] R. Deeley, R/Z-valued index theory via geometric K-homology. To Appear in Münster Journal of Mathematics http://www.math.uni-muenster.de/mjm/acc/ Deeley.pdf/.
- [9] D. S. Freed and J. Lott, *An index theorem in differential k-theory.* Geometry and Topology **14**(2010), 903–966.
- [10] D. S. Freed and R. B. Melrose, A mod k index theorem. Invent. Math. 107(1992), 283–299.
- [11] N. Higson and J. Roe, *Analytic K-Homology*. Oxford Math. Monogr. Oxford Univ. Press, Oxford Sci. Publ., Oxford, 2000.
- [12] K. Klonoff, *An index theorem in differential K-theory*. Ph.D. dissertation, University of Texas Austin, 2008.
- [13] J. Lott, R/Z index theory. Comm. Anal. Geom. 2(1994), no. 2, 279–311.
- [14] L. S. Pontryagin, *Smooth manifolds and their applications in homotopy theory*. American Mathematical Society, Providence, R.I., Ser. 2 **11**(1959), 1–114.
- [15] R. M. G. Reis and R. J. Szabo, *Geometric K-Homology of Flat D-Branes*. Comm. Math. Phys. 266(2006), 71–122.
- [16] M. Walter, *Equivariant geometric K-homology with coefficients*. Diplomarbeit University of Göttingen, 2010.

Mathematics Department Ibn Tofail University Kenitra, Morocco email:adnane_elmrabty@yahoo.com